Advertisement
Canadian Journal of Cardiology

Cardiogenic Shock: Reflections at the Crossroad Between Perfusion, Tissue Hypoxia, and Mitochondrial Function

  • Connor O’Brien
    Correspondence
    Corresponding author: Dr Connor O’Brien, Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, Falk CVRC, 300 Pasteur Dr, Palo Alto, California 94305, USA. Tel.: +1-650-498-7778; fax: +1-650-725-8381.
    Affiliations
    Division of Cardiovascular Medicine, Stanford University School of Medicine, Palo Alto, California, USA
    Search for articles by this author
  • William Beaubien-Souligny
    Affiliations
    Department of Anesthesiology and Intensive Care, Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
    Search for articles by this author
  • Myriam Amsallem
    Affiliations
    Division of Cardiovascular Medicine, Stanford University School of Medicine, Palo Alto, California, USA
    Search for articles by this author
  • André Denault
    Affiliations
    Department of Anesthesiology and Intensive Care, Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
    Search for articles by this author
  • François Haddad
    Affiliations
    Division of Cardiovascular Medicine, Stanford University School of Medicine, Palo Alto, California, USA

    Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA

    Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Palo Alto, California, USA
    Search for articles by this author
Published:November 25, 2019DOI:https://doi.org/10.1016/j.cjca.2019.11.020

      Abstract

      Cardiogenic shock is classically defined by systemic hypotension with evidence of hypoperfusion and end organ dysfunction. In modern practice, however, these metrics often incompletely describe cardiogenic shock because patients present with more advanced cardiovascular disease and greater degrees of multiorgan dysfunction. Understanding how perfusion, congestion, and end organ dysfunction contribute to hypoxia at the cellular level are central to the diagnosis and management of cardiogenic shock. Although, in clinical practice, increased lactate level is often equated with hypoxia, several other factors might contribute to an elevated lactate level including mitochondrial dysfunction, impaired hepatic and renal clearance, as well as epinephrine use. To this end, we present the evidence underlying the value of lactate to pyruvate ratio as a potential discriminator of cellular hypoxia. We will then discuss the physiological implications of hypoxia and congestion on hepatic, intestinal, and renal physiology. Organ-specific susceptibility to hypoxia is presented in the context of their functional architecture. We discuss how the concepts of contractile reserve, fluid responsiveness, tissue oxygenation, and cardiopulmonary interactions can help personalize the management of cardiogenic shock. Finally, we highlight the limitations of using lactate for tailoring therapy in cardiogenic shock.

      Résumé

      On définit habituellement le choc cardiogénique comme étant une hypotension générale accompagnée de signes d’hypoperfusion et de dysfonction des organes cibles. Dans la pratique moderne, toutefois, ces paramètres de mesure reflètent souvent de manière incomplète le choc cardiogénique, car les patients présentent en réalité des cardiopathies plus avancées et une dysfonction multiviscérale plus importante. Une bonne compréhension de la contribution de la perfusion, de la congestion et de la dysfonction des organes cibles à l’hypoxie cellulaire est essentielle au diagnostic et à la prise en charge du choc cardiogénique. Bien que dans la pratique clinique, une hausse du taux de lactate soit souvent assimilée à l’hypoxie, plusieurs autres facteurs peuvent contribuer à une telle hausse, notamment une dysfonction mitochondriale, une altération de la clairance hépatique et rénale et l’usage d’adrénaline. Nous présentons donc les données qui sous-tendent la valeur du rapport lactate/pyruvate comme indicateur potentiel d’hypoxie cellulaire. Sont ensuite abordées les répercussions de l’hypoxie et de la congestion sur la physiologie du foie, des intestins et des reins. La sensibilité à l’hypoxie des différents organes est présentée dans le contexte de leur architecture fonctionnelle. Nous traitons également de la façon dont les notions de réserve contractile, de réponse au remplissage volumique, d’oxygénation des tissus et des interactions cardiopulmonaires peuvent aider à personnaliser la prise en charge du choc cardiogénique. Enfin, nous soulignons les limites de l’utilisation du taux de lactate pour la personnalisation du traitement du choc cardiogénique.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Harjola V.P.
        • Lassus J.
        • Sionis A.
        • et al.
        Clinical picture and risk prediction of short-term mortality in cardiogenic shock.
        Eur J Heart Fail. 2015; 17: 501-509
        • Sleeper L.A.
        • Reynolds H.R.
        • White H.D.
        • et al.
        A severity scoring system for risk assessment of patients with cardiogenic shock: a report from the SHOCK Trial and Registry.
        Am Heart J. 2010; 160: 443-450
        • Morrow D.A.
        The changing face of cardiogenic shock: a challenge in cardiac critical care.
        J Am Coll Cardiol. 2019; 73: 1792-1794
        • Berg D.D.
        • Bohula E.A.
        • van Diepen S.
        • et al.
        Epidemiology of shock in contemporary cardiac intensive care units.
        Circ Cardiovasc Qual Outcomes. 2019; 12 (e005618)
        • Jentzer J.C.
        • van Diepen S.
        • Barsness G.W.
        • et al.
        Changes in comorbidities, diagnoses, therapies and outcomes in a contemporary cardiac intensive care unit population.
        Am Heart J. 2019; 215: 12-19
        • Sleeper L.A.
        • Webb J.G.
        • Dzavik V.
        • et al.
        Early revascularization and long-term acute myocardial infarction.
        JAMA. 2006; 295: 2511-2515
        • Van Diepen S.
        • Katz J.N.
        • Albert N.M.
        • et al.
        Contemporary management of cardiogenic shock: a scientific statement from the American Heart Association.
        Circulation. 2017; 136: e232-e268
        • García-González M.J.
        • Domínguez-Rodríguez A.
        • Ferrer-Hita J.J.
        • Abreu-González P.
        • Muñoz M.B.
        Cardiogenic shock after primary percutaneous coronary intervention: effects of levosimendan compared with dobutamine on haemodynamics.
        Eur J Heart Fail. 2006; 8: 723-728
        • Squara P.
        • Hollenberg S.
        • Payen D.
        Reconsidering vasopressors for cardiogenic shock: everything should be made as simple as possible, but not simpler.
        Chest. 2019; 156: 392-401
        • Levy B.
        • Clere-Jehl R.
        • Legras A.
        • et al.
        Epinephrine versus norepinephrine for cardiogenic shock after acute myocardial infarction.
        J Am Coll Cardiol. 2018; 72: 173-182
        • Rimachi R.
        • Bruzzi De Carvahlo F.
        • Orellano-Jimenez C.
        • et al.
        Lactate/pyruvate ratio as a marker of tissue hypoxia in circulatory and septic shock.
        Anaesth Intensive Care. 2012; 40: 427-432
        • Suistomaa M.
        • Ruokonen E.
        • Kari A.
        • Takala J.
        Time-pattern of lactate and lactate to pyruvate ratio in the first 24 hours of intensive care emergency admissions.
        Shock. 2000; 14: 8-12
        • Lindholm G.
        • Hongsito M.
        • Lassus J.
        • et al.
        Serum lactate and a relative change in lactate as predictors of mortality in patients with cardiogenic shock - results from the CardShock study. Shock. 2020; 53: 43-49
        • Attaná P.
        • Lazzeri C.
        • Chiostri M.
        • et al.
        Lactate clearance in cardiogenic shock following ST elevation myocardial infarction: a pilot study.
        Acute Card Care. 2012; 14: 20-26
        • Bhattacharjee S.
        • Soni K.D.
        • Maitra S.
        • Baidya D.K.
        Levosimendan does not provide mortality benefit over dobutamine in adult patients with septic shock: a meta-analysis of randomized controlled trials.
        J Clin Anesth. 2017; 39: 67-72
        • Hernández G.
        • Ospina-Tascón G.A.
        • Damiani L.P.
        • et al.
        Effect of a resuscitation strategy targeting peripheral perfusion status vs serum lactate levels on 28-day mortality among patients with septic shock: the ANDROMEDA-SHOCK randomized clinical trial.
        JAMA. 2019; 321: 654-664
        • Vahdatpour C.
        • Collins D.
        • Goldberg S.
        Cardiogenic shock.
        J Am Heart Assoc. 2019; 8 (e011991)
        • Ponikowski P.
        • Voors A.A.
        • Anker S.D.
        • et al.
        ESC guidelines for the diagnosis and treatment of acute and chronic heart failure.
        Eur J Heart Fail. 2016; 18: 891-975
        • Lee J.M.
        • Rhee T.M.
        • Hahn J.Y.
        • et al.
        Multivessel percutaneous coronary intervention in patients with ST-segment elevation myocardial infarction with cardiogenic shock.
        J Am Coll Cardiol. 2018; 71: 844-856
        • Cecconi M.
        • De Backer D.
        • Antonelli M.
        • et al.
        Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine.
        Intensive Care Med. 2014; 40: 1795-1815
        • Ander D.S.
        • Jaggi M.
        • Rivers E.
        • et al.
        Undetected cardiogenic shock in patients with congestive heart failure presenting to the emergency department.
        Am J Cardiol. 1998; 82: 888-891
        • Marty P.
        • Roquilly A.
        • Vallée F.
        • et al.
        Lactate clearance for death prediction in severe sepsis or septic shock patients during the first 24 hours in intensive care unit: an observational study.
        Ann Intensive Care. 2013; 3: 3
        • Rivers E.
        • Nguyen B.
        • Havstad S.
        • et al.
        Early goal-directed therapy in the treatment of severe sepsis and septic shock.
        N Engl J Med. 2001; 345: 1368-1377
        • Unverzagt S.
        • Wachsmuth L.
        • Hirsch K.
        • et al.
        Inotropic agents and vasodilator strategies for acute myocardial infarction complicated by cardiogenic shock or low cardiac output syndrome.
        Cochrane Database Syst Rev. 2014; 1 (CD009669)
        • Bakker J.
        Increased blood lactate levels: a marker of...?.
        (Available at:) (Accessed July 25, 2019)
        • Gladden L.B.
        Lactate metabolism: a new paradigm for the third millennium.
        J Physiol. 2004; 558: 5-30
        • Brooks G.A.
        • Dubouchaud H.
        • Brown M.
        • Sicurello J.P.
        • Butz C.E.
        Role of mitochondrial lactate dehydrogenase and lactate oxidation in the intracellular lactate shuttle.
        Proc Natl Acad Sci U S A. 1999; 96: 1129-1134
        • Gutierrez G.
        • Wulf M.E.
        Lactic acidosis is sepsis: another commentary.
        Crit Care Med. 2005; 33: 2420-2422
        • Poole R.C.
        • Halestrap A.P.
        Transport of lactate and other monocarboxylates across mammalian plasma membranes.
        Am J Physiol Physiol. 2017; 264: C761-C782
        • Gore D.C.
        • Jahoor F.
        • Hibbert J.M.
        • DeMaria E.J.
        Lactic acidosis during sepsis is related to increased pyruvate production, not deficits in tissue oxygen availability.
        Ann Surg. 1996; 224: 97-102
        • Raper R.F.
        • Cameron G.
        • Walker D.
        • Jane Bowey C.
        Type B lactic acidosis following cardiopulmonary bypass.
        Crit Care Med. 1997; 25: 46-51
        • Kurien V.A.
        • Oliver M.F.
        Free fatty acids during acute myocardial infarction.
        Prog Cardiovasc Dis. 1971; 13: 361-373
        • Lopaschuk G.D.
        • Ussher J.R.
        • Folmes C.D.L.
        • Jaswal J.S.
        • Stanley W.C.
        Myocardial fatty acid metabolism in health and disease.
        Physiol Rev. 2010; 90: 207-258
        • Preiser J.C.
        • Ichai C.
        • Orban J.C.
        • Groeneveld A.J.
        Metabolic response to the stress of critical illness.
        Br J Anaesth. 2014; 113: 945-954
        • Vitin A.A.
        • Azamfirei L.
        • Tomescu D.
        • Lang J.D.
        Review. Perioperative management of lactic acidosis in end-stage liver disease patient.
        J Crit Care Med (Targu Mures). 2017; 3: 55-62
        • Herbertson M.J.
        • Werner H.A.
        • Russell J.A.
        • Iversen K.
        • Walley K.R.
        Myocardial oxygen extraction ratio is decreased during endotoxemia in pigs.
        J Appl Physiol (1985). 1995; 79: 479-486
        • Jeong H.S.
        • Lee T.H.
        • Bang C.H.
        • Kim J.H.
        • Hong S.J.
        Risk factors and outcomes of sepsis-induced myocardial dysfunction and stress-induced cardiomyopathy in sepsis or septic shock.
        Medicine (Baltimore). 2018; 97 (e0263)
        • Takasu O.
        • Gaut J.P.
        • Watanabe E.
        • et al.
        Mechanisms of cardiac and renal dysfunction in patients dying of sepsis.
        Am J Respir Crit Care Med. 2013; 187: 509-517
        • Suliman H.B.
        • Welty-Wolf K.E.
        • Carraway M.
        • Tatro L.
        • Piantadosi C.A.
        Lipopolysaccharide induces oxidative cardiac mitochondrial damage and biogenesis.
        Cardiovasc Res. 2004; 64: 279-288
        • Levy B.
        • Mansart A.
        • Montemont C.
        • et al.
        Myocardial lactate deprivation is associated with decreased cardiovascular performance, decreased myocardial energetics, and early death in endotoxic shock.
        Intensive Care Med. 2007; 33: 495-502
        • Levy B.
        • Sadoune L.O.
        • Gelot A.M.
        • et al.
        Evolution of lactate/pyruvate and arterial ketone body ratios in the early course of catecholamine-treated septic shock.
        Crit Care Med. 2000; 28: 114-119
        • Seven A.
        Blood lactate / pyruvate as a predictor of shock development in acute myocardial infarction.
        Crit Rev Clin Lab Sci. 1998; 28: 67-69
        • Adler A.C.
        • Nathanson B.H.
        • Raghunathan K.
        • McGee W.T.
        Misleading indexed hemodynamic parameters: the clinical importance of discordant BMI and BSA at extremes of weight.
        Crit Care. 2012; 16: 471
        • Fakler U.
        • Pauli C.
        • Hennig M.
        • Sebening W.
        • Hess J.
        Assumed oxygen consumption frequently results in large errors in the determination of cardiac output.
        J Thorac Cardiovasc Surg. 2005; 130: 272-276
        • Lim N.
        • Dubois M.J.
        • De Backer D.
        • Vincent J.L.
        Do all nonsurvivors of cardiogenic shock die with a low cardiac index?.
        . 2003; 124: 1885-1891
        • Lautt W.W.
        • Legare D.J.
        • Ezzat W.R.
        Quantitation of the hepatic arterial buffer response to graded changes in portal blood flow.
        Gastroenterology. 1990; 98: 1024-1028
        • Koehne de Gonzalez A.K.
        • Lefkowitch J.H.
        Heart disease and the liver: pathologic evaluation.
        Gastroenterol Clin North Am. 2017; 46: 421-435
        • Kantrowitz P.A.
        • Jones W.A.
        • Greenberger N.J.
        • Isselbacher K.J.
        Severe postoperative hyperbilirubinemia simulating obstructive jaundice.
        N Engl J Med. 1967; 276: 590-598
        • Seeto R.K.
        • Fenn B.
        • Rockey D.C.
        Ischemic hepatitis: clinical presentation and pathogenesis.
        Am J Med. 2000; 109: 109-113
        • Allen L.A.
        • Felker G.M.
        • Pocock S.
        • et al.
        Liver function abnormalities and outcome in patients with chronic heart failure: data from the Candesartan in Heart Failure: Assessment of Reduction in Mortality and Morbidity (CHARM) program.
        Eur J Heart Fail. 2009; 11: 170-177
        • Samsky M.D.
        • Dunning A.
        • DeVore A.D.
        • et al.
        Liver function tests in patients with acute heart failure and associated outcomes: insights from ASCEND-HF.
        Eur J Heart Fail. 2016; 18: 424-432
        • Mullens W.
        • Damman K.
        • Harjola V.P.
        • et al.
        The use of diuretics in heart failure with congestion — a position statement from the Heart Failure Association of the European Society of Cardiology.
        Eur J Heart Fail. 2019; 21: 137-155
        • Jäntti T.
        • Tarvasmäki T.
        • Harjola V.P.
        • et al.
        Frequency and prognostic significance of abnormal liver function tests in patients with cardiogenic shock.
        Am J Cardiol. 2017; 120: 1090-1097
        • Xanthopoulos A.
        • Starling R.C.
        • Kitai T.
        • Triposkiadis F.
        Heart failure and liver disease.
        JACC Heart Fail. 2019; 7: 87-97
        • Nikolaou M.
        • Parissis J.
        • Yilmaz M.B.
        • et al.
        Liver function abnormalities, clinical profile, and outcome in acute decompensated heart failure.
        Eur Heart J. 2013; 34: 742-749
        • Van den broecke A.
        • Van Coile L.
        • Decruyenaere A.
        • et al.
        Epidemiology, causes, evolution and outcome in a single-center cohort of 1116 critically ill patients with hypoxic hepatitis.
        Ann Intensive Care. 2018; 8: 15
        • Alvarez A.M.
        • Mukherjee D.
        Liver abnormalities in cardiac diseases and heart failure.
        Int J Angiol. 2011; 20: 135-142
        • Drolz A.
        • Jäger B.
        • Wewalka M.
        • et al.
        Clinical impact of arterial ammonia levels in ICU patients with different liver diseases.
        Intensive Care Med. 2013; 39: 1227-1237
        • Sundaram V.
        • Fang J.C.
        Gastrointestinal and liver issues in heart failure.
        Circulation. 2016; 133: 1696-1703
        • Sandek A.
        • Swidsinski A.
        • Schroedl W.
        • et al.
        Intestinal blood flow in patients with chronic heart failure: a link with bacterial growth, gastrointestinal symptoms, and cachexia.
        J Am Coll Cardiol. 2014; 64: 1092-1102
        • Peschel T.
        • Schönauer M.
        • Thiele H.
        • et al.
        Invasive assessment of bacterial endotoxin and inflammatory cytokines in patients with acute heart failure.
        Eur J Heart Fail. 2003; 5: 609-614
        • Kohsaka S.
        • Menon V.
        • Lowe A.M.
        • et al.
        Systemic inflammatory response syndrome after acute myocardial infarction complicated by cardiogenic shock.
        Arch Intern Med. 2005; 165: 1643-1650
        • Brunkhorst F.M.
        • Clark A.L.
        • Forycki Z.F.
        • Anker S.D.
        Pyrexia, procalcitonin, immune activation and survival in cardiogenic shock: the potential importance of bacterial translocation.
        Int J Cardiol. 1999; 72: 3-10
        • Debrunner M.
        • Schuiki E.
        • Minder E.
        • et al.
        Proinflammatory cytokines in acute myocardial infarction with and without cardiogenic shock.
        Clin Res Cardiol. 2008; 97: 298-305
        • Ljungman S.
        • Laragh J.H.
        • Cody R.J.
        Role of the kidney in congestive heart failure: relationship of cardiac index to kidney function.
        Drugs. 1990; 39: 10-21
        • Winton F.R.
        The influence of venous pressure on the isolated mammalian kidney.
        J Physiol. 1931; 72: 49-61
        • Damman K.
        • Navis G.
        • Smilde T.D.J.
        • et al.
        Decreased cardiac output, venous congestion and the association with renal impairment in patients with cardiac dysfunction.
        Eur J Heart Fail. 2007; 9: 872-878
        • Fiksen-Olsen M.J.
        • Strick D.M.
        • Hawley H.
        • Romero J.C.
        Renal effects of angiotensin II inhibition during increases in renal venous pressure.
        Hypertension. 1992; 19: II137
        • DiBona G.F.
        • Sawin L.L.
        Role of renal nerves in sodium retention of cirrhosis and congestive heart failure.
        Am J Physiol Integr Comp Physiol. 2017; 260: R298-R305
        • Zhang W.
        • Edwards A.
        Oxygen transport across vasa recta in the renal medulla.
        Am J Physiol Circ Physiol. 2002; 283: H1042-H1055
        • Legrand M.
        • Le Cam B.
        • Perbet S.
        • et al.
        Urine sodium concentration to predict fluid responsiveness in oliguric ICU patients: a prospective multicenter observational study.
        Crit Care. 2016; 20: 165
        • Su L.J.
        • Li Y.M.
        • Kellum J.A.
        • Peng Z.Y.
        Predictive value of cell cycle arrest biomarkers for cardiac surgery-associated acute kidney injury: a meta-analysis.
        Br J Anaesth. 2018; 121: 350-357
        • Klein S.J.
        • Brandtner A.K.
        • Lehner G.F.
        • et al.
        Biomarkers for prediction of renal replacement therapy in acute kidney injury: a systematic review and meta-analysis.
        Intensive Care Med. 2018; 44: 323-336
        • Ahmad T.
        • Jackson K.
        • Rao V.S.
        • et al.
        Worsening renal function in patients with acute heart failure undergoing aggressive diuresis is not associated with tubular injury.
        Circulation. 2018; 137: 2016-2028
        • Tarvasmäki T.
        • Haapio M.
        • Mebazaa A.
        • et al.
        Acute kidney injury in cardiogenic shock: definitions, incidence, haemodynamic alterations, and mortality.
        Eur J Heart Fail. 2018; 20: 572-581
        • Bouchard J.
        • Soroko S.B.
        • Chertow G.M.
        • et al.
        Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury.
        Kidney Int. 2009; 76: 422-427
        • Brandstrup B.
        • Tønnesen H.
        • Beier-Holgersen R.
        • et al.
        Effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens - a randomized assessor-blinded multicenter trial.
        Ann Surg. 2003; 238: 641-648
        • Eljaiek R.
        • Cavayas Y.A.
        • Rodrigue E.
        • et al.
        High postoperative portal venous flow pulsatility indicates right ventricular dysfunction and predicts complications in cardiac surgery patients.
        Br J Anaesth. 2019; 122: 206-214
        • Verbrugge F.H.
        • Bertrand P.B.
        • Willems E.
        • et al.
        Global myocardial oedema in advanced decompensated heart failure.
        Eur Heart J Cardiovasc Imaging. 2017; 18: 787-794
        • Murugan R.
        • Kerti S.J.
        • Chang C.C.H.
        • et al.
        Association of net ultrafiltration rate with mortality among critically ill adults with acute kidney injury receiving continuous venovenous hemodiafiltration.
        JAMA Netw Open. 2019; 2 (e195418)
        • Murugan R.
        • Balakumar V.
        • Kerti S.J.
        • et al.
        Net ultrafiltration intensity and mortality in critically ill patients with fluid overload.
        Crit Care. 2018; 22: 223
        • Sinha S.S.
        • Sjoding M.W.
        • Sukul D.
        • et al.
        Changes in primary noncardiac diagnoses over time among elderly cardiac intensive care unit patients in the United States.
        Circ Cardiovasc Qual Outcomes. 2017; 10: 1-9
        • Morrow D.A.
        Trends in cardiac critical care.
        Circ Cardiovasc Qual Outcomes. 2017; 10: 6-8
        • Cheifetz I.M.
        Cardiorespiratory interactions: the relationship between mechanical ventilation and hemodynamics.
        Respir Care. 2014; 59: 1937-1945
        • Price L.C.
        • Wort S.J.
        • Finney S.J.
        • Marino P.S.
        • Brett S.J.
        Pulmonary vascular and right ventricular dysfunction in adult critical care: current and emerging options for management: a systematic literature review.
        Crit Care. 2010; 14: R169
        • Spotnitz H.M.
        • Sonnenblick E.H.
        • Spiro D.
        Relation of ultrastructure to function in the intact heart: sarcomere structure relative to pressure volume curves of intact left ventricles of dog and cat.
        Circ Res. 1966; 18: 49-66
        • Gilbert G.
        • Demydenko K.
        • Dries E.
        • et al.
        Calcium signaling in cardiomyocyte function [e-pub ahead of print]. Cold Spring Harb Perspect Biol.
        (Accessed July 15, 2019)
        • Psotka M.A.
        • Gottlieb S.S.
        • Francis G.S.
        • et al.
        Cardiac calcitropes, myotropes, and mitotropes: JACC Review Topic of the Week.
        J Am Coll Cardiol. 2019; 73: 2345-2353
        • Kanatous S.B.
        • Mammen P.P.A.
        • Rosenberg P.B.
        • et al.
        Hypoxia reprograms calcium signaling and regulates myoglobin expression.
        Am J Physiol Cell Physiol. 2009; 296: 393-402
        • Fauconnier J.
        • Meli A.C.
        • Thireau J.
        • et al.
        Ryanodine receptor leak mediated by caspase-8 activation leads to left ventricular injury after myocardial ischemia-reperfusion.
        Proc Natl Acad Sci U S A. 2011; 108: 13258-13263
        • Santulli G.
        Mitochondrial calcium handling in physiology and disease. In: Advances in Experimental Medicine and Biology. Vol 982 Mitochondrial Dynamics in Cardiovascular Medicine.
        Springer, New York, NY2017: 25-47
        • Montgomery H.
        Cardiac reserve: linking physiology and genetics.
        Intensive Care Med. 2000; 26: s137-s144
        • Bilchick K.C.
        • Mejia-Lopez E.
        • McCullough P.
        • et al.
        Clinical impact of changes in hemodynamic indices of contractile function during treatment of acute decompensated heart failure.
        J Card Fail. 2018; 24: 43-50
        • Fincke R.
        • Hochman J.S.
        • Lowe A.M.
        • et al.
        Cardiac power is the strongest hemodynamic correlate of mortality in cardiogenic shock: a report from the SHOCK trial registry.
        J Am Coll Cardiol. 2004; 44: 340-348
        • Tan L.B.
        • Littler W.A.
        Measurement of cardiac reserve in cardiogenic shock: implications for prognosis and management.
        Heart. 1990; 64: 121-128
        • Marmor A.
        • Schneeweiss A.
        Prognostic value of noninvasively obtained left ventricular contractile reserve in patients with severe heart failure.
        J Am Coll Cardiol. 1997; 29: 422-428
        • Guérin J.P.
        • Levraut J.
        • Samat-Long C.
        • et al.
        Effects of dopamine and norepinephrine on systemic and hepatosplanchnic hemodynamics, oxygen exchange, and energy balance in vasoplegic septic patients.
        Shock. 2005; 23: 18-24
        • Karliner J.S.
        Dopamine for cardiogenic shock.
        JAMA. 1973; 226: 1217-1218
        • De Backer D.
        • Biston P.
        Comparison of dopamine and norepinephrine in the treatment of shock.
        N Engl J Med. 2010; 362: 779-789
        • Ferrer R.
        • Martin-Loeches I.
        • Phillips G.
        • et al.
        Empiric antibiotic treatment reduces mortality in severe sepsis and septic shock from the first hour: results from a guideline-based performance improvement program.
        Crit Care Med. 2014; 42: 1749-1755
        • Pöss J.
        • Fuernau G.
        • Denks D.
        • et al.
        Angiopoietin-2 in acute myocardial infarction complicated by cardiogenic shock - a biomarker substudy of the IABP-SHOCK II trial.
        Eur J Heart Fail. 2015; 17: 1152-1160
        • Andrié R.P.
        • Becher U.M.
        • Frommold R.
        • et al.
        Interleukin-6 is the strongest predictor of 30-day mortality in patients with cardiogenic shock due to myocardial infarction.
        Crit Care. 2012; 16: R152
        • Schumann J.
        • Henrich E.C.
        • Strobl H.
        • et al.
        Inotropic agents and vasodilator strategies for the treatment of cardiogenic shock or low cardiac output syndrome.
        Cochrane Database Syst Rev. 2018; 1 (CD009669)
        • Levy B.
        • Perez P.
        • Perny J.
        • Thivilier C.
        • Gerard A.
        Comparison of norepinephrine-dobutamine to epinephrine for hemodynamics, lactate metabolism, and organ function variables in cardiogenic shock. A prospective, randomized pilot study.
        Crit Care Med. 2011; 39: 450-455
        • Yeh Y.C.
        • Lee C.T.
        • Wang C.H.
        • et al.
        Investigation of microcirculation in patients with venoarterial extracorporeal membrane oxygenation life support.
        Crit Care. 2018; 22: 1-9
        • Jung C.
        Assessment of microcirculation in cardiogenic shock.
        Curr Opin Crit Care. 2019; 25: 410-416