Advertisement
Canadian Journal of Cardiology

Network Meta-analysis of Surgical Aortic Valve Replacement and Different Transcatheter Heart Valve Systems for Symptomatic Severe Aortic Stenosis

Published:February 28, 2020DOI:https://doi.org/10.1016/j.cjca.2020.02.088

      Abstract

      Background

      Although different transcatheter heart valve (THV) systems have been introduced to overcome transcatheter aortic valve replacement (TAVR)–specific complications, head-to-head comparisons of these THV systems are scarce. The aim of this study was to compare different THV systems and surgical aortic valve replacement (SAVR) by conducting a network meta-analysis.

      Methods

      PubMed and EMBASE were searched through November 2019 for studies comparing safety and efficacy of balloon-expandable valve (BEV), self-expanding valve (SEV), mechanically expandable valve (MEV), and SAVR for symptomatic severe aortic stenosis. End points in the short term at 30 days or discharge and the long term up to 2 years were assessed.

      Results

      We identified 11 randomized controlled trials with a total of 10,300 patients eligible for inclusion in our study. There were no significant differences in all-cause death among different THV systems and SAVR in both short and long terms. Disabling stroke was significantly lower with MEV vs BEV and SAVR (hazard ratios [HRs] 0.31 [95% confidence interval [CI] 0.12-0.77] and 0.33 [95% CI 0.14-0.76], respectively) in the long term. MEV was associated with an increased risk of new permanent pacemaker implantation compared with BEV, SEV, and SAVR (HRs 3.82 [95% CI 1.83-7.97], 1.85 [95% CI 1.02-3.36], and 5.23 [95% CI 2.61-10.47], respectively) in the long term.

      Conclusions

      In patients with symptomatic severe aortic stenosis undergoing intervention, there were no significant differences in all-cause death among different THV systems and SAVR. MEV had low frequency of disabling stroke compared with BEV and SAVR, but an increased frequency of permanent pacemaker implantation compared with other interventions.

      Résumé

      Contexte

      Différents types de valves cardiaques implantées par cathétérisme (VCC) ont été mis au point afin de prévenir les complications liées au remplacement valvulaire aortique par cathéter (RVAC), mais rares sont les études comparant directement ces dispositifs. Notre objectif était donc de comparer, au moyen d’une méta-analyse en réseau, différents types de VCC et la chirurgie de remplacement valvulaire aortique (CRVA).

      Méthodologie

      Nous avons effectué une recherche parmi les publications répertoriées jusqu’en novembre 2019 dans les bases de données PudMed et EMBASE, afin de relever les études comparant l’innocuité et l’efficacité de l’implantation transcathéter d’une valve expansible par ballonnet (VEB), d’une valve auto-expansible (VAE) ou d’une valve expansible mécaniquement (VEM) et de la CRVA chez des patients présentant une sténose de l’aorte grave symptomatique. Nous avons ensuite évalué les résultats obtenus à court terme, soit à 30 jours ou à la sortie de l’hôpital, et à long terme, soit jusqu’à 2 ans.

      Résultats

      Nous avons relevé 11 essais contrôlés avec répartition aléatoire réunissant 10 300 patients admissibles à notre étude. Aucune différence significative n’a été observée entre les différents types de VCC et la CRVA sur le plan de la mortalité toutes causes confondues à court ou à long terme. L’incidence des accidents vasculaires cérébraux (AVC) invalidants à long terme était significativement plus faible avec une VEM qu’avec une VEB ou la CRVA (rapports des risques instantanés [RRI] de 0,31 [intervalle de confiance {IC} à 95 % : de 0,12 à 0,77] et de 0,33 [IC à 95 % : de 0,14 à 0,76], respectivement). La probabilité d’implantation d’un nouveau stimulateur cardiaque permanent à long terme était plus élevée avec une VEM qu’avec une VEB, une VAE ou une CRVA (RRI de 3,82 [IC à 95 % : de 1,83 à 7,97], 1,85 [IC à 95 % : de 1,02-3,36], et 5,23 [IC à 95 % : de 2,61 à 10,47], respectivement).

      Conclusions

      Chez les patients présentant une sténose de l’aorte grave symptomatique subissant une intervention corrective, on n’a observé aucune différence significative entre les différents types de VCC et la CRVA sur le plan de la mortalité toutes causes confondues. La VEM a été associée à une incidence plus faible d’AVC invalidants comparativement à la VEB et à la CRVA, mais à une probabilité accrue d’implantation d’un stimulateur cardiaque permanent comparativement aux autres interventions.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Smith C.R.
        • Leon M.B.
        • Mack M.J.
        • et al.
        Transcatheter versus surgical aortic-valve replacement in high-risk patients.
        N Engl J Med. 2011; 364: 2187-2198
        • Leon M.B.
        • Smith C.R.
        • Mack M.J.
        • et al.
        Transcatheter or surgical aortic-valve replacement in intermediate-risk patients.
        N Engl J Med. 2016; 374: 1609-1620
        • Adams D.H.
        • Popma J.J.
        • Reardon M.J.
        • et al.
        Transcatheter aortic-valve replacement with a self-expanding prosthesis.
        N Engl J Med. 2014; 370: 1790-1798
        • Reardon M.J.
        • Van Mieghem N.M.
        • Popma J.J.
        • et al.
        Surgical or transcatheter aortic-valve replacement in intermediate-risk patients.
        N Engl J Med. 2017; 376: 1321-1331
        • Mack M.J.
        • Leon M.B.
        • Thourani V.H.
        • et al.
        Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients.
        N Engl J Med. 2019; 380: 1695-1705
        • Popma J.J.
        • Deeb G.M.
        • Yakubov S.J.
        • et al.
        Transcatheter aortic-valve replacement with a self-expanding valve in low-risk patients.
        N Engl J Med. 2019; 380: 1706-1715
        • Thyregod H.G.
        • Steinbruchel D.A.
        • Ihlemann N.
        • et al.
        Transcatheter versus surgical aortic valve replacement in patients with severe aortic valve stenosis: 1-year results from the all-comers NOTION randomized clinical trial.
        J Am Coll Cardiol. 2015; 65: 2184-2194
        • Siontis G.C.M.
        • Overtchouk P.
        • Cahill T.J.
        • et al.
        Transcatheter aortic valve implantation vs surgical aortic valve replacement for treatment of symptomatic severe aortic stenosis: an updated meta-analysis.
        Eur Heart J. 2019; 40: 3143-3153
        • Genereux P.
        • Head S.J.
        • Hahn R.
        • et al.
        Paravalvular leak after transcatheter aortic valve replacement: the new Achilles’ heel? A comprehensive review of the literature.
        J Am Coll Cardiol. 2013; 61: 1125-1136
        • Bourantas C.V.
        • Modolo R.
        • Baumbach A.
        • et al.
        The evolution of device technology in transcatheter aortic valve implantation.
        EuroIntervention. 2019; 14: e1826-e1833
        • Lanz J.
        • Kim W.K.
        • Walther T.
        • et al.
        Safety and efficacy of a self-expanding versus a balloon-expandable bioprosthesis for transcatheter aortic valve replacement in patients with symptomatic severe aortic stenosis: a randomised noninferiority trial.
        Lancet. 2019; 394: 1619-1628
        • Abdel-Wahab M.
        • Mehilli J.
        • Frerker C.
        • et al.
        Comparison of balloon-expandable vs self-expandable valves in patients undergoing transcatheter aortic valve replacement: the CHOICE randomized clinical trial.
        Jama. 2014; 311: 1503-1514
        • Feldman T.E.
        • Reardon M.J.
        • Rajagopal V.
        • et al.
        Effect of mechanically expanded vs self-expanding transcatheter aortic valve replacement on mortality and major adverse clinical events in high-risk patients with aortic stenosis: the REPRISE III randomized clinical trial.
        JAMA. 2018; 319: 27-37
        • Liberati A.
        • Altman D.G.
        • Tetzlaff J.
        • et al.
        The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration.
        J Clin Epidemiol. 2009; 62: e1-e34
        • Leon M.B.
        • Piazza N.
        • Nikolsky E.
        • et al.
        Standardized end point definitions for transcatheter aortic valve implantation clinical trials: a consensus report from the Valve Academic Research Consortium.
        Eur Heart J. 2011; 32: 205-217
        • Kappetein A.P.
        • Head S.J.
        • Genereux P.
        • et al.
        Updated standardized end point definitions for transcatheter aortic valve implantation: the Valve Academic Research Consortium-2 consensus document.
        Eur Heart J. 2012; 33: 2403-2418
        • Hayashida K.
        Hybrid operating rooms for transcatheter aortic valve replacement: a must-have or nice to have?.
        JACC Cardiovasc Interv. 2018; 11: 2204-2206
        • Higgins J.P.
        • Altman D.G.
        • Gotzsche P.C.
        • et al.
        The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials.
        BMJ. 2011; 343: d5928
        • Puhan M.A.
        • Schunemann H.J.
        • Murad M.H.
        • et al.
        A GRADE Working Group approach for rating the quality of treatment effect estimates from network meta-analysis.
        BMJ. 2014; 349: g5630
        • Tierney J.F.
        • Stewart L.A.
        • Ghersi D.
        • Burdett S.
        • Sydes M.R.
        Practical methods for incorporating summary time-to-event data into meta-analysis.
        Trials. 2007; 8: 16
        • Neupane B.
        • Richer D.
        • Bonner A.J.
        • Kibret T.
        • Beyene J.
        Network meta-analysis using R: a review of currently available automated packages.
        PLoS One. 2014; 9e115065
        • Higgins J.P.
        • Thompson S.G.
        • Deeks J.J.
        • Altman D.G.
        Measuring inconsistency in meta-analyses.
        BMJ. 2003; 327: 557-560
        • Kodali S.K.
        • Williams M.R.
        • Smith C.R.
        • et al.
        Two-year outcomes after transcatheter or surgical aortic-valve replacement.
        N Engl J Med. 2012; 366: 1686-1695
        • Mack M.J.
        • Leon M.B.
        • Smith C.R.
        • et al.
        5-Year outcomes of transcatheter aortic valve replacement or surgical aortic valve replacement for high surgical risk patients with aortic stenosis (PARTNER 1): a randomised controlled trial.
        Lancet. 2015; 385: 2477-2484
        • Reardon M.J.
        • Adams D.H.
        • Kleiman N.S.
        • et al.
        2-Year outcomes in patients undergoing surgical or self-expanding transcatheter aortic valve replacement.
        J Am Coll Cardiol. 2015; 66: 113-121
        • Deeb G.M.
        • Reardon M.J.
        • Chetcuti S.
        • et al.
        3-Year outcomes in high-risk patients who underwent surgical or transcatheter aortic valve replacement.
        J Am Coll Cardiol. 2016; 67: 2565-2574
        • Gleason T.G.
        • Reardon M.J.
        • Popma J.J.
        • et al.
        5-Year outcomes of self-expanding transcatheter versus surgical aortic valve replacement in high-risk patients.
        J Am Coll Cardiol. 2018; 72: 2687-2696
        • Little S.H.
        • Oh J.K.
        • Gillam L.
        • et al.
        Self-expanding transcatheter aortic valve replacement versus surgical valve replacement in patients at high risk for surgery: a study of echocardiographic change and risk prediction.
        Circ Cardiovasc Interv. 2016; 9e003426
        • Sondergaard L.
        • Steinbruchel D.A.
        • Ihlemann N.
        • et al.
        Two-year outcomes in patients with severe aortic valve stenosis randomized to transcatheter versus surgical aortic valve replacement: the all-comers Nordic Aortic Valve Intervention randomized clinical trial.
        Circ Cardiovasc Interv. 2016; 9e003665
        • Thyregod H.G.H.
        • Ihlemann N.
        • Jorgensen T.H.
        • et al.
        Five-year clinical and echocardiographic outcomes from the Nordic Aortic Valve Intervention (NOTION) randomized clinical trial in lower surgical risk patients.
        Circulation. 2019; 139: 2714-2723
        • Ngo A.
        • Hassager C.
        • Thyregod H.G.H.
        • et al.
        Differences in left ventricular remodelling in patients with aortic stenosis treated with transcatheter aortic valve replacement with corevalve prostheses compared to surgery with porcine or bovine biological prostheses.
        Eur Heart J Cardiovasc Imaging. 2018; 19: 39-46
        • Abdel-Wahab M.
        • Neumann F.J.
        • Mehilli J.
        • et al.
        1-Year outcomes after transcatheter aortic valve replacement with balloon-expandable versus self-expandable valves: results from the CHOICE randomized clinical trial.
        J Am Coll Cardiol. 2015; 66: 791-800
      1. Thiele H; SOLVE-TAVI Investigators. SOLVE-TAVI: A 2×2 randomized trial of self-expandable vs balloon-expandable valves and general vs local anesthesia in patients undergoing transcatheter aortic valve implantation. Presented at Transcatheter Cardiovascular Therapeutics, San Diego, CA, Sep 23, 2018.

        • Reardon M.J.
        • Feldman T.E.
        • Meduri C.U.
        • et al.
        Two-year outcomes after transcatheter aortic valve replacement with mechanical vs self-expanding valves: the REPRISE III randomized clinical trial.
        JAMA Cardiol. 2019; 4: 223-229
        • Kapadia S.
        • Agarwal S.
        • Miller D.C.
        • et al.
        Insights into timing, risk factors, and outcomes of stroke and transient ischemic attack after transcatheter aortic valve replacement in the PARTNER trial (Placement of Aortic Transcatheter Valves).
        Circ Cardiovasc Interv. 2016; 9e002981
        • Athappan G.
        • Gajulapalli R.D.
        • Sengodan P.
        • et al.
        Influence of transcatheter aortic valve replacement strategy and valve design on stroke after transcatheter aortic valve replacement: a meta-analysis and systematic review of literature.
        J Am Coll Cardiol. 2014; 63: 2101-2110
        • Jose J.
        • Sulimov D.S.
        • El-Mawardy M.
        • et al.
        Clinical bioprosthetic heart valve thrombosis after transcatheter aortic valve replacement: incidence, characteristics, and treatment outcomes.
        JACC Cardiovasc Interv. 2017; 10: 686-697
        • Hansson N.C.
        • Grove E.L.
        • Andersen H.R.
        • et al.
        Transcatheter aortic valve thrombosis: incidence, predisposing factors, and clinical implications.
        J Am Coll Cardiol. 2016; 68: 2059-2069
        • Urena M.
        • Webb J.G.
        • Tamburino C.
        • et al.
        Permanent pacemaker implantation after transcatheter aortic valve implantation: impact on late clinical outcomes and left ventricular function.
        Circulation. 2014; 129: 1233-1243
        • Escarcega R.O.
        • Magalhaes M.A.
        • Lipinski M.J.
        • et al.
        Mortality in patients requiring pacemaker implantation following transcatheter aortic valve replacement: insights from a systematic review and meta-analysis.
        Int J Cardiol. 2014; 174: 207-208
        • Sathananthan J.
        • Ding L.
        • Yu M.
        • et al.
        Implications of transcatheter heart valve selection on early and late pacemaker rate and on length of stay.
        Can J Cardiol. 2018; 34: 1165-1173
        • Tzeng Y.H.
        • Lee Y.T.
        • Tsao T.P.
        • et al.
        Performance and short-term outcomes of three different transcatheter aortic valve replacement devices in patients with aortic stenosis: A single-center experience.
        Crit Care Med. 2019; 82: 827-834
        • Schofer N.
        • Deuschl F.
        • Schon G.
        • et al.
        Comparative analysis of balloon- versus mechanically-expandable transcatheter heart valves considering landing zone calcification.
        J Cardiol. 2018; 71: 540-546
        • Dumonteil N.
        • Meredith I.T.
        • Blackman D.J.
        • et al.
        Insights into the need for permanent pacemaker following implantation of the repositionable LOTUS valve for transcatheter aortic valve replacement in 250 patients: results from the REPRISE II trial with extended cohort.
        EuroIntervention. 2017; 13: 796-803
        • Vlastra W.
        • Chandrasekhar J.
        • Munoz-Garcia A.J.
        • et al.
        Comparison of balloon-expandable vs self-expandable valves in patients undergoing transfemoral transcatheter aortic valve implantation: from the CENTER-Collaboration.
        Eur Heart J. 2019; 40: 456-465
        • Khawaja M.Z.
        • Rajani R.
        • Cook A.
        • et al.
        Permanent pacemaker insertion after CoreValve transcatheter aortic valve implantation: incidence and contributing factors (the UK CoreValve Collaborative).
        Circulation. 2011; 123: 951-960
        • Kodali S.
        • Pibarot P.
        • Douglas P.S.
        • et al.
        Paravalvular regurgitation after transcatheter aortic valve replacement with the Edwards Sapien valve in the PARTNER trial: characterizing patients and impact on outcomes.
        Eur Heart J. 2015; 36: 449-456
        • Meredith I.T.
        • Walters D.L.
        • Dumonteil N.
        • et al.
        1-Year outcomes with the fully repositionable and retrievable lotus transcatheter aortic replacement valve in 120 high-risk surgical patients with severe aortic stenosis: results of the REPRISE II study.
        JACC Cardiovasc Interv. 2016; 9: 376-384
        • Seeger J.
        • Gonska B.
        • Rottbauer W.
        • Wohrle J.
        Outcome with the repositionable and retrievable Boston Scientific Lotus valve compared with the balloon-expandable Edwards Sapien 3 valve in patients undergoing transfemoral aortic valve replacement.
        Circ Cardiovasc Interv. 2017; 10

      Linked Article

      • Precision Medicine in TAVR: How to Select the Right Device for the Right Patient
        Canadian Journal of CardiologyVol. 37Issue 1
        • Preview
          Transcatheter aortic valve replacement (TAVR) represents a first-line option for the treatment of patients with severe symptomatic aortic stenosis across the entire spectrum of surgical risks. Given the expected growth of TAVR procedures in low-risk patients, many factors other than the primary endpoints of pivotal TAVR trials (either death, or the composite of death or stroke) need to be considered during the selection of a treatment strategy. Such factors include the risk of procedural complications (permanent pacemaker implantation, stroke, new-onset atrial fibrillation, vascular complications, etc), device hemodynamic performance and durability (paravalvular leak [PVL], reinterventions), indication for antithrombotic therapy, and patient quality of life.
        • Full-Text
        • PDF