Canadian Journal of Cardiology

Medical Optimization and Liberation of Adult Patients From VA-ECMO

Published:November 04, 2019DOI:


      Venoarterial extracorporeal membrane oxygenation (VA-ECMO) can be an efficacious cardiopulmonary support for adults as rescue from refractory cardiogenic shock. It is best employed as a bridging strategy to recovery or alternative support rather than sustained, long-term mechanical circulatory support. The purpose of this paper is to discuss strategies to optimize patient management on VA-ECMO and approaches to promote successful separation from support. Rapid medical optimization will assist in reducing the time on VA-ECMO, thereby improving the likelihood of patient salvage. Suitably trained physicians and personnel, guided by structured protocols, can promote excellence in team care and provision of consistent management. Focusing on anticoagulation, careful neurologic monitoring, prevention of leg ischemia, awareness of differential hypoxemia, optimizing mechanical ventilation, identifying and timely intervention for left-ventricular distension (LVD), along with a strategic weaning algorithm, can prevent significant morbidity and mortality. LVD physiology, diagnosis, and risk factors are reviewed. Indications for LV decompression, along with medical and mechanical management options, are elucidated.


      L’oxygénation extracorporelle veino-artérielle par membrane (ECMO-VA) est une méthode d’assistance cardiopulmonaire qui peut se révéler une méthode de sauvetage efficace chez les adultes ayant subi un choc cardiogénique réfractaire. Elle est de préférence employée comme stratégie de transition jusqu’au rétablissement ou comme soutien de rechange à une assistance circulatoire mécanique soutenue à long terme. Le présent article traite des stratégies d’optimisation de la prise en charge des patients par ECMO-VA et des approches favorisant la réussite de l’arrêt de l’assistance. Une optimisation médicale rapide contribue également à réduire la durée de l’ECMO-VA, ce qui améliore les chances du patient de s’en sortir. Des médecins et du personnel ayant suivi une formation appropriée, guidés par des protocoles structurés, peuvent favoriser l’excellence de l’équipe soignante et la prestation de soins uniformisés. Grâce à une prise en charge axée sur l’anticoagulation, une surveillance neurologique attentive, la prévention de l’ischémie des membres inférieurs, la surveillance de l’hypoxémie différentielle, l’optimisation de la ventilation artificielle et la détection précoce de toute distension du ventricule gauche suivie d’une intervention rapide, ainsi qu’à un algorithme de sevrage stratégique, il est possible de réduire considérablement la morbidité et la mortalité. La physiologie, le diagnostic et les facteurs de risque de la distension du ventricule gauche sont passés en revue. Les indications quant à la décompression ventriculaire gauche ainsi que les options pour la prise en charge médicale et mécanique sont élucidées.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Hill J.D.
        • O’Brien T.G.
        • Murray J.J.
        • et al.
        Prolonged extracorporeal oxygenation for acute post-traumatic respiratory failure (shock-lung syndrome).
        N Engl J Med. 1972; 286: 629-634
        • Peek G.J.
        • Mugford M.
        • Tiruvoipati R.
        • et al.
        Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial.
        Lancet. 2009; 374: 1351-1363
      1. Extracorporeal Membrane Oxygenation for 2009 Influenza A (H1N1) Acute Respiratory Distress Syndrome.
        JAMA. 2009; 302: 1888-1895
      2. Extracorporeal Life Support Organization (ELSO) ECLS Registry Report International Summary, January 2019.
        (Available at:) (Accessed October 15, 2019)
        • Whitman G.J.R.
        Extracorporeal membrane oxygenation for the treatment of postcardiotomy shock.
        J Thorac Cardiovasc Surg. 2017; 153: 95-101
        • Beurtheret S.
        • Mordant P.
        • Paoletti X.
        • et al.
        Emergency circulatory support in refractory cardiogenic shock patients in remote institutions: a pilot study (the cardiac-RESCUE program).
        Eur Heart J. 2013; 34: 112-120
        • Burrell A.J.C.
        • Bennett V.
        • Serra A.L.
        • et al.
        Venoarterial extracorporeal membrane oxygenation: a systematic review of selection criteria, outcome measures and definitions of complications.
        J Crit Care. 2019; 53: 32-37
        • Singal R.K.
        • Singal D.
        • Bednarczyk J.
        • et al.
        Current and future status of extracorporeal cardiopulmonary resuscitation for in-hospital cardiac arrest.
        Can J Cardiol. 2017; 33: 51-60
        • Nagpal A.D.
        • Singal R.K.
        • Arora R.C.
        • Lamarche Y.
        Temporary mechanical circulatory support in cardiac critical care: a state of the art review and algorithm for device selection.
        Can J Cardiol. 2017; 33: 110-118
        • Grunau B.
        • Hornby L.
        • Singal R.K.
        • et al.
        Extracorporeal cardiopulmonary resuscitation for refractory out-of-hospital cardiac arrest: the state of the evidence and framework for application.
        Can J Cardiol. 2018; 34: 146-155
        • Devlin J.W.
        • Skrobik Y.
        • Gélinas C.
        • et al.
        Executive summary: clinical practice guidelines for the prevention and management of pain, agitation/sedation, delirium, immobility, and sleep disruption in adult patients in the ICU.
        Crit Care Med. 2018; 46: 1532
        • Hayes K.
        • Holland A.E.
        • Pellegrino V.A.
        • Mathur S.
        • Hodgson C.L.
        Acute skeletal muscle wasting and relation to physical function in patients requiring extracorporeal membrane oxygenation (ECMO).
        J Crit Care. 2018; 48: 1-8
        • Eden A.
        • Purkiss C.
        • Cork G.
        • et al.
        In-patient physiotherapy for adults on veno-venous extracorporeal membrane oxygenation - United Kingdom ECMO Physiotherapy Network: a consensus agreement for best practice.
        J Intens Care Soc. 2017; 18: 212-220
        • Munshi L.
        • Kobayashi T.
        • DeBacker J.
        • et al.
        Intensive care physiotherapy during extracorporeal membrane oxygenation for acute respiratory distress syndrome.
        Ann Am Thorac Soc. 2017; 14: 246-253
        • Wells C.L.
        • Forrester J.
        • Vogel J.
        • Rector R.
        • Tabatabai A.
        • Herr D.
        Safety and feasibility of early physical therapy for patients on extracorporeal membrane oxygenator: University of Maryland Medical Center Experience.
        Crit Care Med. 2018; 46: 53-59
        • Abrams D.C.
        • Prager K.
        • Blinderman C.D.
        • Burkart K.M.
        • Brodie D.
        Ethical dilemmas encountered with the use of extracorporeal membrane oxygenation in adults.
        Chest. 2014; 145: 876-882
        • Lin J.
        Extracorporeal membrane oxygenation support bridge to transplant: avoiding a bridge to nowhere.
        J Thorac Cardiovasc Surg. 2017; 154: 1796-1797
        • Hackmann A.E.
        • Wiggins L.M.
        • Grimes G.P.
        • et al.
        The utility of nurse-managed extracorporeal life support in an adult cardiac intensive care unit.
        Ann Thorac Surg. 2017; 104: 510-514
        • Extracorporeal Life Support Organization (ELSO)
        ELSO Guidelines for Training and Continuing Education of ECMO Specialists.
        (Available at:) (Accessed October 15, 2019)
        • Extracorporeal Life Support Organization (ELSO)
        ELSO Guidelines General All ECLS Version 1_4.pdf.
        (Available at:)
        • Extracorporeal Life Support Organization (ELSO)
        ELSO Guidelines for ECMO Centres.
        (Available at:) (Accessed October 15, 2019)
        • Raffini L.
        Anticoagulation with VADs and ECMO: walking the tightrope.
        Hematology. 2017; 2017: 674-680
        • Annich G.M.
        Extracorporeal life support: the precarious balance of hemostasis.
        J Thromb Haemost. 2015; 13: S336-S342
        • Sy E.
        • Sklar M.C.
        • Lequier L.
        • Fan E.
        • Kanji H.D.
        Anticoagulation practices and the prevalence of major bleeding, thromboembolic events, and mortality in venoarterial extracorporeal membrane oxygenation: a systematic review and meta-analysis.
        J Crit Care. 2017; 39: 87-96
        • Esper S.
        • Levy J.
        • Waters J.
        • Welsby I.
        Extracorporeal membrane oxygenation in the adult: a review of anticoagulation monitoring and transfusion.
        Anesth Analg. 2014; 118: 731-743
        • Kasirajan V.
        • Smedira N.G.
        • McCarthy J.F.
        • Casselman F.
        • Boparai N.
        • McCarthy P.M.
        Risk factors for intracranial hemorrhage in adults on extracorporeal membrane oxygenation.
        Eur J Cardiothorac Surg. 1999; 15: 508-514
        • Lamarche Y.
        • Chow B.
        • Bédard A.
        • et al.
        Thromboembolic events in patients on extracorporeal membrane oxygenation without anticoagulation.
        Innovations (Phila). 2010; 5: 424-429
        • Ryu K.M.
        • Chang S.W.
        Heparin-free extracorporeal membrane oxygenation in a patient with severe pulmonary contusions and bronchial disruption.
        Clin Exp Emerg Med. 2018; 5: 204-207
        • Chung Y.
        • Cho D.
        • Sohn D.
        • et al.
        Is stopping heparin safe in patients on extracorporeal membrane oxygenation treatment?.
        ASAIO J. 2017; 63: 32-36
        • Lequier L.
        • Annich G.M.
        • Al-Ibrahim O.
        • et al.
        ELSO anticoagulation guideline.
        • Sanfilippo F.
        • Asmussen S.
        • Maybauer D.M.
        • et al.
        Bivalirudin for alternative anticoagulation in extracorporeal membrane oxygenation: a systematic review.
        J Intens Care Med. 2017; 32: 312-319
        • Netley J.
        • Roy J.
        • Greenlee J.
        • Hart S.
        • Todt M.
        • Statz B.
        Bivalirudin anticoagulation dosing protocol for extracorporeal membrane oxygenation: a retrospective review.
        J Extra Corpor Technol. 2018; 50: 161-166
        • Macielak S.
        • Burcham P.
        • Whitson B.
        • Abdel-Rasoul M.
        • Rozycki A.
        Impact of anticoagulation strategy and agents on extracorporeal membrane oxygenation therapy.
        Perfusion. 2019; (267659119842809)
        • Kim Y.S.
        • Lee H.
        • Yang J.-H.
        • et al.
        Use of argatroban for extracorporeal life support in patients with nonheparin-induced thrombocytopenia: Analysis of 10 consecutive patients.
        Medicine (Baltimore). 2018; 97e13235
        • McMichael A.B.
        • Hornik C.
        • Hupp S.
        • Gordon S.
        • Ozment C.
        Correlation among antifactor Xa, activated partial thromboplastin time, and heparin dose and association with pediatric extracorporeal membrane oxygenation complications.
        ASAIO J. 2019; ([E-Pub ahead of print])
        • Mazzeffi M.A.
        • Tanaka K.
        • Roberts A.
        • et al.
        Bleeding, thrombosis, and transfusion with two heparin anticoagulation protocols in venoarterial ECMO patients.
        J Cardiothorac Vasc Anesth. 2019; 33: 1216-1220
        • Vandiver J.W.
        • Vondracek T.G.
        Antifactor Xa levels versus activated partial thromboplastin time for monitoring unfractionated heparin.
        Pharmacotherapy. 2012; 32: 546-558
        • Koster A.
        • Ljajikj E.
        • Faraoni D.
        Traditional and non-traditional anticoagulation management during extracorporeal membrane oxygenation.
        Ann Cardiothorac Surg. 2019; 8: 129-136
        • Saifee N.
        • Brogan T.
        • McMullan D.
        • et al.
        Monitoring hemostasis during extracorporeal life support.
        ASAIO J. 2020 Feb; 66: 230-237
        • Xie A.
        • Lo P.
        • Yan T.D.
        • Forrest P.
        Neurologic complications of extracorporeal membrane oxygenation: a review.
        J Cardiothorac Vasc Anesth. 2017; 31: 1836-1846
        • Xie A.
        • Phan K.
        • Yi-Chin Tsai M.
        • Yan T.D.
        • Forrest P.
        Venoarterial extracorporeal membrane oxygenation for cardiogenic shock and cardiac arrest: a meta-analysis.
        J Cardiothorac Vasc Anesth. 2015; 29: 637-645
        • Cheng R.
        • Hachamovitch R.
        • Kittleson M.
        • et al.
        Complications of extracorporeal membrane oxygenation for treatment of cardiogenic shock and cardiac arrest: a meta-analysis of 1,866 adult patients.
        Ann Thorac Surg. 2014; 97: 610-616
        • Pozzebon S.
        • Blandino Ortiz A.
        • Franchi F.
        • et al.
        Cerebral near-infrared spectroscopy in adult patients undergoing veno-arterial extracorporeal membrane oxygenation.
        Neurocrit Care. 2018; 29: 94-104
        • Khan I.
        • Rehan M.
        • Parikh G.
        • et al.
        Regional cerebral oximetry as an indicator of acute brain injury in adults undergoing veno-arterial extracorporeal membrane oxygenation: a prospective pilot study.
        Front Neurol. 2018; 9: 993
        • Maldonado Y.
        • Singh S.
        • Taylor M.
        Cerebral near-infrared spectroscopy in perioperative management of left ventricular assist device and extracorporeal membrane oxygenation patients.
        Curr Opin Anaesthesiol. 2014; 27: 81-88
        • Bisdas T.
        • Beutel G.
        • Warnecke G.
        • et al.
        Vascular complications in patients undergoing femoral cannulation for extracorporeal membrane oxygenation support.
        Ann Thorac Surg. 2011; 92: 626-631
        • Yau P.
        • Xia Y.
        • Shariff S.
        • et al.
        Factors associated with ipsilateral limb ischemia in patients undergoing femoral cannulation extracorporeal membrane oxygenation.
        Ann Vasc Surg. 2019; 54: 60-65
        • Lamb K.M.
        • DiMuzio P.J.
        • Johnson A.
        • et al.
        Arterial protocol including prophylactic distal perfusion catheter decreases limb ischemia complications in patients undergoing extracorporeal membrane oxygenation.
        J Vasc Surg. 2017; 65: 1074-1079
        • Kaufeld T.
        • Beckmann E.
        • Ius F.
        • et al.
        Risk factors for critical limb ischemia in patients undergoing femoral cannulation for venoarterial extracorporeal membrane oxygenation: is distal limb perfusion a mandatory approach?.
        Perfusion. 2019; 34: 453-459
        • Formica F.
        • D’Alessandro S.
        • Sangalli F.
        • Avalli L.
        Distal limb perfusion cannula in peripheral extracorporeal membrane oxygenation: always a mandatory approach?.
        Perfusion. 2019; 34: 528-529
        • Lunz D.
        • Philipp A.
        • Müller T.
        • et al.
        Ischemia-related vascular complications of percutaneously initiated venoarterial extracorporeal membrane oxygenation: indication setting, risk factors, manifestation and outcome.
        J Crit Care. 2019; 52: 58-62
        • Vander Salm M.
        • Thomas J.
        Prevention of lower extremity ischemia during cardiopulmonary bypass via femoral cannulation.
        Ann Thorac Surg. 1997; 63: 251-252
        • Luo S.
        • Foreman C.
        • Sano M.
        • et al.
        Novel leg cannula for venous decompression in peripheral extracorporeal membrane oxygenation.
        Ann Thorac Surg. 2018; 105: e95-e97
        • Augusto R.
        • Passos Silva M.
        • Campos J.
        • et al.
        Arterial vascular complications in peripheral venoarterial extracorporeal membrane oxygenation support.
        Rev Port Cir Cardiotorac Vasc. 2019; 26: 45-50
        • Patton-Rivera K.
        • Beck J.
        • Fung K.
        • et al.
        Using near-infrared reflectance spectroscopy (NIRS) to assess distal-limb perfusion on venoarterial (V-A) extracorporeal membrane oxygenation (ECMO) patients with femoral cannulation.
        Perfusion. 2018; 33: 618-623
        • Kim D.J.
        • Cho Y.-J.
        • Park S.H.
        • et al.
        Near-infrared spectroscopy monitoring for early detection of limb ischemia in patients on veno-arterial extracorporeal membrane oxygenation.
        ASAIO J. 2017; 63: 613-617
        • Wong J.K.
        • Smith T.N.
        • Pitcher H.T.
        • Hirose H.
        • Cavarocchi N.C.
        Cerebral and lower limb near-infrared spectroscopy in adults on extracorporeal membrane oxygenation.
        Artif Organs. 2012; 36: 659-667
        • Jayaraman A.L.
        • Cormican D.
        • Shah P.
        • Ramakrishna H.
        Cannulation strategies in adult veno-arterial and veno-venous extracorporeal membrane oxygenation: techniques, limitations, and special considerations.
        Ann Card Anaesth. 2017; 20: S11-S18
        • Gattinoni L.
        • Collino F.
        • Maiolo G.
        • et al.
        Positive end-expiratory pressure: how to set it at the individual level.
        Ann Transl Med. 2017; 5
        • Luecke T.
        • Pelosi P.
        Clinical review: positive end-expiratory pressure and cardiac output.
        Crit Care. 2005; 9: 607-621
        • Rupprecht L.
        • Florchinger B.
        • Schopka S.
        • et al.
        Cardiac decompression on extracorporeal life support: a review and discussion of the literature.
        ASAIO J. 2013; 59: 547-553
        • Xie A.
        • Forrest P.
        • Loforte A.
        Left ventricular decompression in veno-arterial extracorporeal membrane oxygenation.
        Ann Cardiothorac Surg. 2019; 8: 9-18
        • Truby L.K.
        • Takeda K.
        • Mauro C.
        • et al.
        Incidence and Implications of left ventricular distention during venoarterial extracorporeal membrane oxygenation support.
        ASAIO J. 2017; 63: 257-265
        • Russo J.J.
        • Aleksova N.
        • Pitcher I.
        • et al.
        Left ventricular unloading during extracorporeal membrane oxygenation in patients with cardiogenic shock.
        J Am Coll Cardiol. 2019; 73: 654-662
        • Rao P.
        • Khalpey Z.
        • Smith R.
        • Burkhoff D.
        • Kociol R.
        Venoarterial extracorporeal membrane oxygenation for cardiogenic shock and cardiac arrest: cardinal considerations for initiation and management.
        Circ Heart Fail. 2018; 11
        • Lim H.S.
        • Howell N.
        • Ranasinghe A.
        Extracorporeal life support: physiological concepts and clinical outcomes.
        J Card Fail. 2017; 23: 181-196
        • Burkhoff D.
        • Sayer G.
        • Doshi D.
        • Uriel N.
        Hemodynamics of mechanical circulatory support.
        J Am Coll Cardiol. 2015; 66: 2663-2674
        • Meani P.
        • Gelsomino S.
        • Natour E.
        • et al.
        Modalities and effects of left ventricle unloading on extracorporeal life support: a review of the current literature.
        Eur J Heart Fail. 2017; 19: 84-91
        • Aissaoui N.
        • Guerot E.
        • Combes A.
        • et al.
        Two-dimensional strain rate and doppler tissue myocardial velocities: analysis by echocardiography of hemodynamic and functional changes of the failed left ventricle during different degrees of extracorporeal life support.
        J Am Soc Echocardiogr. 2012; 25: 632-640
        • Weber C.
        • Deppe A.-C.
        • Sabashnikov A.
        • et al.
        Left ventricular thrombus formation in patients undergoing femoral veno-arterial extracorporeal membrane oxygenation.
        Perfusion. 2018; 33: 283-288
        • Boulate D.
        • Luyt C.-E.
        • Pozzi M.
        • et al.
        Acute lung injury after mechanical circulatory support implantation in patients on extracorporeal life support: an unrecognized problem.
        Eur J Cardiothorac Surg. 2013; 44: 544-550
        • Schrage B.
        • Burkhoff D.
        • Rübsamen N.
        • et al.
        Unloading of the Left ventricle during venoarterial extracorporeal membrane oxygenation therapy in cardiogenic shock.
        JACC Heart Fail. 2018; 6: 1035-1043
        • Falkensammer C.B.
        • Heinle J.S.
        • Chang A.C.
        Serial plasma BNP levels in assessing inadequate left ventricular decompression on ECMO.
        Pediatr Cardiol. 2008; 29: 808-811
        • Rao P.
        • Mosier J.
        • Malo J.
        • et al.
        Peripheral VA-ECMO with direct biventricular decompression for refractory cardiogenic shock.
        Perfusion. 2018; 33: 493-495
        • Donker D.W.
        • Brodie D.
        • Henriques J.P.S.
        • Broomé M.
        Left ventricular unloading during veno-arterial ECMO: a review of percutaneous and surgical unloading interventions.
        Perfusion. 2019; 34: 98-105
        • Guirgis M.
        • Kumar K.
        • Menkis A.H.
        • Freed D.H.
        Minimally invasive left-heart decompression during venoarterial extracorporeal membrane oxygenation: an alternative to a percutaneous approach.
        Interact Cardiovasc Thorac Surg. 2010; 10: 672-674
        • Eudailey K.W.
        • Yi S.Y.
        • Mongero L.B.
        • Wagener G.
        • Guarrera J.V.
        • George I.
        Trans-diaphragmatic left ventricular venting during peripheral venous-arterial extracorporeal membrane oxygenation.
        Perfusion. 2015; 30: 701-703
        • Avalli L.
        • Maggioni E.
        • Sangalli F.
        • Favini G.
        • Formica F.
        • Fumagalli R.
        Percutaneous left-heart decompression during extracorporeal membrane oxygenation: an alternative to surgical and transeptal venting in adult patients.
        ASAIO J. 2011; 57: 38-40
        • Fouilloux V.
        • Lebrun L.
        • Macé L.
        • Kreitmann B.
        Extracorporeal membranous oxygenation and left atrial decompression: a fast and minimally invasive approach.
        Ann Thorac Surg. 2011; 91: 1996-1997
        • Hong T.H.
        • Byun J.H.
        • Lee H.M.
        • et al.
        Initial experience of transaortic catheter venting in patients with venoarterial extracorporeal membrane oxygenation for cardiogenic shock.
        ASAIO J. 2016; 62: 117-122
        • Fumagalli R.
        • Bombino M.
        • Borelli M.
        • et al.
        Percutaneous bridge to heart transplantation by venoarterial ECMO and transaortic left ventricular venting.
        Int J Artif Organs. 2004; 27: 410-413
        • Aiyagari R.M.
        • Rocchini A.P.
        • Remenapp R.T.R.
        • Graziano J.N.
        Decompression of the left atrium during extracorporeal membrane oxygenation using a transseptal cannula incorporated into the circuit.
        Crit Care Med. 2006; 34: 2603-2606
        • Madershahian N.
        • Salehi-Gilani S.
        • Naraghi H.
        • Stoeger E.
        • Wahlers T.
        Biventricular decompression by trans-septal positioning of venous ECMO cannula through patent foramen ovale.
        J Cardiovasc Surg (Torino). 2011; 52: 900
        • Alkhouli M.
        • Narins C.R.
        • Lehoux J.
        • Knight P.A.
        • Waits B.
        • Ling F.S.
        Percutaneous decompression of the left ventricle in cardiogenic shock patients on venoarterial extracorporeal membrane oxygenation.
        J Card Surg. 2016; 31: 177-182
        • Alhussein M.
        • Osten M.
        • Horlick E.
        • et al.
        Percutaneous left atrial decompression in adults with refractory cardiogenic shock supported with veno-arterial extracorporeal membrane oxygenation.
        J Card Surg. 2017; 32: 396-401
      3. Johnston TA, Jaggers J, McGovern JJ, O’Laughlin MP. Bedside transseptal balloon dilation atrial septostomy for decompression of the left heart during extracorporeal membrane oxygenation. Catheter Cardiovasc Interv 46:197-199.

        • Kotani Y.
        • Chetan D.
        • Rodrigues W.
        • et al.
        Left atrial decompression during venoarterial extracorporeal membrane oxygenation for left ventricular failure in children: current strategy and clinical outcomes: left atrial decompression during ECMO.
        Artif Organs. 2013; 37: 29-36
        • Baruteau A.-E.
        • Barnetche T.
        • Morin L.
        • et al.
        Percutaneous balloon atrial septostomy on top of venoarterial extracorporeal membrane oxygenation results in safe and effective left heart decompression.
        Eur Heart J Acute Cardiovasc Care. 2018; 7: 70-79
        • Madershahian N.
        • Wippermann J.
        • Liakopoulos O.
        • et al.
        The acute effect of IABP-induced pulsatility on coronary vascular resistance and graft flow in critical ill patients during ECMO.
        J Cardiovasc Surg (Torino). 2011; 52: 411-418
        • Meani P.
        • Delnoij T.
        • Raffa G.M.
        • et al.
        Protracted aortic valve closure during peripheral veno-arterial extracorporeal life support: is intra-aortic balloon pump an effective solution?.
        Perfusion. 2019; 34: 35-41
        • Gass A.
        • Palaniswamy C.
        • Aronow W.S.
        • et al.
        Peripheral venoarterial extracorporeal membrane oxygenation in combination with intra-aortic balloon counterpulsation in patients with cardiovascular compromise.
        Cardiology. 2014; 129: 137-143
        • Doll N.
        • Kiaii B.
        • Borger M.
        • et al.
        Five-year results of 219 consecutive patients treated with extracorporeal membrane oxygenation for refractory postoperative cardiogenic shock.
        Ann Thorac Surg. 2004; 77: 151-157
        • Chen K.
        • Hou J.
        • Tang H.
        • Hu S.
        Concurrent implantation of intra-aortic balloon pump and extracorporeal membrane oxygenation improved survival of patients with postcardiotomy cardiogenic shock.
        Artif Organs. 2019; 43: 142-149
        • Ro S.K.
        • Kim J.B.
        • Jung S.H.
        • Choo S.J.
        • Chung C.H.
        • Lee J.W.
        Extracorporeal life support for cardiogenic shock: influence of concomitant intra-aortic balloon counterpulsation.
        Eur J Cardiothorac Surg. 2014; 46: 186-192
        • Park T.K.
        • Yang J.H.
        • Choi S.-H.
        • et al.
        Clinical impact of intra-aortic balloon pump during extracorporeal life support in patients with acute myocardial infarction complicated by cardiogenic shock.
        BMC Anesthesiol. 2014; 14: 27
        • Cheng R.
        • Hachamovitch R.
        • Makkar R.
        • et al.
        Lack of survival benefit found with use of intraaortic balloon pump in extracorporeal membrane oxygenation: a pooled experience of 1517 patients.
        J Invasive Cardiol. 2015; 27: 453-458
        • Lin L.-Y.
        • Liao C.-W.
        • Wang C.-H.
        • et al.
        Effects of additional intra-aortic balloon counter-pulsation therapy to cardiogenic shock patients supported by extra-corporeal membranous oxygenation.
        Sci Rep. 2016; 6
        • Aso S.M.
        • Matsui H.
        • Fushimi K.
        • Yasunaga H.
        The effect of intraaortic balloon pumping under venoarterial extracorporeal membrane oxygenation on mortality of cardiogenic patients: an analysis using a nationwide inpatient database.
        Crit Care Med. 2016; 44: 1974-1979
        • Donker D.W.
        • Brodie D.
        • Henriques J.P.S.
        • Broomé M.
        Left ventricular unloading during veno-arterial ECMO: a simulation study.
        ASAIO J. 2019; 65: 11-20
        • Pappalardo F.
        • Schulte C.
        • Pieri M.
        • et al.
        Concomitant implantation of Impella® on top of veno-arterial extracorporeal membrane oxygenation may improve survival of patients with cardiogenic shock.
        Eur J Heart Fail. 2017; 19: 404-412
        • Cheng A.
        • Swartz M.F.
        • Massey H.T.
        Impella to unload the left ventricle during peripheral extracorporeal membrane oxygenation.
        ASAIO J. 2013; 59: 533-536
        • Badiye A.P.
        • Hernandez G.A.
        • Novoa I.
        • Chaparro S.V.
        Incidence of hemolysis in patients with cardiogenic shock treated with Impella percutaneous left ventricular assist device.
        ASAIO J. 2016; 62: 11-14
        • Bernhardt A.M.
        • Hillebrand M.
        • Yildirim Y.
        • et al.
        Percutaneous left atrial unloading to prevent pulmonary oedema and to facilitate ventricular recovery under extracorporeal membrane oxygenation therapy.
        Interact Cardiovasc Thorac Surg. 2018; 26: 4-7
        • Li Y.W.
        • Rosenblum W.D.
        • Gass A.L.
        • Weiss M.B.
        • Aronow W.S.
        Combination use of a TandemHeart with an extracorporeal oxygenator in the treatment of five patients with refractory cardiogenic shock after acute myocardial infarction.
        Am J Ther. 2013; 20: 213-218
        • Smith M.
        • Vukomanovic A.
        • Brodie D.
        • Thiagarajan R.
        • Rycus P.
        • Buscher H.
        Duration of veno-arterial extracorporeal life support (VA ECMO) and outcome: an analysis of the Extracorporeal Life Support Organization (ELSO) registry.
        Crit Care. 2017; 21: 45
        • Pappalardo F.
        • Pieri M.
        • Arnaez Corada B.
        • et al.
        Timing and strategy for weaning from venoarterial ECMO are complex issues.
        J Cardiothorac Vasc Anesth. 2015; 29: 906-911
        • Cui W.W.
        • Ramsay J.G.
        Pharmacologic approaches to weaning from cardiopulmonary bypass and extracorporeal membrane oxygenation.
        Best Pract Res Clin Anaesthesiol. 2015; 29: 257-270
        • Iovino M.
        • Iacoviello M.
        • Pergola G.D.
        • et al.
        Vasopressin in heart failure. Endocr Metab Immune Disord: Drug Targets.
        (Published August 31, 2018. Accessed July 14, 2019)
        • Shaefi S.
        • Mittel A.
        • Klick J.
        • et al.
        Vasoplegia after cardiovascular procedures: pathophysiology and targeted therapy.
        J Cardiothorac Vasc Anesth. 2018; 32: 1013-1022
        • Hrymak C.
        • Strumpher J.
        • Jacobsohn E.
        Acute right ventricle failure in the intensive care unit: assessment and management.
        Can J Cardiol. 2017; 33: 61-71
        • Haddad F.
        • Doyle R.
        • Murphy D.J.
        • Hunt S.A.
        Right ventricular function in cardiovascular disease, part II.
        Circulation. 2008; 117: 1717-1731
        • Zwischenberger J.B.
        • Pitcher H.T.
        Extracorporeal membrane oxygenation management: techniques to liberate from extracorporeal membrane oxygenation and manage post-intensive care unit issues.
        Crit Care Clin. 2017; 33: 843-853
        • Aissaoui N.
        • El-Banayosy A.
        • Combes A.
        How to wean a patient from veno-arterial extracorporeal membrane oxygenation.
        Intensive Care Med. 2015; 41: 902-905
        • Ortuno S.
        • Delmas C.
        • Diehl J.-L.
        • et al.
        Weaning from veno-arterial extra-corporeal membrane oxygenation: which strategy to use?.
        Ann Cardiothorac Surg. 2019; 8: E1-E8
        • Westrope C.
        • Harvey C.
        • Robinson S.
        • Speggiorin S.
        • Faulkner G.
        • Peek G.J.
        Pump controlled retrograde trial off from VA-ECMO.
        ASAIO J. 2013; 59: 517-519
        • Ling L.
        • Chan K.M.
        Weaning adult patients with cardiogenic shock on veno-arterial extracorporeal membrane oxygenation by pump-controlled retrograde trial off.
        Perfusion. 2018; 33: 339-345
        • Mattke C.
        • Haisz E.
        • Pandya N.
        • Black A.
        • Venugopal P.
        Creating a controlled arterio-venous shunt by reversing the extracorporeal membrane oxygenation blood flow: a strategy for weaning patients off veno-arterial extracorporeal membrane oxygenation.
        Pediatr Crit Care Med. 2017; 18: 973-976