Advertisement
Canadian Journal of Cardiology

Continuous-Flow Left Ventricular Assist Devices and Valvular Heart Disease: A Comprehensive Review

Published:November 25, 2019DOI:https://doi.org/10.1016/j.cjca.2019.11.022

      Abstract

      Mechanical circulatory support with implantable durable continuous-flow left ventricular assist devices (CF-LVADs) represents an established surgical treatment option for patients with advanced heart failure refractory to guideline-directed medical therapy. CF-LVAD therapy has been demonstrated to offer significant survival, functional, and quality-of-life benefits. However, nearly one-half of patients with advanced heart failure undergoing implantation of a CF-LVAD have important valvular heart disease (VHD) present at the time of device implantation or develop VHD during support that can lead to worsening right or left ventricular dysfunction and result in development of recurrent heart failure, more frequent adverse events, and higher mortality. In this review, we summarize the recent evidence related to the pathophysiology and treatment of VHD in the setting of CF-LAVD support and include a review of the specific valve pathologies of aortic insufficiency (AI), mitral regurgitation (MR), and tricuspid regurgitation (TR). Recent data demonstrate an increasing appreciation and understanding of how VHD may adversely affect the hemodynamic benefits of CF-LVAD support. This is particularly relevant for MR, where increasing evidence now demonstrates that persistent MR after CF-LVAD implantation can contribute to worsening right heart failure and recurrent heart failure symptoms. Standard surgical interventions and novel percutaneous approaches for treatment of VHD in the setting of CF-LVAD support, such as transcatheter aortic valve replacement or transcatheter mitral valve repair, are available, and indications to intervene for VHD in the setting of CF-LVAD support continue to evolve.

      Résumé

      L’assistance circulatoire mécanique avec des dispositifs d’assistance ventriculaire gauche (DAVG) implantables et durables à flux continu constitue une option de traitement chirurgical établie pour les patients atteints d’insuffisance cardiaque avancée et réfractaire au traitement médical selon les directives. Il a été démontré que le traitement par DAVG à flux continu offrait des avantages significatifs en termes de survie, d’efficacité fonctionnelle et de qualité de vie. Cependant, près de la moitié des patients atteints d’insuffisance cardiaque avancée subissant une implantation d’un DAVG à flux continu présentent une cardiopathie valvulaire (CPV) importante au moment de l’implantation du dispositif, ou développeront une CPV au cours du traitement, ce qui peut entraîner une aggravation de la dysfonction ventriculaire gauche ou droite, au développement d’une insuffisance cardiaque récurrente, à des événements indésirables plus fréquents et à une mortalité plus élevée. Dans cette revue, nous résumons les preuves récentes liées à la physiopathologie et au traitement de la CPV chez les patients traités avec un DAVG à flux continu. Nous ciblons les pathologies valvulaires spécifiques de l’insuffisance aortique (IA), de l'insuffisance mitrale (IM) et tricuspide (IT). Des données récentes démontrent une appréciation et une compréhension croissantes de l’impact potentiel de ces pathologies sur les avantages hémodynamiques du support par DAVG à flux continu. Ceci est particulièrement vrai pour l’IM, où de plus en plus de preuves démontrent désormais que l’IM persistant après l’implantation d’un DAVG à flux continu peut contribuer à aggraver l’insuffisance cardiaque droite et les symptômes récurrents d’insuffisance cardiaque. Des interventions chirurgicales simples et de nouvelles approches percutanées pour le traitement de la CPV, telles que le remplacement valvulaire aortique par cathéter ou la réparation de la valve mitrale par cathéter, sont disponibles et les indications pour intervenir continuent d’évoluer.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Yancy C.W.
        • Jessup M.
        • Bozkurt B.
        • et al.
        2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines.
        J Am Coll Cardiol. 2013; 62: e147-e239
        • Ezekowitz J.A.
        • O’Meara E.
        • McDonald M.A.
        • et al.
        2017 comprehensive update of the Canadian Cardiovascular Society guidelines for the management of heart failure.
        Can J Cardiol. 2017; 33: 1342-1433
        • Mehra M.R.
        • Uriel N.
        • Naka Y.
        • et al.
        A fully magnetically levitated left ventricular assist device—final report.
        N Engl J Med. 2019; 380: 1618-1627
        • Lund L.H.
        • Khush K.K.
        • Cherikh W.S.
        • et al.
        The Registry of the International Society for Heart and Lung Transplantation: thirty-fourth adult heart transplantation report—2017; focus theme: allograft ischemic time.
        J Heart Lung Transplant. 2017; 36: 1037-1046
        • Kirklin J.K.
        • Pagani F.D.
        • Kormos R.L.
        • et al.
        Eighth annual INTERMACS report: special focus on framing the impact of adverse events.
        J Heart Lung Transplant. 2017; 36: 1080-1086
        • Feldman D.
        • Pamboukian S.V.
        • Teuteberg J.J.
        • et al.
        The 2013 International Society for Heart and Lung Transplantation guidelines for mechanical circulatory support: executive summary.
        J Heart Lung Transplant. 2013; 32: 157-187
        • Bhagra S.
        • Bhagra C.
        • Ozalp F.
        • et al.
        Development of de novo aortic valve incompetence in patients with the continuous-flow Heartware ventricular assist device.
        J Heart Lung Transplant. 2016; 35: 312-319
        • Bouabdallaoui N.
        • El-Hamamsy I.
        • Pham M.
        • et al.
        Aortic regurgitation in patients with a left ventricular assist device: a contemporary review.
        J Heart Lung Transplant. 2018; 37: 1289-1297
        • Cowger J.
        Aortic regurgitation during continuous-flow left ventricular assist device support: an insufficient understanding of an insufficient lesion.
        J Heart Lung Transplant. 2016; 35: 973-975
        • Cowger J.
        • Pagani F.D.
        • Haft J.W.
        • et al.
        The development of aortic insufficiency in left ventricular assist device-supported patients.
        Circ Heart Fail. 2010; 3: 668-674
        • Cowger J.
        • Rao V.
        • Massey T.
        • et al.
        Comprehensive review and suggested strategies for the detection and management of aortic insufficiency in patients with a continuous-flow left ventricular assist device.
        J Heart Lung Transplant. 2015; 34: 149-157
        • Cowger J.A.
        • Aaronson K.D.
        • Romano M.A.
        • Haft J.
        • Pagani F.D.
        Consequences of aortic insufficiency during long-term axial continuous-flow left ventricular assist device support.
        J Heart Lung Transplant. 2014; 33: 1233-1240
        • da Rocha e Silva J.G.
        • Meyer A.L.
        • Eifert S.
        • et al.
        Influence of aortic valve opening in patients with aortic insufficiency after left ventricular assist device implantation.
        Eur J Cardiothorac Surg. 2016; 49: 784-787
        • Deo S.V.
        • Sharma V.
        • Cho Y.H.
        • Shah I.K.
        • Park S.J.
        De novo aortic insufficiency during long-term support on a left ventricular assist device: a systematic review and meta-analysis.
        ASAIO J. 2014; 60: 183-188
        • Gasparovic H.
        • Kopjar T.
        • Saeed D.
        • et al.
        De novo aortic regurgitation after continuous-flow left ventricular assist device implantation.
        Ann Thorac Surg. 2017; 104: 704-711
        • Holley C.T.
        • Fitzpatrick M.
        • Roy S.S.
        • et al.
        Aortic insufficiency in continuous-flow left ventricular assist device support patients is common but does not impact long-term mortality.
        J Heart Lung Transplant. 2017; 36: 91-96
        • Imamura T.
        • Kinugawa K.
        • Fujino T.
        • et al.
        Aortic insufficiency in patients with sustained left ventricular systolic dysfunction after axial flow assist device implantation.
        Circ J. 2015; 79: 104-111
        • Jorde U.P.
        • Uriel N.
        • Nahumi N.
        • et al.
        Prevalence, significance, and management of aortic insufficiency in continuous flow left ventricular assist device recipients.
        Circ Heart Fail. 2014; 7: 310-319
        • Pak S.W.
        • Uriel N.
        • Takayama H.
        • et al.
        Prevalence of de novo aortic insufficiency during long-term support with left ventricular assist devices.
        J Heart Lung Transplant. 2010; 29: 1172-1176
        • Patil N.P.
        • Sabashnikov A.
        • Mohite P.N.
        • et al.
        De novo aortic regurgitation after continuous-flow left ventricular assist device implantation.
        Ann Thorac Surg. 2014; 98: 850-857
        • Saito T.
        • Wassilew K.
        • Gorodetski B.
        • et al.
        Aortic valve pathology in patients supported by continuous-flow left ventricular assist device.
        Circ J. 2016; 80: 1371-1377
        • Soleimani B.
        • Haouzi A.
        • Manoskey A.
        • et al.
        Development of aortic insufficiency in patients supported with continuous flow left ventricular assist devices.
        ASAIO J. 2012; 58: 326-329
        • Ambardekar A.V.
        • Hunter K.S.
        • Babu A.N.
        • et al.
        Changes in aortic wall structure, composition, and stiffness with continuous-flow left ventricular assist devices: a pilot study.
        Circ Heart Fail. 2015; 8: 944-952
        • Gallen T.B.
        • Lau W.T.
        • Mehta A.R.
        Complete aortic valve fusion after Heartmate II left ventricular assist device support.
        J Cardiothorac Vasc Anesth. 2012; 26: 1060-1062
        • Hata H.
        • Fujita T.
        • Ishibashi-Ueda H.
        • Nakatani T.
        • Kobayashi J.
        Pathological analysis of the aortic valve after long-term left ventricular assist device support.
        Eur J Cardiothorac Surg. 2014; 46: 193-197
        • John R.
        • Mantz K.
        • Eckman P.
        • Rose A.
        • May-Newman K.
        Aortic valve pathophysiology during left ventricular assist device support.
        J Heart Lung Transplant. 2010; 29: 1321-1329
        • Martina J.R.
        • Schipper M.E.I.
        • de Jonge N.
        • et al.
        Analysis of aortic valve commissural fusion after support with continuous-flow left ventricular assist device.
        Interact Cardiovasc Thorac Surg. 2013; 17: 616-624
        • Stephens E.H.
        • Han J.
        • Trawick E.A.
        • et al.
        Left-ventricular assist device impact on aortic valve mechanics, proteomics and ultrastructure.
        Ann Thorac Surg. 2018; 105: 572-580
        • Ushijima T.
        • Tanoue Y.
        • Ide T.
        • et al.
        Disuse atrophy of the aortic valve after left ventricular assist device implantation.
        Ann Thorac Surg. 2016; 101: 742-744
        • van Rijswijk J.W.
        • Vink A.
        • Martina J.R.
        • et al.
        Pathology of aortic valve remodeling after continuous-flow left ventricular assist device support.
        J Heart Lung Transplant. 2017; 36: 113-116
        • Holtz J.
        • Teuteberg J.
        Management of aortic insufficiency in the continuous flow left ventricular assist device population.
        Curr Heart Fail Rep. 2014; 11: 103-110
        • Fine N.M.
        • Park S.J.
        • Stulak J.M.
        • et al.
        Proximal thoracic aorta dimensions after continuous-flow left ventricular assist device implantation: longitudinal changes and relation to aortic valve insufficiency.
        J Heart Lung Transplant. 2016; 35: 423-432
        • Truby L.K.
        • Garan A.R.
        • Givens R.C.
        • et al.
        Aortic insufficiency during contemporary left ventricular assist device support: analysis of the INTERMACS Registry.
        JACC Heart Fail. 2018; 6: 951-960
        • Aggarwal A.
        • Raghuvir R.
        • Eryazici P.
        • et al.
        The development of aortic insufficiency in continuous-flow left ventricular assist device–supported patients.
        Ann Thorac Surg. 2013; 95: 493-498
        • Imamura T.
        • Kinugawa K.
        • Nitta D.
        • et al.
        Advantage of pulsatility in left ventricular reverse remodeling and aortic insufficiency prevention during left ventricular assist device treatment.
        Circ J. 2015; 79: 1994-1999
        • Imamura T.
        • Kinugawa K.
        • Nitta D.
        • Hatano M.
        • Ono M.
        Opening of aortic valve during exercise is key to preventing development of aortic insufficiency during ventricular assist device treatment.
        ASAIO J. 2015; 61: 514-519
        • Saeed D.
        • Westenfeld R.
        • Maxhera B.
        • et al.
        Prevalence of de novo aortic valve insufficiency in patients after Heartware VAD implantation with an intermittent low-speed algorithm.
        ASAIO J. 2016; 62: 565-570
        • Iizuka K.
        • Nishinaka T.
        • Akiyama D.
        • et al.
        The angle of the outflow graft to the aorta can affect recirculation due to aortic insufficiency under left ventricular assist device support.
        J Artif Organs. 2018; 21: 399-404
        • Callington A.
        • Long Q.
        • Mohite P.
        • Simon A.
        • Mittal T.K.
        Computational fluid dynamic study of hemodynamic effects on aortic root blood flow of systematically varied left ventricular assist device graft anastomosis design.
        J Thorac Cardiovasc Surg. 2015; 150: 696-704
        • Iizuka K.
        • Nishinaka T.
        • Ichihara Y.
        • Miyamoto T.
        • Yamazaki K.
        Outflow graft anastomosis site design could be correlated to aortic valve regurgitation under left ventricular assist device support.
        J Artif Organs. 2018; 21: 150-155
        • Inci G.
        • Sorguven E.
        Effect of LVAD outlet graft anastomosis angle on the aortic valve, wall, and flow.
        ASAIO J. 2012; 58: 373-381
        • Sayer G.
        • Sarswat N.
        • Kim G.H.
        • et al.
        The hemodynamic effects of aortic insufficiency in patients supported with continuous-flow left ventricular assist devices.
        J Card Fail. 2017; 23: 545-551
        • Gregory S.D.
        • Stevens M.C.
        • Wu E.
        • Fraser J.F.
        • Timms D.
        In vitro evaluation of aortic insufficiency with a rotary left ventricular assist device.
        Artif Organs. 2013; 37: 802-809
        • Grinstein J.
        • Kruse E.
        • Sayer G.
        • et al.
        Accurate quantification methods for aortic insufficiency severity in patients with LVAD: role of diastolic flow acceleration and systolic-to-diastolic peak velocity ratio of outflow cannula.
        JACC Cardiovasc Imaging. 2016; 9: 641-651
        • Schroder J.N.
        • Milano C.A.
        Is it time to get more aggressive with aortic valve insufficiency during LVAD implantation?.
        JACC Heart Fail. 2018; 6: 961-963
        • Pal J.D.
        • Klodell C.T.
        • John R.
        • et al.
        Low operative mortality with implantation of a continuous-flow left ventricular assist device and impact of concurrent cardiac procedures.
        Circulation. 2009; 120: S215-S219
        • Fukuhara S.
        • Ikegami H.
        • Polanco A.R.
        • et al.
        Concomitant repair for mild aortic insufficiency and continuous-flow left ventricular assist devices.
        Eur J Cardiothorac Surg. 2017; 52: 1062-1068
        • Robertson J.O.
        • Naftel D.C.
        • Myers S.L.
        • et al.
        Concomitant aortic valve procedures in patients undergoing implantation of continuous-flow left ventricular assist devices: an INTERMACS database analysis.
        J Heart Lung Transplant. 2015; 34: 797-805
        • Park S.J.
        • Liao K.K.
        • Segurola R.
        • Madhu K.P.
        • Miller L.W.
        Management of aortic insufficiency in patients with left ventricular assist devices: a simple coaptation stitch method (Park’s stitch).
        J Thorac Cardiovasc Surg. 2004; 127: 264-266
        • Maoz-Metzl D.
        • Morsy M.
        • Khalife W.I.
        • Lick S.D.
        Park’s stitch for a bicuspid aortic valve in a patient on LVAD support.
        J Card Surg. 2014; 29: 843-845
        • Fukuhara S.
        • Takeda K.
        • Chiuzan C.
        • et al.
        Concomitant aortic valve repair with continuous-flow left ventricular assist devices: results and implications.
        J Thorac Cardiovasc Surg. 2016; 151: 201-210.e201-2
        • McKellar S.H.
        • Deo S.
        • Daly R.C.
        • et al.
        Durability of central aortic valve closure in patients with continuous flow left ventricular assist devices.
        J Thorac Cardiovasc Surg. 2014; 147: 344-348
        • Schechter M.A.
        • Joseph J.T.
        • Krishnamoorthy A.
        • et al.
        Efficacy and durability of central oversewing for treatment of aortic insufficiency in patients with continuous-flow left ventricular assist devices.
        J Heart Lung Transplant. 2014; 33: 937-942
        • Morgan J.A.
        • Brewer R.J.
        Modified central closure technique for treatment of aortic insufficiency in patients on left ventricular assist device support.
        ASAIO J. 2012; 58: 626-628
        • Adamson R.M.
        • Dembitsky W.P.
        • Baradarian S.
        • et al.
        Aortic valve closure associated with Heartmate left ventricular device support: technical considerations and long-term results.
        J Heart Lung Transplant. 2011; 30: 576-582
        • John R.
        • Naka Y.
        • Park S.J.
        • et al.
        Impact of concurrent surgical valve procedures in patients receiving continuous-flow devices.
        J Thorac Cardiovasc Surg. 2014; 147 ([discussion: 589]): 581-589
        • Dranishnikov N.
        • Stepanenko A.
        • Potapov E.V.
        • et al.
        Simultaneous aortic valve replacement in left ventricular assist device recipients: single-center experience.
        Int J Artif Organs. 2012; 35: 489-494
        • Doi A.
        • Marasco S.F.
        • McGiffin D.C.
        Is a bioprosthetic valve in the aortic position desirable with a continuous flow LVAD?.
        J Card Surg. 2015; 30: 466-468
        • Yehya A.
        • Rajagopal V.
        • Meduri C.
        • et al.
        Short-term results with transcatheter aortic valve replacement for treatment of left ventricular assist device patients with symptomatic aortic insufficiency.
        J Heart Lung Transplant. 2019;
        • Baum C.
        • Seiffert M.
        • Treede H.
        • Reichenspurner H.
        • Deuse T.
        Concomitant transcatheter aortic valve and left ventricular assist device implantation.
        ASAIO J. 2013; 59: 90-92
        • Phan K.
        • Haswell J.M.
        • Xu J.
        • et al.
        Percutaneous transcatheter interventions for aortic insufficiency in continuous-flow left ventricular assist device patients: a systematic review and meta-analysis.
        ASAIO J. 2017; 63: 117-122
        • Patil N.P.
        • Mohite P.N.
        • Sabashnikov A.
        • et al.
        Does postoperative blood pressure influence development of aortic regurgitation following continuous-flow left ventricular assist device implantation?.
        Eur J Cardiothorac Surg. 2016; 49: 788-794
        • Atkins B.Z.
        • Hashmi Z.A.
        • Ganapathi A.M.
        • et al.
        Surgical correction of aortic valve insufficiency after left ventricular assist device implantation.
        J Thorac Cardiovasc Surg. 2013; 146: 1247-1252
        • Parikh K.S.
        • Mehrotra A.K.
        • Russo M.J.
        • et al.
        Percutaneous transcatheter aortic valve closure successfully treats left ventricular assist device-associated aortic insufficiency and improves cardiac hemodynamics.
        JACC Cardiovasc Interv. 2013; 6: 84-89
        • Asgar A.W.
        • Mack M.J.
        • Stone G.W.
        Secondary mitral regurgitation in heart failure: pathophysiology, prognosis, and therapeutic considerations.
        J Am Coll Cardiol. 2015; 65: 1231-1248
        • Patel J.B.
        • Borgeson D.D.
        • Barnes M.E.
        • et al.
        Mitral regurgitation in patients with advanced systolic heart failure.
        J Card Fail. 2004; 10: 285-291
        • Robertson J.O.
        • Naftel D.C.
        • Myers S.L.
        • et al.
        Concomitant mitral valve procedures in patients undergoing implantation of continuous-flow left ventricular assist devices: an INTERMACS database analysis.
        J Heart Lung Transplant. 2018; 37: 79-88
        • Okoh A.
        • Yanagida R.
        • Schultheis M.
        • et al.
        Impact of baseline mitral regurgitation on postoperative outcomes after left ventricular assist device implantation as destination therapy.
        Transplant Proc. 2019; 51: 859-864
        • Morgan J.A.
        • Brewer R.J.
        • Nemeh H.W.
        • et al.
        Left ventricular reverse remodeling with a continuous flow left ventricular assist device measured by left ventricular end-diastolic dimensions and severity of mitral regurgitation.
        ASAIO J. 2012; 58: 574-577
        • Stulak J.M.
        • Tchantchaleishvili V.
        • Haglund N.A.
        • et al.
        Uncorrected pre-operative mitral valve regurgitation is not associated with adverse outcomes after continuous-flow left ventricular assist device implantation.
        J Heart Lung Transplant. 2015; 34: 718-723
        • Kassis H.
        • Cherukuri K.
        • Agarwal R.
        • et al.
        Significance of residual mitral regurgitation after continuous flow left ventricular assist device implantation.
        JACC Heart Fail. 2017; 5: 81-88
        • Ertugay S.
        • Kemal H.S.
        • Kahraman U.
        • et al.
        Impact of residual mitral regurgitation on right ventricular systolic function after left ventricular assist device implantation.
        Artif Organs. 2017; 41: 622-627
        • Magne J.
        • Pibarot P.
        • Dagenais F.
        • et al.
        Preoperative posterior leaflet angle accurately predicts outcome after restrictive mitral valve annuloplasty for ischemic mitral regurgitation.
        Circulation. 2007; 115: 782-791
        • Kitada S.
        • Kato T.S.
        • Thomas S.S.
        • et al.
        Pre-operative echocardiographic features associated with persistent mitral regurgitation after left ventricular assist device implantation.
        J Heart Lung Transplant. 2013; 32: 897-904
        • Taghavi S.
        • Hamad E.
        • Wilson L.
        • et al.
        Mitral valve repair at the time of continuous-flow left ventricular assist device implantation confers meaningful decrement in pulmonary vascular resistance.
        ASAIO J. 2013; 59: 469-473
        • Choi J.H.
        • Luc J.G.Y.
        • Moncho Escriva E.
        • et al.
        Impact of concomitant mitral valve surgery with LVAD placement: systematic review and meta-analysis.
        Artif Organs. 2018; 42: 1139-1147
        • Kawabori M.
        • Kurihara C.
        • Conyer R.T.
        • et al.
        Effect of concomitant mitral valve procedures for severe mitral regurgitation during left ventricular assist device implantation.
        J Artif Organs. 2019; 22: 91-97
        • Tanaka A.
        • Onsager D.
        • Song T.
        • et al.
        Surgically corrected mitral regurgitation during left ventricular assist device implantation is associated with low recurrence rate and improved midterm survival.
        Ann Thorac Surg. 2017; 103: 725-733
        • Sandoval E.
        • Singh S.K.
        • Carillo J.A.
        • et al.
        Impact of concomitant mitral valve repair for severe mitral regurgitation at the time of continuous-flow left ventricular assist device insertion.
        Interact Cardiovasc Thorac Surg. 2017; 25: 620-623
        • Schweiger M.
        • Stepanenko A.
        • Vierecke J.
        • et al.
        Preexisting mitral valve prosthesis in patients undergoing left ventricular assist device implantation.
        Artif Organs. 2012; 36: 49-53
        • Ammirati E.
        • van de Heyning C.M.
        • Musca F.
        • et al.
        Safety of centrifugal left ventricular assist device in patients previously treated with Mitraclip system.
        Int J Cardiol. 2019; 283: 131-133
        • Dogan G.
        • Hanke J.S.
        • Ricklefs M.
        • et al.
        Mitraclip procedure prior to left ventricular assist device implantation.
        J Thorac Dis. 2018; 10: S1763-S1768
        • Piacentino Vr
        • Ganapathi A.M.
        • Stafford-Smith M.
        • et al.
        Utility of concomitant tricuspid valve procedures for patients undergoing implantation of a continuous-flow left ventricular device.
        J Thorac Cardiovasc Surg. 2012; 144: 1217-1221
        • Nakanishi K.
        • Homma S.
        • Han J.
        • et al.
        Usefulness of tricuspid annular diameter to predict late right sided heart failure in patients with left ventricular assist device.
        Am J Cardiol. 2018; 122: 115-120
        • Potapov E.V.
        • Stepanenko A.
        • Dandel M.
        • et al.
        Tricuspid incompetence and geometry of the right ventricle as predictors of right ventricular function after implantation of a left ventricular assist device.
        J Heart Lung Transplant. 2008; 27: 1275-1281
        • Atluri P.
        • Fairman A.S.
        • MacArthur J.W.
        • et al.
        Continuous flow left ventricular assist device implant significantly improves pulmonary hypertension, right ventricular contractility, and tricuspid valve competence.
        J Card Surg. 2013; 28: 770-775
        • Song H.K.
        • Gelow J.M.
        • Mudd J.
        • et al.
        Limited utility of tricuspid valve repair at the time of left ventricular assist device implantation.
        Ann Thorac Surg. 2016; 101: 2168-2174
        • Kukucka M.
        • Stepanenko A.
        • Potapov E.
        • et al.
        Impact of tricuspid valve annulus dilation on mid-term survival after implantation of a left ventricular assist device.
        J Heart Lung Transplant. 2012; 31: 967-971
        • Piacentino 3rd, V.
        • Williams M.L.
        • Depp T.
        • et al.
        Impact of tricuspid valve regurgitation in patients treated with implantable left ventricular assist devices.
        Ann Thorac Surg. 2011; 91 ([discussion: 1346-7]): 1342-1346
        • Zhigalov K.
        • Szczechowicz M.
        • Mashhour A.
        • et al.
        Left ventricular assist device implantation with concomitant tricuspid valve repair: is there really a benefit?.
        J Thorac Dis. 2019; 11: S902-S912
        • Maltais S.
        • Topilsky Y.
        • Tchantchaleishvili V.
        • et al.
        Surgical treatment of tricuspid valve insufficiency promotes early reverse remodeling in patients with axial-flow left ventricular assist devices.
        J Thorac Cardiovasc Surg. 2012; 143: 1370-1376
        • Saeed D.
        • Kidambi T.
        • Shalli S.
        • et al.
        Tricuspid valve repair with left ventricular assist device implantation: is it warranted?.
        J Heart Lung Transplant. 2011; 30: 530-535
        • Robertson J.O.
        • Grau-Sepulveda M.V.
        • Okada S.
        • et al.
        Concomitant tricuspid valve surgery during implantation of continuous-flow left ventricular assist devices: a Society of Thoracic Surgeons database analysis.
        J Heart Lung Transplant. 2014; 33: 609-617
        • Dunlay S.M.
        • Deo S.V.
        • Park S.J.
        Impact of tricuspid valve surgery at the time of left ventricular assist device insertion on postoperative outcomes.
        ASAIO J. 2015; 61: 15-20
        • Han J.
        • Takeda K.
        • Takayama H.
        • et al.
        Durability and clinical impact of tricuspid valve procedures in patients receiving a continuous-flow left ventricular assist device.
        J Thorac Cardiovasc Surg. 2016; 151: 520-527.e521
        • Dreyfus G.D.
        • Corbi P.J.
        • Chan K.M.
        • Bahrami T.
        Secondary tricuspid regurgitation or dilatation: which should be the criteria for surgical repair?.
        Ann Thorac Surg. 2005; 79: 127-132
        • Fujita T.
        • Kobayashi J.
        • Hata H.
        • et al.
        Right heart failure and benefits of adjuvant tricuspid valve repair in patients undergoing left ventricular assist device implantation.
        Eur J Cardiothorac Surg. 2014; 46: 802-807
        • Krishan K.
        • Nair A.
        • Pinney S.
        • Adams D.H.
        • Anyanwu A.C.
        Liberal use of tricuspid-valve annuloplasty during left-ventricular assist device implantation.
        Eur J Cardiothorac Surg. 2012; 41: 213-217
        • Brewer R.J.
        • Cabrera R.
        • El-Atrache M.
        • et al.
        Relationship of tricuspid repair at the time of left ventricular assist device implantation and survival.
        Int J Artif Organs. 2014; 37: 834-838
        • Veen K.M.
        • Muslem R.
        • Soliman O.I.
        • et al.
        Left ventricular assist device implantation with and without concomitant tricuspid valve surgery: a systematic review and meta-analysis.
        Eur J Cardiothorac Surg. 2018; 54: 644-651
        • Deo S.V.
        • Hasin T.
        • Altarabsheh S.E.
        • et al.
        Concomitant tricuspid valve repair or replacement during left ventricular assist device implant demonstrates comparable outcomes in the long term.
        J Card Surg. 2012; 27: 760-766
        • Akhter S.A.
        • Salabat M.R.
        • Philip J.L.
        • et al.
        Durability of de Vega tricuspid valve annuloplasty for severe tricuspid regurgitation during left ventricular assist device implantation.
        Ann Thorac Surg. 2014; 98: 81-83
        • Goodwin M.
        • Nemeh H.W.
        • Borgi J.
        • Paone G.
        • Morgan J.A.
        Resolution of mitral regurgitation with left ventricular assist device support.
        Ann Thorac Surg. 2017; 104: 811-818
        • Dobrovie M.
        • Spampinato R.A.
        • Efimova E.
        • et al.
        Reversibility of severe mitral valve regurgitation after left ventricular assist device implantation: single-centre observations from a real-life population of patients.
        Eur J Cardiothorac Surg. 2018; 53: 1144-1150
        • Hata H.
        • Fujita T.
        • Ishibashi-Ueda H.
        • et al.
        Impact of mitral valve intervention with left ventricular assist device implantation on postoperative outcomes and morphologic change.
        J Artif Organs. 2018; 21: 164-171