Advertisement
Review| Volume 36, ISSUE 5, P721-731, May 2020

Download started.

Ok

Targeting Brain Aminopeptidase A: A New Strategy for the Treatment of Hypertension and Heart Failure

  • Yannick Marc
    Affiliations
    Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Paris, France

    Quantum Genomics, Paris, France
    Search for articles by this author
  • Solène Emmanuelle Boitard
    Affiliations
    Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Paris, France

    Quantum Genomics, Paris, France
    Search for articles by this author
  • Fabrice Balavoine
    Affiliations
    Quantum Genomics, Paris, France
    Search for articles by this author
  • Michel Azizi
    Affiliations
    Centres d’Investigation Clinique 1418, Institut National de la Santé et de la Recherche Médicale, Paris, France

    Hypertension Unit and Départements Médico-Universitaires Cardiovasculaire, Rénal, transplantation et neurovasculaire (DMU CARTE), l’Assistance Publique–Hôpitaux de Paris, Hôpital European Georges-Pompidou, Paris, France
    Search for articles by this author
  • Catherine Llorens-Cortes
    Correspondence
    Corresponding author: Dr Catherine Llorens-Cortes, Collège de France, INSERM U1050, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France. Tel.: +33-1-44271663; fax: +33-1-44271691.
    Affiliations
    Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, Collège de France, Center for Interdisciplinary Research in Biology, Centre National de la Recherche Scientifique UMR 7241, Institut National de la Santé et de la Recherche Médicale U1050, Paris, France
    Search for articles by this author
Published:March 06, 2020DOI:https://doi.org/10.1016/j.cjca.2020.03.005

      Abstract

      The pathophysiology of heart failure (HF) and hypertension are thought to involve brain renin-angiotensin system (RAS) hyperactivity. Angiotensin III, a key effector peptide in the brain RAS, provides tonic stimulatory control over blood pressure (BP) in hypertensive rats. Aminopeptidase A (APA), the enzyme responsible for generating brain angiotensin III, constitutes a potential therapeutic target for hypertension treatment. We focus here on studies of RB150/firibastat, the first prodrug of the specific and selective APA inhibitor EC33 able to cross the blood-brain barrier. We consider its development from therapeutic target discovery to clinical trials of the prodrug. After oral administration, firibastat crosses the gastrointestinal and blood-brain barriers. On arrival in the brain, it is cleaved to generate EC33, which inhibits brain APA activity, lowering BP in various experimental models of hypertension. Firibastat was clinically and biologically well tolerated, even at high doses, in phase I trials conducted in healthy human subjects. It was then shown to decrease BP effectively in patients of various ethnic origins with hypertension in phase II trials. Brain RAS hyperactivity leads to excessive sympathetic activity, which can contribute to HF after myocardial infarction (MI). Chronic treatment with oral firibastat (4 or 8 weeks after MI) has been shown to normalize brain APA activity in mice. This effect is accompanied by a normalization of brain RAS and sympathetic activities, reducing cardiac fibrosis and hypertrophy and preventing cardiac dysfunction. Firibastat may therefore represent a novel therapeutic advance in the clinical management of patients with hypertension and potentially with HF after MI.

      Résumé

      La physiopathologie de l'insuffisance cardiaque (IC) et de l'hypertension artérielle impliquerait une hyperactivité du système rénine-angiotensine (SRA) cérébral. L'angiotensine III, un peptide effecteur clé du SRA cérébral, exerce un effet stimulateur tonique de la pression artérielle (PA) chez les rats hypertendus. L'aminopeptidase A (APA), l'enzyme responsable de la production d'angiotensine III dans le cerveau, constitue une cible thérapeutique potentielle pour le traitement de l'hypertension. Nous nous concentrons ici sur les études du RB150/firibastat, le premier promédicament de l’EC33, inhibiteur spécifique et sélectif de l'APA, capable de traverser la barrière hémato-encéphalique après administration par voie orale. Nous présentons son développement depuis la découverte de la cible thérapeutique jusqu'aux essais cliniques du promédicament. Après administration orale, le firibastat traverse les barrières gastro-intestinale et hémato-encéphalique. À son arrivée dans le cerveau, il est clivé pour générer l'EC33 qui inhibe l'activité de l'APA dans le cerveau, faisant baisser la PA dans divers modèles expérimentaux d'hypertension. Le firibastat est cliniquement et biologiquement bien toléré, même à fortes doses, dans des essais de phase I menés sur des sujets sains. Il a ensuite été démontré qu'il réduisait efficacement la PA chez des patients de diverses origines ethniques souffrant d'hypertension, lors d'essais de phase II. L'hyperactivité du SRA cérébral entraîne une activité sympathique excessive, qui peut contribuer à l’IC après un infarctus du myocarde (IM). Il a été démontré qu'un traitement chronique de firibastat par voie orale (4 ou 8 semaines après l'IM) normalise l'activité cérébrale de l'APA chez la souris. Cet effet s'accompagne d'une normalisation de l'activité cérébrale du SRA et de l’activité sympathique, réduisant la fibrose et l'hypertrophie cardiaques et prévenant la dysfonction cardiaque. Le firibastat pourrait donc représenter une nouvelle avancée thérapeutique dans la prise en charge clinique des patients souffrant d'hypertension et potentiellement d’IC après un IM.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • GBD 2015 Risk Factors Collaborators
        Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015.
        Lancet. 2016; 388: 1659-1724
        • Lewington S.
        • Clarke R.
        • Qizilbash N.
        • Peto R.
        • Collins R.
        Prospective Studies Collaboration. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies.
        Lancet. 2002; 360: 1903-1913
        • Nerenberg K.A.
        • Zarnke K.B.
        • Leung A.A.
        • et al.
        Hypertension Canada. Hypertension Canada’s 2018 guidelines for diagnosis, risk assessment, prevention, and treatment of hypertension in adults and children.
        Can J Cardiol. 2018; 34: 506-525
        • Beaney T.
        • Schutte A.E.
        • Tomaszewski M.
        • et al.
        MMM Investigators. May Measurement Month 2017: an analysis of blood pressure screening results worldwide.
        Lancet Glob Health. 2018; 6: e736-e743
        • Benjamin E.J.
        • Muntner P.
        • Alonso A.
        • et al.
        American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics—2019 update: a report from the American Heart Association.
        Circulation. 2019; 139: e56-528
        • Fryar C.D.
        • Ostchega Y.
        • Hales C.M.
        • Zhang G.
        • Kruszon-Moran D.
        Hypertension prevalence and control among adults: United States, 2015-2016.
        NCHS Data Brief. 2017; : 1-8
        • Smith D.H.G.
        Treatment of hypertension with an angiotensin II–receptor antagonist compared with an angiotensin-converting enzyme inhibitor: a review of clinical studies of telmisartan and enalapril.
        Clin Ther. 2002; 24: 1484-1501
        • Webb R.L.
        • Schiering N.
        • Sedrani R.
        • Maibaum J.
        Direct renin inhibitors as a new therapy for hypertension.
        J Med Chem. 2010; 53: 7490-7520
        • Wright J.T.
        • Dunn J.K.
        • Cutler J.A.
        • et al.
        • ALLHAT Collaborative Research Group
        Outcomes in hypertensive black and nonblack patients treated with chlorthalidone, amlodipine, and lisinopril.
        JAMA. 2005; 293: 1595-1608
        • Flack J.M.
        • Nasser S.A.
        • Levy P.D.
        Therapy of hypertension in African Americans.
        Am J Cardiovasc Drugs. 2011; 11: 83-92
        • Düsing R.
        Optimizing blood pressure control through the use of fixed combinations.
        Vasc Health Risk Manag. 2010; 6: 321-325
        • Gradman A.H.
        • Parisé H.
        • Lefebvre P.
        • et al.
        Initial combination therapy reduces the risk of cardiovascular events in hypertensive patients: a matched cohort study.
        Hypertension. 2013; 61: 309-318
        • Jamerson K.
        • Weber M.A.
        • Bakris G.L.
        • et al.
        ACCOMPLISH Trial Investigators. Benazepril plus amlodipine or hydrochlorothiazide for hypertension in high-risk patients.
        N Engl J Med. 2008; 359: 2417-2428
        • Noubiap J.J.
        • Nansseu J.R.
        • Nyaga U.F.
        • Sime P.S.
        • Francis I.
        • Bigna J.J.
        Global prevalence of resistant hypertension: a meta-analysis of data from 3.2 million patients.
        Heart. 2019; 105: 98-105
        • Carey R.M.
        • Calhoun D.A.
        • Bakris G.L.
        • et al.
        American Heart Association Professional/Public Education and Publications Committee of the Council on Hypertension; Council on Cardiovascular and Stroke Nursing; Council on Clinical Cardiology; Council on Genomic and Precision Medicine; Council on Peripheral Vascular Disease; Council on Quality of Care and Outcomes Research; Stroke Council. Resistant hypertension: detection, evaluation, and management: a scientific statement from the American Heart Association.
        Hypertension. 2018; 72: e53-90
        • Mann S.J.
        Drug therapy for resistant hypertension: simplifying the approach.
        J Clin Hypertens (Greenwich). 2011; 13: 120-130
        • Persell S.D.
        Prevalence of resistant hypertension in the United States, 2003-2008.
        Hypertension. 2011; 57: 1076-1080
        • Azizi M.
        • Rossignol P.
        • Hulot J.-S.
        Emerging drug classes and their potential use in hypertension.
        Hypertension. 2019; 74: 1075-1083
        • Wright J.W.
        • Harding J.W.
        Regulatory role of brain angiotensins in the control of physiological and behavioral responses.
        Brain Res Brain Res Rev. 1992; 17: 227-262
        • Marc Y.
        • Llorens-Cortes C.
        The role of the brain renin-angiotensin system in hypertension: implications for new treatment.
        Prog Neurobiol. 2011; 95: 89-103
        • Nakagawa P.
        • Gomez J.
        • Grobe J.L.
        • Sigmund C.D.
        The renin-angiotensin system in the central nervous system and its role in blood pressure regulation.
        Curr Hypertens Rep. 2020; 22: 7
        • Wright J.W.
        • Harding J.W.
        Brain angiotensin receptor subtypes in the control of physiological and behavioral responses.
        Neurosci Biobehav Rev. 1994; 18: 21-53
        • Passos-Silva D.G.
        • Verano-Braga T.
        • Santos R.A.S.
        Angiotensin-(1-7): beyond the cardio-renal actions.
        Clin Sci. 2013; 124: 443-456
        • Allen A.M.
        • Paxinos G.
        • Song K.F.
        • Mendelsohn F.A.O.
        Localization of angiotensin receptor binding sites in the rat brain.
        in: Björklund A. Hökfelt T. Kuhar M.J. Handbook of Chemical Neuroanatomy Vol 11: Neuropeptide Receptors in the CNS. Elsevier, Amsterdam1992: 1-37
        • Saavedra J.M.
        Brain and pituitary angiotensin.
        Endocr Rev. 1992; 13: 329-380
        • Lenkei Z.
        • Palkovits M.
        • Corvol P.
        • Llorens-Cortès C.
        Expression of angiotensin type-1 (AT1) and type-2 (AT2) receptor mRNAs in the adult rat brain: a functional neuroanatomical review.
        Front Neuroendocrinol. 1997; 18: 383-439
        • Rice G.I.
        • Thomas D.A.
        • Grant P.J.
        • Turner A.J.
        • Hooper N.M.
        Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism.
        Biochem J. 2004; 383: 45-51
        • Pereira M.G.A.G.
        • Souza L.L.
        • Becari C.
        • et al.
        Angiotensin II–independent angiotensin-(1-7) formation in rat hippocampus: involvement of thimet oligopeptidase.
        Hypertension. 2013; 62: 879-885
        • Kambayashi Y.
        • Bardhan S.
        • Takahashi K.
        • et al.
        Molecular cloning of a novel angiotensin II receptor isoform involved in phosphotyrosine phosphatase inhibition.
        J Biol Chem. 1993; 268: 24543-24546
        • Mukoyama M.
        • Nakajima M.
        • Horiuchi M.
        • et al.
        Expression cloning of type 2 angiotensin II receptor reveals a unique class of seven-transmembrane receptors.
        J Biol Chem. 1993; 268: 24539-24542
        • Murphy T.J.
        • Alexander R.W.
        • Griendling K.K.
        • Runge M.S.
        • Bernstein K.E.
        Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor.
        Nature. 1991; 351: 233-236
        • Wilson W.L.
        • Roques B.P.
        • Llorens-Cortes C.
        • et al.
        Roles of brain angiotensins II and III in thirst and sodium appetite.
        Brain Res. 2005; 1060: 108-117
        • Phillips M.I.
        Functions of angiotensin in the central nervous system.
        Annu Rev Physiol. 1987; 49: 413-435
        • Ganten D.
        • Hermann K.
        • Bayer C.
        • Unger T.
        • Lang R.E.
        Angiotensin synthesis in the brain and increased turnover in hypertensive rats.
        Science. 1983; 221: 869-871
        • Guyenet P.G.
        The sympathetic control of blood pressure.
        Nat Rev Neurosci. 2006; 7: 335-346
        • Reaux A.
        • Fournie-Zaluski M.C.
        • David C.
        • et al.
        Aminopeptidase A inhibitors as potential central antihypertensive agents.
        Proc Natl Acad Sci U S A. 1999; 96: 13415-13420
        • Basso N.
        • Ruiz P.
        • Mangiarua E.
        • Taquini A.C.
        Renin-like activity in the rat brain during the development of DOC-salt hypertension.
        Hypertension. 1981; 3 (II-14-17)
        • Grobe J.L.
        • Grobe C.L.
        • Beltz T.G.
        • et al.
        The brain renin-angiotensin system controls divergent efferent mechanisms to regulate fluid and energy balance.
        Cell Metab. 2010; 12: 431-442
        • Davisson R.L.
        • Yang G.
        • Beltz T.G.
        • et al.
        The brain renin-angiotensin system contributes to the hypertension in mice containing both the human renin and human angiotensinogen transgenes.
        Circ Res. 1998; 83: 1047-1058
        • Morimoto S.
        • Cassell M.D.
        • Beltz T.G.
        • et al.
        Elevated blood pressure in transgenic mice with brain-specific expression of human angiotensinogen driven by the glial fibrillary acidic protein promoter.
        Circ Res. 2001; 89: 365-372
        • Oliva R.V.
        • Bakris G.L.
        Sympathetic activation in resistant hypertension: theory and therapy.
        Semin Nephrol. 2014; 34: 550-559
        • Malfroy B.
        • Kado-Fong H.
        • Gros C.
        • et al.
        Molecular cloning and amino acid sequence of rat kidney aminopeptidase M: a member of a super family of zinc-metallohydrolases.
        Biochem Biophys Res Commun. 1989; 161: 236-241
        • Wu Q.
        • Lahti J.M.
        • Air G.M.
        • Burrows P.D.
        • Cooper M.D.
        Molecular cloning of the murine BP-1/6C3 antigen: a member of the zinc-dependent metallopeptidase family.
        Proc Natl Acad Sci U S A. 1990; 87: 993-997
        • Vazeux G.
        • Wang J.
        • Corvol P.
        • Llorens-Cortès C.
        Identification of glutamate residues essential for catalytic activity and zinc coordination in aminopeptidase A.
        J Biol Chem. 1996; 271: 9069-9074
        • Wilk S.
        • Healy D.P.
        Glutamyl aminopeptidase (aminopeptidase A), the BP-1/6C3 antigen.
        Adv Neuroimmunol. 1993; 3: 195-207
        • Palmieri F.E.
        • Bausback H.H.
        • Ward P.E.
        Metabolism of vasoactive peptides by vascular endothelium and smooth muscle aminopeptidase M.
        Biochem Pharmacol. 1989; 38: 173-180
        • Hersh L.B.
        • Aboukhair N.
        • Watson S.
        Immunohistochemical localization of aminopeptidase M in rat brain and periphery: relationship of enzyme localization and enkephalin metabolism.
        Peptides. 1987; 8: 523-532
        • Healy D.P.
        • Wilk S.
        Localization of immunoreactive glutamyl aminopeptidase in rat brain. II. Distribution and correlation with angiotensin II.
        Brain Res. 1993; 606: 295-303
        • Troyanovskaya M.
        • Jayaraman G.
        • Song L.
        • Healy D.P.
        • Aminopeptidase -A.I.
        CDNA cloning and expression and localization in rat tissues.
        Am J Physiol Regul Integr Comp Physiol. 2000; 278: R413-R424
        • Zini S.
        • Masdehors P.
        • Lenkei Z.
        • et al.
        Aminopeptidase A: distribution in rat brain nuclei and increased activity in spontaneously hypertensive rats.
        Neuroscience. 1997; 78: 1187-1193
        • de Mota N.
        • Iturrioz X.
        • Claperon C.
        • et al.
        Human brain aminopeptidase A: biochemical properties and distribution in brain nuclei.
        J Neurochem. 2008; 106: 416-428
        • Lind R.W.
        • Ganten D.
        Angiotensin.
        in: Björklund A. Hökfelt T. Kuhar M.J. Handbook of Chemical Neuroanatomy. Vol. 9, Neuropeptide Receptors in the CNS. Elsevier, Amsterdam1990: 165-286
        • Rozenfeld R.
        • Iturrioz X.
        • Maigret B.
        • Llorens-Cortes C.
        Contribution of molecular modeling and site-directed mutagenesis to the identification of two structural residues, Arg-220 and Asp-227, in aminopeptidase A.
        J Biol Chem. 2002; 277: 29242-29252
        • Chauvel E.N.
        • Llorens-Cortès C.
        • Coric P.
        • et al.
        Differential inhibition of aminopeptidase A and aminopeptidase N by new beta-amino thiols.
        J Med Chem. 1994; 37: 2950-2957
        • Fournié-Zaluski M.C.
        • Coric P.
        • Turcaud S.
        • et al.
        Potent and systemically active aminopeptidase N inhibitors designed from active-site investigation.
        J Med Chem. 1992; 35: 1259-1266
        • Reaux A.
        • de Mota N.
        • Zini S.
        • et al.
        PC18, a specific aminopeptidase N inhibitor, induces vasopressin release by increasing the half-life of brain angiotensin III.
        Neuroendocrinology. 1999; 69: 370-376
        • Fournie-Zaluski M.-C.
        • Fassot C.
        • Valentin B.
        • et al.
        Brain renin-angiotensin system blockade by systemically active aminopeptidase A inhibitors: a potential treatment of salt-dependent hypertension.
        Proc Natl Acad Sci U S A. 2004; 101: 7775-7780
        • Zini S.
        • Fournie-Zaluski M.C.
        • Chauvel E.
        • et al.
        Identification of metabolic pathways of brain angiotensin II and III using specific aminopeptidase inhibitors: predominant role of angiotensin III in the control of vasopressin release.
        Proc Natl Acad Sci U S A. 1996; 93: 11968-11973
        • Wright J.W.
        • Tamura-Myers E.
        • Wilson W.L.
        • et al.
        Conversion of brain angiotensin II to angiotensin III is critical for pressor response in rats.
        Am J Physiol Regul Integr Comp Physiol. 2003; 284: R725-R733
        • Harding J.W.
        • Jensen L.L.
        • Hanesworth J.M.
        • et al.
        Release of angiotensins in paraventricular nucleus of rat in response to physiological and chemical stimuli.
        Am J Physiol. 1992; 262: F17-23
        • Wright J.W.
        • Harding J.W.
        Important role for angiotensin III and IV in the brain renin-angiotensin system.
        Brain Res Brain Res Rev. 1997; 25: 96-124
        • Wright J.W.
        • Morseth S.L.
        • Abhold R.H.
        • Harding J.W.
        Pressor action and dipsogenicity induced by angiotensin II and III in rats.
        Am J Physiol. 1985; 249: R514-R521
        • Campagnole-Santos M.J.
        • Heringer S.B.
        • Batista E.N.
        • Khosla M.C.
        • Santos R.A.
        Differential baroreceptor reflex modulation by centrally infused angiotensin peptides.
        Am J Physiol. 1992; 263: R89-94
        • Wright J.W.
        • Mizutani S.
        • Murray C.E.
        • Amir H.Z.
        • Harding J.W.
        Aminopeptidase-induced elevations and reductions in blood pressure in the spontaneously hypertensive rat.
        J Hypertens. 1990; 8: 969-974
        • Song L.
        • Wilk S.
        • Healy D.P.
        Aminopeptidase A antiserum inhibits intracerebroventricular angiotensin II–induced dipsogenic and pressor responses.
        Brain Res. 1997; 744: 1-6
        • de Gasparo M.
        • Catt K.J.
        • Inagami T.
        • Wright J.W.
        • Unger T.
        International Union of Pharmacology. XXIII. The angiotensin II receptors.
        Pharmacol Rev. 2000; 52: 415-472
        • Pang X.
        • Shimizu A.
        • Kurita S.
        • et al.
        Novel therapeutic role for dipeptidyl peptidase III in the treatment of hypertension.
        Hypertension. 2016; 68: 630-641
        • Albiston A.L.
        • McDowall S.G.
        • Matsacos D.
        • et al.
        Evidence that the angiotensin IV [AT(4)] receptor is the enzyme insulin-regulated aminopeptidase.
        J Biol Chem. 2001; 276: 48623-48626
        • Chappell M.C.
        Emerging evidence for a functional angiotensin-converting enzyme 2-angiotensin-(1-7)–Mas receptor axis: more than regulation of blood pressure?.
        Hypertension. 2007; 50: 596-599
        • Grobe N.
        • Elased K.M.
        • Cool D.R.
        • Morris M.
        Mass spectrometry for the molecular imaging of angiotensin metabolism in kidney.
        Am J Physiol Endocrinol Metab. 2012; 302: E1016-1024
        • Vazeux G.
        • Iturrioz X.
        • Corvol P.
        • Llorens-Cortès C.
        A tyrosine residue essential for catalytic activity in aminopeptidase A.
        Biochem J. 1997; 327: 883-889
        • Fournié-Zaluski M.C.
        • Coric P.
        • Turcaud S.
        • et al.
        “Mixed inhibitor-prodrug” as a new approach toward systemically active inhibitors of enkephalin-degrading enzymes.
        J Med Chem. 1992; 35: 2473-2481
        • Bodineau L.
        • Frugière A.
        • Marc Y.
        • et al.
        Orally active aminopeptidase A inhibitors reduce blood pressure: a new strategy for treating hypertension.
        Hypertension. 2008; 51: 1318-1325
        • Marc Y.
        • Gao J.
        • Balavoine F.
        • et al.
        Central antihypertensive effects of orally active aminopeptidase A inhibitors in spontaneously hypertensive rats.
        Hypertension. 2012; 60: 411-418
        • Marc Y.
        • Hmazzou R.
        • Balavoine F.
        • Flahault A.
        • Llorens-Cortes C.
        Central antihypertensive effects of chronic treatment with RB150: an orally active aminopeptidase A inhibitor in deoxycorticosterone acetate-salt rats.
        J Hypertens. 2018; 36: 641-650
        • Huang B.S.
        • Ahmad M.
        • White R.A.
        • et al.
        Inhibition of brain angiotensin III attenuates sympathetic hyperactivity and cardiac dysfunction in rats post–myocardial infarction.
        Cardiovasc Res. 2013; 97: 424-431
        • Gao J.
        • Marc Y.
        • Iturrioz X.
        • et al.
        A new strategy for treating hypertension by blocking the activity of the brain renin-angiotensin system with aminopeptidase A inhibitors.
        Clin Sci. 2014; 127: 135-148
        • Balavoine F.
        • Azizi M.
        • Bergerot D.
        • et al.
        Randomised, double-blind, placebo-controlled, dose-escalating phase I study of QGC001, a centrally acting aminopeptidase a inhibitor prodrug.
        Clin Pharmacokinet. 2014; 53: 385-395
        • Balavoine F.
        • Azizi M.
        • Bergerot D.
        • et al.
        Safety, tolerability, pharmacokinetics and pharmacodynamics of multiple ascending doses of QGC001, a centrally-acting aminopeptidase A inhibitor, in healthy volunteers.
        J Hypertens. 2014; 32: e82
        • Azizi M.
        • Courand P.-Y.
        • Denolle T.
        • et al.
        A pilot double-blind randomized placebo-controlled crossover pharmacodynamic study of the centrally active aminopeptidase A inhibitor, firibastat, in hypertension.
        J Hypertens. 2019; 37: 1722-1728
        • Ferdinand K.C.
        • Balavoine F.
        • Besse B.
        • et al.
        • NEW HOPE Investigators
        Efficacy and safety of firibastat, a first-in-class brain aminopeptidase A inhibitor, in hypertensive overweight patients of multiple ethnic origins.
        Circulation. 2019; 140: 138-146
        • Leon S.J.
        • Tangri N.
        The use of renin-angiotensin system inhibitors in patients with chronic kidney disease.
        Can J Cardiol. 2019; 35: 1220-1227
        • Ferdinand K.C.
        • Harrison D.
        • Johnson A.
        The NEW-HOPE study and emerging therapies for difficult-to-control and resistant hypertension.
        Prog Cardiovasc Dis. 2020;
        • Quantum Genomics
        Quantum Genomics initiates its pivotal phase III FRESH trial in difficult-to-treat and resistant hypertension. December 12, 2019. Available at:.
        • Hajra A.
        • Ujjawal A.
        • Sud K.
        • Chakraborty S.
        • Bandyopadhyay D.
        Sacubitril/valsartan averts post–myocardial infarction ventricular remodeling and preserves heart function.
        Int J Cardiol Heart Vasc. 2019; 22: 218-219
        • McMurray J.J.V.
        • Solomon S.D.
        • Inzucchi S.E.
        • et al.
        DAPA-HF Trial Committees and Investigators. Dapagliflozin in patients with heart failure and reduced ejection fraction.
        N Engl J Med. 2019; 381: 1995-2008
        • Sawa Y.
        • Saito M.
        • Ishida N.
        • et al.
        Pretreatment with KGA-2727, a selective SGLT1 inhibitor, is protective against myocardial infarction–induced ventricular remodeling and heart failure in mice.
        J Pharmacol Sci. 2020; 142: 16-25
        • Zhang Z.-H.
        • Francis J.
        • Weiss R.M.
        • Felder R.B.
        The renin-angiotensin-aldosterone system excites hypothalamic paraventricular nucleus neurons in heart failure.
        Am J Physiol Heart Circ Physiol. 2002; 283: H423-433
        • Westcott K.V.
        • Bing S.
        • Huang B.S.
        • Leenen F.H.H.
        Brain renin–angiotensin–aldosterone systemand ventricular remodeling after myocardial infarct: a review.
        Can. J. Physiol. Pharmacol. 2009; 87: 979-988
        • Boitard S.E.
        • Marc Y.
        • Keck M.
        • et al.
        Brain renin-angiotensin system blockade with orally active aminopeptidase A inhibitor prevents cardiac dysfunction after myocardial infarction in mice.
        J Mol Cell Cardiol. 2019; 127: 215-222
        • Leenen F.H.H.
        • Ahmad M.
        • Marc Y.
        • Llorens-Cortes C.
        Specific inhibition of brain angiotensin III formation as a new strategy for prevention of heart failure after myocardial infarction.
        J Cardiovasc Pharmacol. 2019; 73: 82-91
        • Quantum Genomics
        Firibastat or ramipril after acute myocardial infarction for prevention of left ventricular dysfunction (QUORUM).
        (Available at:)
        • Lal A.
        • Veinot J.
        • Ganten D.
        • Leenen F.
        Prevention of cardiac remodeling after myocardial infarction in transgenic rats deficient in brain angiotensinogen.
        J Mol Cell Cardiol. 2005; 39: 521-529