Advertisement
Canadian Journal of Cardiology
Clinical Research| Volume 36, ISSUE 10, P1624-1632, October 2020

Machine Learning to Predict Stent Restenosis Based on Daily Demographic, Clinical, and Angiographic Characteristics

Published:February 07, 2020DOI:https://doi.org/10.1016/j.cjca.2020.01.027

      Abstract

      Background

      Machine learning (ML) has arrived in medicine to deliver individually adapted medical care. This study sought to use ML to discriminate stent restenosis (SR) compared with existing predictive scores of SR. To develop an easily applicable model, we performed our predictions without any additional variables other than those obtained in daily practice.

      Methods

      The dataset, obtained from the Grupo de Análisis de la Cardiopatía Isquémica Aguda (GRACIA)-3 trial, consisted of 263 patients with demographic, clinical, and angiographic characteristics; 23 (9%) of them presented with SR at 12 months after stent implantation. A methodology to work with small imbalanced datasets, based in cross-validation and the precision/recall (PR) plots, was used, and state-of-the-art ML classifiers were trained.

      Results

      Our best performing model (0.46, area under the PR curve [AUC-PR]) was developed with an extremely randomized trees classifier, which showed better performance than chance alone (0.09 AUC-PR, corresponding to the 9% of patients presenting SR in our dataset) and 3 existing scores; Prevention of Restenosis With Tranilast and its Outcomes (PRESTO)-1 (0.31 AUC-PR), PRESTO-2 (0.27 AUC-PR), and Evaluation of Drug-Eluting Stents and Ischemic Events (EVENT) (0.18 AUC-PR). The most important variables ranked according to their contribution to the predictions were diabetes, ≥2 vessel-coronary disease, post-percutaneous coronary intervention thrombolysis in myocardial infarction (PCI TIMI)-flow, abnormal platelets, post-PCI thrombus, and abnormal cholesterol. To counteract the lack of external validation for our study, we deployed our ML algorithm in an open source calculator, in which the model would stratify patients of high and low risk as an example tool to determine generalizability of prediction models from small imbalanced sample size.

      Conclusions

      Applied immediately after stent implantation, a ML model better differentiates those patients who will present with SR over current discriminators.

      Résumé

      Contexte

      L’avènement de l’apprentissage automatique (AA) en médecine permet de fournir des soins personnalisés. Cette étude portait sur l’utilisation de l’AA comme outil prédictif du risque de resténose après l’implantation d’une endoprothèse comparativement aux scores prédictifs existants. Pour mettre au point un modèle facilement applicable, nous avons effectué nos prévisions sans autres variables que celles obtenues dans la pratique quotidienne.

      Méthodologie

      L’ensemble de données, issu de l’essai Grupo de Análisis de la Cardiopatía Isquémica Aguda (GRACIA)-3, portait sur 263 patients dont les caractéristiques démographiques, cliniques et angiographiques étaient consignées; 23 (9 %) d’entre eux avaient présenté une resténose dans les 12 mois suivant l’implantation d’une endoprothèse. Une méthodologie permettant de travailler avec de petits ensembles de données déséquilibrées, fondée sur la validation croisée et la courbe précision-rappel (PR), a été utilisée et des classificateurs d’AA de pointe ont été entraînés.

      Résultats

      Notre modèle le plus performant (aire sous la courbe PR [ASC-PR] : 0,46) a été mis au point à l’aide d’un classificateur d’arbres extrêmement aléatoires, présentant une meilleure performance que le hasard seul (ASC-PR : 0,09, correspondant aux 9 % de patients présentant une resténose dans notre ensemble de données), et à l’aide de trois scores existants, à savoir : Prevention of Restenosis With Tranilast and its Outcomes (PRESTO)-1 (ASC-PR : 0,31), PRESTO-2 (ASC-PR : 0,27) et Evaluation of Drug-Eluting Stents and Ischemic Events (EVENT) (ASC-PR : 0,18). Les variables les plus importantes, classées en fonction de leur contribution aux prévisions, étaient le diabète, la coronaropathie multitronculaire (≥ 2), le flux TIMI (thrombolyse de l’infarctus du myocarde) après une intervention coronarienne percutanée, les anomalies plaquettaires, la thrombose après une intervention coronarienne percutanée et un taux de cholestérol anormal. Pour contrebalancer le manque de validation externe dans le cadre de notre étude, nous avons déployé notre algorithme d’AA dans un calculateur libre et ouvert, où le modèle opérait la stratification des patients très à risque et peu à risque à titre d’outil d’exemplification en vue de déterminer la généralisabilité des modèles prédictifs à partir d’un échantillon déséquilibré de petite taille.

      Conclusions

      Un modèle d’AA appliqué immédiatement après l’implantation d’une endoprothèse cerne mieux les patients qui présenteront une resténose que les indicateurs actuels.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • McLellan C.S.
        • Le May M.R.
        • Labinaz M.
        Current reperfusion strategies for ST elevation myocardial infarction: a Canadian perspective.
        Can J Cardiol. 2004; 20: 525-533
        • Simard T.
        • Hibbert B.
        • Ramirez F.D.
        • Froeschl M.
        • Chen Y.X.
        • O'Brien E.R.
        The evolution of coronary stents: a brief review.
        Can J Cardiol. 2014; 30: 35-45
        • Califf R.M.
        • Fortin D.F.
        • Frid D.J.
        • et al.
        Restenosis after coronary angioplasty: an overview.
        J Am Coll Cardiol. 1991; 17: 2B-13B
        • Dangas G.D.
        • Claessen B.E.
        • Caixeta A.
        • Sanidas E.A.
        • Mintz G.S.
        • Mehran R.
        In-stent restenosis in the drug-eluting stent era.
        J Am Coll Cardiol. 2010; 56: 1897-1907
        • Rajkomar A.
        • Dean J.
        • Kohane I.
        Machine learning in medicine.
        N Engl J Med. 2019; 380: 1347-1358
        • Westcott R.J.
        • Tcheng J.E.
        Artificial intelligence and machine learning in cardiology.
        JACC Cardiovasc Interv. 2019; 12: 1312-1314
        • Dorado-Diaz P.I.
        • Sampedro-Gomez J.
        • Vicente-Palacios V.
        • Sanchez P.L.
        Applications of artificial intelligence in cardiology: the future is already here.
        Rev Esp Cardiol. 2019; 72: 1065-1075
        • Heckman G.A.
        • Hirdes J.P.
        • McKelvie R.S.
        The role of physicians in the era of big data.
        Can J Cardiol. 2019; 36: 19-21
        • Singh M.
        • Gersh B.J.
        • McClelland R.L.
        • et al.
        Clinical and angiographic predictors of restenosis after percutaneous coronary intervention: insights from the Prevention of Restenosis With Tranilast and Its Outcomes (PRESTO) trial.
        Circulation. 2004; 109: 2727-2731
        • Stolker J.M.
        • Kennedy K.F.
        • Lindsey J.B.
        • et al.
        Predicting restenosis of drug-eluting stents placed in real-world clinical practice: derivation and validation of a risk model from the EVENT registry.
        Circ Cardiovasc Interv. 2010; 3: 327-334
        • Kuntz R.E.
        • Baim D.S.
        Defining coronary restenosis: newer clinical and angiographic paradigms.
        Circulation. 1993; 88: 1310-1323
        • Sanchez P.L.
        • Gimeno F.
        • Ancillo P.
        • et al.
        Role of the paclitaxel-eluting stent and tirofiban in patients with ST-elevation myocardial infarction undergoing postfibrinolysis angioplasty: the GRACIA-3 randomized clinical trial.
        Circ Cardiovasc Interv. 2010; 3: 297-307
        • Rodriguez J.D.
        • Perez A.
        • Lozano J.A.
        Sensitivity analysis of kappa-fold cross validation in prediction error estimation.
        IEEE Trans Pattern Anal Mach Intell. 2010; 32: 569-575
        • Pedregosa F.
        • Varoquaux G.
        • Gramfort A.
        • et al.
        Scikit-learn: machine learning in Python.
        J Mach Learn Res. 2011; 12: 2825-2830
        • Varma S.
        • Simon R.
        Bias in error estimation when using cross-validation for model selection.
        BMC Bioinformatics. 2006; 7: 91
        • Bergstra J.
        • Bengio Y.
        Random search for hyper-parameter optimization.
        J Mach Learn Res. 2012; 13: 281-305
        • Moons K.G.
        • Altman D.G.
        • Reitsma J.B.
        • et al.
        Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration.
        Ann Intern Med. 2015; 162: W1-W73
        • Saito T.
        • Rehmsmeier M.
        The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets.
        PLoS One. 2015; 10e0118432
        • Davis J.
        • Goadrich M.
        The relationship between precision-recall and ROC curves.
        Proceedings of the 23rd International Conference on Machine Learning (ICML-06). 2006; : 233-240
        • Airola A.
        • Pahikkala T.
        • Waegeman W.
        • De Baets B.
        • Salakoski T.
        An experimental comparison of cross-validation techniques for estimating the area under the ROC curve.
        Comput Stat Data Anal. 2011; 55: 1828-1844
        • Bouckaert R.R.
        Choosing between two learning algorithms based on calibrated tests.
        Proceedings of the 20th International Conference on Machine Learning (ICML-03). 2003; : 51-58
        • Breiman L.
        Random forests.
        Mach Learn. 2001; 45: 5-32
        • Feinberg J.
        • Nielsen E.E.
        • Greenhalgh J.
        • et al.
        Drug-eluting stents versus bare-metal stents for acute coronary syndrome.
        Cochrane Database Syst Rev. 2017; 8: CD012481
        • Mindrescu C.
        • Brener S.J.
        • Guerchicoff A.
        • et al.
        Impact of scheduled angiographic follow-up in patients treated with primary percutaneous coronary intervention for ST-segment elevation myocardial infarction.
        J Interv Cardiol. 2013; 26: 319-324
        • Cui S.
        • Li K.
        • Ang L.
        • et al.
        Plasma phospholipids and sphingolipids identify stent restenosis after percutaneous coronary intervention.
        JACC Cardiovasc Interv. 2017; 10: 1307-1316

      Linked Article

      • The Rise of Open-Sourced Machine Learning in Small and Imbalanced Datasets: Predicting In-Stent Restenosis
        Canadian Journal of CardiologyVol. 36Issue 10
        • Preview
          After the successful placement of a coronary stent and revascularization, in-stent restenosis (ISR) occurs in up to 12% of patients and represents the gradual failure of the stent by lumen renarrowing.1 Clinically, ISR is important to recognize because it is usually associated with recurrent angina symptoms, a higher risk for acute coronary syndrome, and increased mortality.1 The ability to accurately predict ISR would enable closer monitoring of those patients at higher risk of ISR or the consideration of alternate therapies.
        • Full-Text
        • PDF