Advertisement
Canadian Journal of Cardiology

When the Complex Meets the High-Risk: Mechanical Cardiac Support Devices and Percutaneous Coronary Interventions in Severe Coronary Artery Disease

Published:December 09, 2019DOI:https://doi.org/10.1016/j.cjca.2019.12.001

      Abstract

      Coronary artery disease (CAD) remains a leading cause of mortality and morbidity worldwide. Few practice guidelines directly address the issue of revascularization in patients with CAD at higher risk of periprocedural complications. It remains a challenge to appropriately identify the subset of patients with CAD who will require short-term use of mechanical cardiocirculatory support devices (MCSDs) when high-risk (HR) percutaneous coronary intervention (PCI) is required. Issues of the complexity (coronary anatomy and high burden of comorbidities) and risk status (hemodynamic precarity or compromise) need to be considered when considering revascularization in patients. This review will focus on the evolving concept of protected PCI in patients with CAD, and how a balanced, integrated heart-team approach remains the path to optimal patient-centred care in the setting of HR-PCI supported with MCSD.

      Résumé

      La coronaropathie est toujours l’une des principales causes de mortalité et de morbidité dans le monde. Rares sont les lignes directrices de pratique qui traitent directement de la revascularisation chez les patients atteints de coronaropathie présentant un risque élevé de complications péri-interventionnelles. Il est encore difficile de reconnaître avec certitude les patients atteints de coronaropathie qui auront besoin d’assistance cardiocirculatoire mécanique de courte durée lorsqu’ils doivent subir une intervention coronarienne percutanée (ICP) présentant un risque élevé. Il importe de tenir compte des questions liées à la complexité (anatomie coronarienne et lourd fardeau des maladies concomitantes) et au risque (précarité ou compromission hémodynamiques) lorsqu’on envisage une revascularisation chez un patient. L’article qui suit est axé sur le concept en constante évolution d’ICP protégée chez les patients atteints de coronaropathie et explique en quoi une approche reposant sur une équipe de cardiologie bien équilibrée et intégrée demeure la voie vers des soins optimaux axés sur le patient dans le contexte de l’ICP à risque élevé soutenue par un dispositif d’assistance cardiocirculatoire mécanique.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Teo K.K.
        • Cohen E.
        • Buller C.
        • et al.
        Canadian Cardiovascular Society/Canadian Association of Interventional Cardiology/Canadian Society of Cardiac Surgery position statement on revascularization-multivessel coronary artery disease.
        Can J Cardiol. 2014; 30: 1482-1491
        • Stretch R.
        • Sauer C.M.
        • Yuh D.D.
        • Bonde P.
        National trends in the utilization of short-term mechanical circulatory support: incidence, outcomes, and cost analysis.
        J Am Coll Cardiol. 2014; 64: 1407-1415
        • Rouleau J.L.
        • Bonow R.O.
        An approach to the rational use of revascularization in heart failure patients.
        Can J Cardiol. 2014; 30: 281-287
        • Velazquez E.J.
        • Lee K.L.
        • Deja M.A.
        • et al.
        • STICH Investigators
        Coronary-artery bypass surgery in patients with left ventricular dysfunction.
        N Engl J Med. 2011; 364: 1607-1616
        • Wolff G.
        • Dimitroulis D.
        • Andreotti F.
        • et al.
        Survival benefits of invasive versus conservative strategies in heart failure in patients with reduced ejection fraction and coronary artery disease: a meta-analysis.
        Circ Heart Fail. 2017; 10
        • Doenst T.
        • Haverich A.
        • Serruys P.
        • et al.
        PCI and CABG for treating stable coronary artery disease.
        J Am Coll Cardiol. 2019; 73: 964-976
        • Head S.J.
        • Kaul S.
        • Mack M.J.
        • Serruys P.W.
        • et al.
        The rationale for heart team decision-making for patients with stable, complex coronary artery disease.
        Eur Heart J. 2013; 34: 2510-2518
        • Lee H.
        • Lee K.S.
        • Sim S.B.
        • Jeong H.S.
        • Ahn H.M.
        • Chee H.K.
        Trends in percutaneous coronary intervention and coronary artery bypass surgery in Korea.
        Korean J Thorac Cardiovasc Surg. 2016; 49: S60-S67
        • Holmes Jr., D.R.
        • Taggart D.P.
        Revascularization in stable coronary artery disease: a combined perspective from an interventional cardiologist and a cardiac surgeon.
        Eur Heart J. 2016; 37: 1873-1882
        • Ko D.T.
        • Tu J.V.
        • Samadashvili Z.
        • et al.
        Temporal trends in the use of percutaneous coronary intervention and coronary artery bypass surgery in New York State and Ontario.
        Circulation. 2010; 121: 2635-2644
        • Hannan E.L.
        • Racz M.J.
        • Walford G.
        • et al.
        Long-term outcomes of coronary-artery bypass grafting versus stent implantation.
        N Engl J Med. 2005; 352: 2174-2183
        • Kwon O.
        • Park D.W.
        • Park S.J.
        Completeness of revascularization as a determinant of outcome: a contemporary review and clinical perspectives.
        Can J Cardiol. 2019; 35: 948-958
        • Chun S.
        • Tu J.V.
        • Wijeysundera H.C.
        • et al.
        Lifetime analysis of hospitalizations and survival of patients newly admitted with heart failure.
        Circ Heart Fail. 2012; 5: 414-421
        • Aimo A.
        • Januzzi Jr., J.L.
        • Mueller C.
        • et al.
        Admission high-sensitivity troponin T and NT-proBNP for outcome prediction in acute heart failure.
        Int J Cardiol. 2019; 293: 137-142
        • Peacock W.F.
        • De Marco T.
        • Fonarow G.C.
        • et al.
        ADHERE Investigators. Cardiac troponin and outcome in acute heart failure.
        N Engl J Med. 2008; 358: 2117-2126
        • Abraham W.T.
        • Adams K.F.
        • Fonarow G.C.
        • et al.
        ADHERE Scientific Advisory Committee and Investigators and ADHERE Study Group. In-hospital mortality in patients with acute decompensated heart failure requiring intravenous vasoactive medications: an analysis from the Acute Decompensated Heart Failure National Registry (ADHERE).
        J Am Coll Cardiol. 2005; 46: 57-64
        • Abraham W.T.
        • Fonarow G.C.
        • Albert N.M.
        • et al.
        OPTIMIZE-HF Investigators and Coordinators. Predictors of in-hospital mortality in patients hospitalized for heart failure: insights from the Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure (OPTIMIZE-HF).
        J Am Coll Cardiol. 2008; 52: 347-356
        • Rossi J.S.
        • Flaherty J.D.
        • Fonarow G.C.
        • et al.
        Influence of coronary artery disease and coronary revascularization status on outcomes in patients with acute heart failure syndromes: a report from OPTIMIZE-HF (Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure).
        Eur J Heart Fail. 2008; 10: 1215-1223
        • Desai A.S.
        The three-phase terrain of heart failure readmissions.
        Circ Heart Fail. 2012; 5: 398-400
        • Kandolin R.M.
        • Wiefels C.C.
        • Mesquita C.T.
        • et al.
        The current role of viability imaging to guide revascularization and therapy decisions in patients with heart failure and reduced left ventricular function.
        Can J Cardiol. 2019; 35: 1015-1029
        • Head S.J.
        • Holmes Jr., D.R.
        • Mack M.J.
        • et al.
        SYNTAX Investigators. Risk profile and 3-year outcomes from the SYNTAX percutaneous coronary intervention and coronary artery bypass grafting nested registries.
        JACC Cardiovasc Interv. 2012; 5: 618-625
        • Ly H.Q.
        • Nosair M.
        • Cartier R.
        Surgical turndown: what's in a name for patients deemed ineligible for surgical revascularization.
        Can J Cardiol. 2019; 35: 959-966
        • Nayak K.R.
        • Jaski B.E.
        To protect or not to protect: mitigating the potential risk that surgical ineligibility poses in high-risk PCI.
        J Invasive Cardiol. 2016; 28: 193-194
        • Uriel N.
        • Sayer G.
        • Annamalai S.
        • Kapur N.K.
        • Burkhoff D.
        Mechanical unloading in heart failure.
        J Am Coll Cardiol. 2018; 72: 569-580
        • Gheorghiade M.
        • De Luca L.
        • Fonarow G.C.
        • Filippatos G.
        • Metra M.
        • Francis G.S.
        Pathophysiologic targets in the early phase of acute heart failure syndromes.
        Am J Cardiol. 2005; 96 (11G-7G)
        • Gupta A.
        • Yeh R.W.
        • Tamis-Holland J.E.
        • et al.
        Implications of public reporting of risk-adjusted mortality following percutaneous coronary intervention: misperceptions and potential consequences for high-risk patients including nonsurgical patients.
        JACC Cardiovasc Interv. 2016; 9: 2077-2085
        • Patel N.J.
        • Singh V.
        • Patel S.V.
        • et al.
        Percutaneous coronary interventions and hemodynamic support in the usa: a 5 year experience.
        J Interv Cardiol. 2015; 28: 563-573
        • Gossl M.
        • Faxon D.P.
        • Bell M.R.
        • Holmes D.R.
        • Gersh B.J.
        Complete versus incomplete revascularization with coronary artery bypass graft or percutaneous intervention in stable coronary artery disease.
        Circ Cardiovasc Interv. 2012; 5: 597-604
        • Tam D.Y.
        • Bakaeen F.
        • Feldman D.N.
        • et al.
        Modality selection for the revascularization of left main disease.
        Can J Cardiol. 2019; 35: 983-992
        • Forouzandeh F.
        • Suh J.
        • Stahl E.
        • et al.
        Performance of J-CTO and PROGRESS CTO scores in predicting angiographic success and long-term outcomes of percutaneous coronary interventions for chronic total occlusions.
        Am J Cardiol. 2018; 121: 14-20
        • Morino Y.
        • Abe M.
        • Morimoto T.
        • et al.
        • J-CTO Registry Investigators
        Predicting successful guidewire crossing through chronic total occlusion of native coronary lesions within 30 minutes: the J-CTO (Multicenter CTO Registry in Japan) score as a difficulty grading and time assessment tool.
        JACC Cardiovasc Interv. 2011; 4: 213-221
        • Sharma S.K.
        • Bolduan R.W.
        • Patel M.R.
        • et al.
        Impact of calcification on percutaneous coronary intervention: MACE-Trial 1-year results.
        Catheter Cardiovasc Interv. 2019; 94: 187-194
        • Chambers J.W.
        • Behrens A.N.
        • Martinsen B.J.
        Atherectomy devices for the treatment of calcified coronary lesions.
        Interv Cardiol Clin. 2016; 5: 143-151
        • Wong B.
        • El-Jack S.
        • Newcombe R.
        • Glenie T.
        • Armstrong G.
        • Khan A.
        Shockwave intravascular lithotripsy for calcified coronary lesions: first real-world experience.
        J Invasive Cardiol. 2019; 31: 46-48
        • Sianos G.
        • Morel M.A.
        • Kappetein A.P.
        • et al.
        The SYNTAX score: an angiographic tool grading the complexity of coronary artery disease.
        EuroIntervention. 2005; 1: 219-227
        • Serruys P.W.
        • Morice M.C.
        • Kappetein A.P.
        • et al.
        SYNTAX Investigators. Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease.
        N Engl J Med. 2009; 360: 961-972
        • Graham M.M.
        • Faris P.D.
        • Ghali W.A.
        • et al.
        APPROACH Investigators. Validation of three myocardial jeopardy scores in a population-based cardiac catheterization cohort.
        Am Heart J. 2001; 142: 254-261
        • Axell R.G.
        • Giblett J.P.
        • White P.A.
        • et al.
        Stunning and right ventricular dysfunction is induced by coronary balloon occlusion and rapid pacing in humans: insights from right ventricular conductance catheter studies.
        J Am Heart Assoc. 2017; 6
        • Voelkel N.F.
        • Quaife R.A.
        • Leinwand L.A.
        • et al.
        Right ventricular function and failure: report of a National Heart, Lung, and Blood Institute working group on cellular and molecular mechanisms of right heart failure.
        Circulation. 2006; 114: 1883-1891
        • Afilalo J.
        • Alexander K.P.
        • Mack M.J.
        • et al.
        Frailty assessment in the cardiovascular care of older adults.
        J Am Coll Cardiol. 2014; 63: 747-762
        • Abramowitz Y.
        • Jilaihawi H.
        • Chakravarty T.
        • Mack M.J.
        • Makkar R.R.
        Porcelain aorta: a comprehensive review.
        Circulation. 2015; 131: 827-836
        • Murata M.
        • Kato T.S.
        • Kuwaki K.
        • Yamamoto T.
        • Dohi S.
        • Amano A.
        Preoperative hepatic dysfunction could predict postoperative mortality and morbidity in patients undergoing cardiac surgery: utilization of the MELD scoring system.
        Int J Cardiol. 2016; 203: 682-689
        • Stevenson L.W.
        Are hemodynamic goals viable in tailoring heart failure therapy? Hemodynamic goals are relevant.
        Circulation. 2006; 113 (discussion 1033): 1020-1027
        • Park S.M.
        • Ahn C.M.
        • Hong S.J.
        • et al.
        Acute changes of left ventricular hemodynamics and function during percutaneous coronary intervention in patients with unprotected left main coronary artery disease.
        Heart Vessels. 2015; 30: 432-440
        • Verma S.
        • Burkhoff D.
        • O'Neill W.W.
        Avoiding hemodynamic collapse during high-risk percutaneous coronary intervention: advanced hemodynamics of impella support.
        Catheter Cardiovasc Interv. 2017; 89: 672-675
        • Kapur N.K.
        • Davila C.D.
        • Jumean M.F.
        Integrating interventional cardiology and heart failure management for cardiogenic shock.
        Interv Cardiol Clin. 2017; 6: 481-485
        • Esposito M.L.
        • Kapur N.K.
        Acute mechanical circulatory support for cardiogenic shock: the "door to support" time.
        F1000Res. 2017; 6: 737
        • Myat A.
        • Patel N.
        • Tehrani S.
        • Banning A.P.
        • Redwood S.R.
        • Bhatt D.L.
        Percutaneous circulatory assist devices for high-risk coronary intervention.
        JACC Cardiovasc Interv. 2015; 8: 229-244
        • Nagpal A.D.
        • Singal R.K.
        • Arora R.C.
        • Lamarche Y.
        Temporary mechanical circulatory support in cardiac critical care: a state of the art review and algorithm for device selection.
        Can J Cardiol. 2017; 33: 110-118
        • Esposito M.L.
        • Shah N.
        • Dow S.
        • et al.
        Distinct effects of left or right atrial cannulation on left ventricular hemodynamics in a swine model of acute myocardial injury.
        ASAIO J. 2016; 62: 671-676
        • Rihal C.S.
        • Naidu S.S.
        • Givertz M.M.
        • et al.
        2015 SCAI/ACC/HFSA/STS clinical expert consensus statement on the use of percutaneous mechanical circulatory support devices in cardiovascular care (endorsed by the American Heart Association, the Cardiological Society of India, and Sociedad Latino Americana de Cardiologia Intervencion; affirmation of value by the Canadian Association of Interventional Cardiology-Association Canadienne de Cardiologie D'intervention).
        Catheter Cardiovasc Interv. 2015; 85: E175-E196
        • Ameloot K.
        • Bastos M.B.
        • Daemen J.
        • et al.
        New-generation mechanical circulatory support during high-risk PCI: a cross-sectional analysis.
        EuroIntervention. 2019; 15: 427-433
        • Patterson T.
        • Perera D.
        • Redwood S.R.
        Intra-aortic balloon pump for high-risk percutaneous coronary intervention.
        Circ Cardiovasc Interv. 2014; 7: 712-720
        • Ihdayhid A.R.
        • Chopra S.
        • Rankin J.
        Intra-aortic balloon pump: indications, efficacy, guidelines and future directions.
        Curr Opin Cardiol. 2014; 29: 285-292
        • Briguori C.
        • Sarais C.
        • Pagnotta P.
        • et al.
        Elective versus provisional intra-aortic balloon pumping in high-risk percutaneous transluminal coronary angioplasty.
        Am Heart J. 2003; 145: 700-707
        • Mishra S.
        • Chu W.W.
        • Torguson R.
        • et al.
        Role of prophylactic intra-aortic balloon pump in high-risk patients undergoing percutaneous coronary intervention.
        Am J Cardiol. 2006; 98: 608-612
        • Khera R.
        • Cram P.
        • Lu X.
        • et al.
        Trends in the use of percutaneous ventricular assist devices: analysis of national inpatient sample data, 2007 through 2012.
        JAMA Intern Med. 2015; 175: 941-950
        • Khera R.
        • Cram P.
        • Vaughan-Sarrazin M.
        • Horwitz P.A.
        • Girotra S.
        Use of mechanical circulatory support in percutaneous coronary intervention in the United States.
        Am J Cardiol. 2016; 117: 10-16
        • Aragon J.
        • Lee M.S.
        • Kar S.
        • Makkar R.R.
        Percutaneous left ventricular assist device: "TandemHeart" for high-risk coronary intervention.
        Catheter Cardiovasc Interv. 2005; 65: 346-352
        • Valgimigli M.
        • Steendijk P.
        • Sianos G.
        • Onderwater E.
        • Serruys P.W.
        Left ventricular unloading and concomitant total cardiac output increase by the use of percutaneous Impella Recover LP 2.5 assist device during high-risk coronary intervention.
        Catheter Cardiovasc Interv. 2005; 65: 263-267
        • Dixon S.R.
        • Henriques J.P.
        • Mauri L.
        • et al.
        A prospective feasibility trial investigating the use of the Impella 2.5 system in patients undergoing high-risk percutaneous coronary intervention (The PROTECT I Trial): initial U.S. experience.
        JACC Cardiovasc Interv. 2009; 2: 91-96
        • Henriques J.P.
        • Remmelink M.
        • Baan Jr., J.
        • et al.
        Safety and feasibility of elective high-risk percutaneous coronary intervention procedures with left ventricular support of the Impella Recover LP 2.5.
        Am J Cardiol. 2006; 97: 990-992
        • Sjauw K.D.
        • Konorza T.
        • Erbel R.
        • et al.
        Supported high-risk percutaneous coronary intervention with the Impella 2.5 device the Europella registry.
        J Am Coll Cardiol. 2009; 54: 2430-2434
        • Flaherty M.P.
        • Pant S.
        • Patel S.V.
        • et al.
        Hemodynamic support with a microaxial percutaneous left ventricular assist device (Impella) protects against acute kidney injury in patients undergoing high-risk percutaneous coronary intervention.
        Circ Res. 2017; 120: 692-700
        • Burzotta F.
        • Russo G.
        • Ribichini F.
        • et al.
        Long-term outcomes of extent of revascularization in complex high risk and indicated patients undergoing impella-protected percutaneous coronary intervention: report from the Roma-Verona registry.
        J Interv Cardiol. 2019; 2019: 5243913
        • Davila C.D.
        • Sharma S.
        • Krishnamoorthy P.
        • et al.
        Prevalence and clinical correlates of extended mechanical support in patients undergoing high-risk percutaneous coronary intervention in current clinical practice: insights from the cVAD registry.
        Cardiovasc Revasc Med. 2019;
        • Alli O.O.
        • Singh I.M.
        • Holmes Jr., D.R.
        • Pulido J.N.
        • Park S.J.
        • Rihal C.S.
        Percutaneous left ventricular assist device with TandemHeart for high-risk percutaneous coronary intervention: the Mayo Clinic experience.
        Catheter Cardiovasc Interv. 2012; 80: 728-734
        • Teirstein P.S.
        • Vogel R.A.
        • Dorros G.
        • et al.
        Prophylactic versus standby cardiopulmonary support for high risk percutaneous transluminal coronary angioplasty.
        J Am Coll Cardiol. 1993; 21: 590-596
        • Vainer J.
        • van Ommen V.
        • Maessen J.
        • Geskes G.
        • Lamerichs L.
        • Waltenberger J.
        Elective high-risk percutaneous coronary interventions supported by extracorporeal life support.
        Am J Cardiol. 2007; 99: 771-773
        • Cho S.S.
        • Oh C.M.
        • Jang J.Y.
        • et al.
        Percutaneous cardiopulmonary support-supported percutaneous coronary intervention: a single center experience.
        Korean Circ J. 2011; 41: 299-303
        • Tomasello S.D.
        • Boukhris M.
        • Ganyukov V.
        • et al.
        Outcome of extracorporeal membrane oxygenation support for complex high-risk elective percutaneous coronary interventions: a single-center experience.
        Heart Lung. 2015; 44: 309-313
        • Shaukat A.
        • Hryniewicz-Czeneszew K.
        • Sun B.
        • et al.
        Outcomes of extracorporeal membrane oxygenation support for complex high-risk elective percutaneous coronary interventions: a single-center experience and review of the literature.
        J Invasive Cardiol. 2018; 30: 456-460
        • Perera D.
        • Stables R.
        • Thomas M.
        • et al.
        Elective intra-aortic balloon counterpulsation during high-risk percutaneous coronary intervention: a randomized controlled trial.
        JAMA. 2010; 304: 867-874
        • Perera D.
        • Stables R.
        • Clayton T.
        • et al.
        Long-term mortality data from the balloon pump-assisted coronary intervention study (BCIS-1): a randomized, controlled trial of elective balloon counterpulsation during high-risk percutaneous coronary intervention.
        Circulation. 2013; 127: 207-212
        • O'Neill W.W.
        • Kleiman N.S.
        • Moses J.
        • et al.
        A prospective, randomized clinical trial of hemodynamic support with Impella 2.5 versus intra-aortic balloon pump in patients undergoing high-risk percutaneous coronary intervention: the PROTECT II study.
        Circulation. 2012; 126: 1717-1727
        • Bouhout I.
        • Ghoneim A.
        • Poirier N.
        • et al.
        Impact of the learning curve on early outcomes following the Ross procedure.
        Can J Cardiol. 2017; 33: 493-500
        • Alli O.O.
        • Booker J.D.
        • Lennon R.J.
        • Greason K.L.
        • Rihal C.S.
        • Holmes Jr., D.R.
        Transcatheter aortic valve implantation: assessing the learning curve.
        JACC Cardiovasc Interv. 2012; 5: 72-79
        • Resnic F.S.
        • Wang T.Y.
        • Arora N.
        • et al.
        Quantifying the learning curve in the use of a novel vascular closure device: an analysis of the NCDR (National Cardiovascular Data Registry) CathPCI registry.
        JACC Cardiovasc Interv. 2012; 5: 82-89
        • Rios S.A.
        • Bravo C.A.
        • Weinreich M.
        • et al.
        Meta-analysis and trial sequential analysis comparing percutaneous ventricular assist devices versus intra-aortic balloon pump during high-risk percutaneous coronary intervention or cardiogenic shock.
        Am J Cardiol. 2018; 122: 1330-1338
        • Shah A.P.
        • Retzer E.M.
        • Nathan S.
        • et al.
        Clinical and economic effectiveness of percutaneous ventricular assist devices for high-risk patients undergoing percutaneous coronary intervention.
        J Invasive Cardiol. 2015; 27: 148-154
        • Gregory D.
        • Scotti D.J.
        • de Lissovoy G.
        • et al.
        A value-based analysis of hemodynamic support strategies for high-risk heart failure patients undergoing a percutaneous coronary intervention.
        Am Health Drug Benefits. 2013; 6: 88-99
        • Kim D.H.
        • Rich M.W.
        Patient-centred care of older adults with cardiovascular disease and multiple chronic conditions.
        Can J Cardiol. 2016; 32: 1097-1107
        • Rajkumar C.A.
        • Nijjer S.S.
        • Cole G.D.
        • Al-Lamee R.
        • Francis D.P.
        Faith healing and subtraction anxiety in unblinded trials of procedures: lessons from DEFER and FAME-2 for end points in the ISCHEMIA trial.
        Circ Cardiovasc Qual Outcomes. 2018; 11e004665
        • Wallis C.J.D.
        • Detsky A.S.
        • Fan E.
        Establishing the effectiveness of procedural interventions: the limited role of randomized trials.
        JAMA. 2018;