Advertisement
Canadian Journal of Cardiology

Pediatric Dyslipidemia—Beyond Familial Hypercholesterolemia

Published:March 23, 2020DOI:https://doi.org/10.1016/j.cjca.2020.03.020

      Abstract

      Dyslipidemia is seen with increasing prevalence in young Canadians, mainly mild to moderate hypertriglyceridemia secondary to obesity. This review focuses on pediatric dyslipidemias excluding familial hypercholesterolemia (FH), but including both severe and mild to moderate hypertriglyceridemia, combined hyperlipidemia, and elevated lipoprotein(a) [Lp(a)]. We suggest that for Canadian children and adolescents with dyslipidemia, atherosclerotic cardiovascular disease (ASCVD) risk assessment should include both low-density lipoprotein cholesterol and triglyceride measurement. To further stratify risk, determination of non–high-density lipoprotein cholesterol is recommended, for both its ability to predict ASCVD and convenience for the patient because fasting is not required. Similarly, apolipoprotein B measurement (fasting or nonfasting), where available, can be helpful. Lp(a) measurement should not be routine in childhood, but it can be considered in special circumstances. After ruling out secondary causes, the foundation for management of pediatric dyslipidemia includes weight regulation, optimizing diet, and increasing activity level. At present, randomized clinical trial data to guide pharmaceutical management of pediatric hypertriglyceridemia or other non-FH pediatric dyslipidemias are scarce. Pharmaceutical management should be reserved for special situations in which risk of complications such as acute pancreatitis or ASCVD over the intermediate term is high and conservative lifestyle-based interventions have been ineffective.

      Résumé

      Nous observons une prévalence accrue de la dyslipidémie chez les jeunes canadiens, principalement une hypertriglycéridémie légère à modérée secondaire à l’obésité. Cette revue porte sur les dyslipidémies de l’enfant, dont l’hypertriglycéridémie grave et l’hypertriglycéridémie légère à modérée, l’hyperlipidémie combinée et les concentrations élevées de lipoprotéines (a) [Lp(a)], mais non de l’hypercholestérolémie familiale (HF). Nous suggérons que l’évaluation des risques de maladies cardiovasculaires athérosclérotiques (MCVAS) chez les enfants et les adolescents canadiens atteints de dyslipidémies porte notamment sur le dosage des lipoprotéines de faible densité et des triglycérides. Pour une stratification du risque plus poussée, la détermination du cholestérol à lipoprotéines de densité non élevée est recommandée en raison de sa capacité à prédire les MCVAS et de sa commodité puisque les patients n’ont pas à faire de jeûne. De façon similaire, le dosage des apolipoprotéines B (à jeun ou non à jeun), si possible, peut être utile. Le dosage des Lp(a) ne devrait pas être réalisé de façon systématique durant l’enfance, mais il peut être considéré dans des circonstances particulières. Après l’exclusion des causes secondaires, les fondements de la prise en charge des dyslipidémies de l’enfant sont les suivants : la régulation pondérale, l’optimisation du régime alimentaire et l’augmentation du niveau d’activité physique. À l’heure actuelle, les données d’essais cliniques à répartition aléatoire qui permettent d’orienter la prise en charge pharmaceutique de l’hypertriglycéridémie de l’enfant ou d’autres dyslipidémies non-HF sont insuffisantes. La prise en charge pharmacologique devrait être réservée à des situations particulières où le risque de complications telles que la pancréatite aiguë ou les MCVAS à moyen terme est élevé et où les interventions prudentes axées sur le mode de vie se sont révélées inefficaces.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lusis A.J.
        Atherosclerosis.
        Nature. 2000; 407: 233-241
        • Coakley J.C.
        Lipids in children and links to adult vascular disease.
        Clin Biochem Rev. 2018; 39: 65-76
        • Hegele R.A.
        Plasma lipoproteins: genetic influences and clinical implications.
        Nat Rev Genet. 2009; 10: 109-121
        • Hegele R.A.
        • Boren J.
        • Ginsberg H.N.
        • et al.
        Rare dyslipidaemias, from phenotype to genotype to management: a European Atherosclerosis Society task force consensus statement.
        Lancet Diabetes Endocrinol. 2020; 8: 50-67
        • Vekic J.
        • Zeljkovic A.
        • Stefanovic A.
        • Jelic-Ivanovic Z.
        • Spasojevic-Kalimanovska V.
        Obesity and dyslipidemia.
        Metabolism. 2019; 92: 71-81
        • Packard C.J.
        Strategies to alter the trajectory of atherosclerotic cardiovascular disease.
        Curr Opin Lipidol. 2019; 30: 438-445
      1. Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents: summary report.
        Pediatrics. 2011; 128: S213-S256
        • Bibbins-Domingo K.
        • Grossman D.C.
        • et al.
        • Force USPST
        Screening for lipid disorders in children and adolescents: US Preventive Services task force recommendation statement.
        JAMA. 2016; 316: 625-633
        • Wiegman A.
        • Gidding S.S.
        • Watts G.F.
        • et al.
        Familial hypercholesterolaemia in children and adolescents: gaining decades of life by optimizing detection and treatment.
        Eur Heart J. 2015; 36: 2425-2437
        • Brunham L.R.
        • Ruel I.
        • Aljenedil S.
        • et al.
        Canadian Cardiovascular Society position statement on familial hypercholesterolemia: update 2018.
        Can J Cardiol. 2018; 34: 1553-1563
        • Hegele R.A.
        • Ginsberg H.N.
        • Chapman M.J.
        • et al.
        The polygenic nature of hypertriglyceridaemia: implications for definition, diagnosis, and management.
        Lancet Diabetes Endocrinol. 2014; 2: 655-666
        • Brahm A.J.
        • Hegele R.A.
        Chylomicronaemia—current diagnosis and future therapies.
        Nat Rev Endocrinol. 2015; 11: 352-362
        • Brahm A.
        • Hegele R.A.
        Hypertriglyceridemia.
        Nutrients. 2013; 5: 981-1001
        • Baass A.
        • Paquette M.
        • Bernard S.
        • Hegele R.A.
        Familial chylomicronemia syndrome: an under-recognized cause of severe hypertriglyceridaemia.
        J Intern Med. 2019;
        • Laufs U.
        • Parhofer K.G.
        • Ginsberg H.N.
        • Hegele R.A.
        Clinical review on triglycerides.
        Eur Heart J. 2020; 41: 99-109c
        • Sandhu S.
        • Al-Sarraf A.
        • Taraboanta C.
        • Frohlich J.
        • Francis G.A.
        Incidence of pancreatitis, secondary causes, and treatment of patients referred to a specialty lipid clinic with severe hypertriglyceridemia: a retrospective cohort study.
        Lipids Health Dis. 2011; 10: 157
        • Berberich A.J.
        • Ziada A.
        • Zou G.Y.
        • Hegele R.A.
        Conservative management in hypertriglyceridemia-associated pancreatitis.
        J Intern Med. 2019; 286: 644-650
        • Hegele R.A.
        • Berberich A.J.
        • Ban M.R.
        • et al.
        Clinical and biochemical features of different molecular etiologies of familial chylomicronemia.
        J Clin Lipidol. 2018; 12: 920-927.e924
        • Rahalkar A.R.
        • Giffen F.
        • Har B.
        • et al.
        Novel LPL mutations associated with lipoprotein lipase deficiency: two case reports and a literature review.
        Can J Physiol Pharmacol. 2009; 87: 151-160
        • Berberich A.J.
        • Hegele R.A.
        The role of genetic testing in dyslipidaemia.
        Pathology. 2019; 51: 184-192
        • Chait A.
        • Eckel R.H.
        The chylomicronemia syndrome is most often multifactorial: a narrative review of causes and treatment.
        Ann Intern Med. 2019; 170: 626-634
        • Hegele R.A.
        • Tsimikas S.
        Lipid-lowering agents.
        Circ Res. 2019; 124: 386-404
        • Witztum J.L.
        • Gaudet D.
        • Freedman S.D.
        • et al.
        Volanesorsen and triglyceride levels in familial chylomicronemia syndrome.
        N Engl J Med. 2019; 381: 531-542
        • Gaudet D.
        • Gipe D.A.
        • Pordy R.
        • et al.
        ANGPTL3 inhibition in homozygous familial hypercholesterolemia.
        N Engl J Med. 2017; 377: 296-297
        • Hegele R.A.
        • Joy T.R.
        • Al-Attar S.A.
        • Rutt B.K.
        Lipodystrophies: windows on adipose biology and metabolism.
        J Lipid Res. 2007; 48: 1433-1444
        • Lima J.G.
        • Nobrega L.H.C.
        • Lima N.N.
        • et al.
        Causes of death in patients with Berardinelli-Seip congenital generalized lipodystrophy.
        PLoS One. 2018; 13e0199052
        • Ellingwood S.S.
        • Cheng A.
        Biochemical and clinical aspects of glycogen storage diseases.
        J Endocrinol. 2018; 238: R131-R141
        • Dron J.S.
        • Hegele R.A.
        Polygenic influences on dyslipidemias.
        Curr Opin Lipidol. 2018; 29: 133-143
        • Dron J.S.
        • Wang J.
        • Cao H.
        • et al.
        Severe hypertriglyceridemia is primarily polygenic.
        J Clin Lipidol. 2019; 13: 80-88
        • Teslovich T.M.
        • Musunuru K.
        • Smith A.V.
        • et al.
        Biological, clinical and population relevance of 95 loci for blood lipids.
        Nature. 2010; 466: 707-713
        • Dron J.S.
        • Hegele R.A.
        The evolution of genetic-based risk scores for lipids and cardiovascular disease.
        Curr Opin Lipidol. 2019; 30: 71-81
        • Stahel P.
        • Xiao C.
        • Hegele R.A.
        • Lewis G.F.
        Polygenic risk for hypertriglyceridemia can mimic a major monogenic mutation.
        Ann Intern Med. 2017; 167: 360-361
        • Hegele R.A.
        Editorial: designing targeted sequencing panels for dyslipidemia.
        Curr Opin Lipidol. 2019; 30: 53-55
        • Berberich A.J.
        • Hegele R.A.
        Secondary causes of chylomicronemia: defining the underside of the iceberg.
        J Intern Med. 2018; 283: 405-407
        • Paquette M.
        • Bernard S.
        • Hegele R.A.
        • Baass A.
        Chylomicronemia: Differences between familial chylomicronemia syndrome and multifactorial chylomicronemia.
        Atherosclerosis. 2019; 283: 137-142
        • Lewis G.F.
        • Xiao C.
        • Hegele R.A.
        Hypertriglyceridemia in the genomic era: a new paradigm.
        Endocr Rev. 2015; 36: 131-147
        • Genest Jr., J.
        Familial combined hyperlipoproteinemia.
        Can J Cardiol. 1991; 7: X-XI
        • Brahm A.J.
        • Hegele R.A.
        Combined hyperlipidemia: familial but not (usually) monogenic.
        Curr Opin Lipidol. 2016; 27: 131-140
        • van Greevenbroek M.M.
        • Stalenhoef A.F.
        • de Graaf J.
        • Brouwers M.C.
        Familial combined hyperlipidemia: from molecular insights to tailored therapy.
        Curr Opin Lipidol. 2014; 25: 176-182
        • Cortner J.A.
        • Coates P.M.
        • Liacouras C.A.
        • Jarvik G.P.
        Familial combined hyperlipidemia in children: clinical expression, metabolic defects, and management.
        Curr Probl Pediatr. 1994; 24: 295-305
        • Krauss R.M.
        Dense low density lipoproteins and coronary artery disease.
        Am J Cardiol. 1995; 75: 53B-57B
        • Schaefer E.J.
        • Geller A.S.
        • Endress G.
        The biochemical and genetic diagnosis of lipid disorders.
        Curr Opin Lipidol. 2019; 30: 56-62
        • Hegele R.A.
        • Ban M.R.
        • Hsueh N.
        • et al.
        A polygenic basis for four classical Fredrickson hyperlipoproteinemia phenotypes that are characterized by hypertriglyceridemia.
        Hum Mol Genet. 2009; 18: 4189-4194
        • Johansen C.T.
        • Wang J.
        • Lanktree M.B.
        • et al.
        An increased burden of common and rare lipid-associated risk alleles contributes to the phenotypic spectrum of hypertriglyceridemia.
        Arterioscler Thromb Vasc Biol. 2011; 31: 1916-1926
        • Johansen C.T.
        • Hegele R.A.
        Genetic bases of hypertriglyceridemic phenotypes.
        Curr Opin Lipidol. 2011; 22: 247-253
        • de Ferranti S.D.
        Familial hypercholesterolemia in children and adolescents: a clinical perspective.
        J Clin Lipidol. 2015; 9: S11-S19
        • Dron J.S.
        • Hegele R.A.
        Genetics of triglycerides and the risk of atherosclerosis.
        Curr Atheroscler Rep. 2017; 19: 31
        • Bhatt D.L.
        • Steg P.G.
        • Miller M.
        • et al.
        Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia.
        N Engl J Med. 2019; 380: 11-22
        • Boffa M.B.
        • Koschinsky M.L.
        The journey toward understanding lipoprotein(a) and cardiovascular disease risk: are we there yet?.
        Curr Opin Lipidol. 2018; 29: 259-267
        • Wilson D.P.
        • Jacobson T.A.
        • Jones P.H.
        • et al.
        Use of lipoprotein(a) in clinical practice: a biomarker whose time has come. A scientific statement from the National Lipid Association.
        J Clin Lipidol. 2019; 13: 374-392
        • Boffa M.B.
        • Stranges S.
        • Klar N.
        • et al.
        Lipoprotein(a) and secondary prevention of atherothrombotic events: a critical appraisal.
        J Clin Lipidol. 2018; 12: 1358-1366
        • Boffa M.B.
        • Koschinsky M.L.
        Lipoprotein (a): truly a direct prothrombotic factor in cardiovascular disease?.
        J Lipid Res. 2016; 57: 745-757
        • Scipione C.A.
        • Koschinsky M.L.
        • Boffa M.B.
        Lipoprotein(a) in clinical practice: new perspectives from basic and translational science.
        Crit Rev Clin Lab Sci. 2018; 55: 33-54
        • Tsimikas S.
        • Karwatowska-Prokopczuk E.
        • Gouni-Berthold I.
        • et al.
        Lipoprotein(a) reduction in persons with cardiovascular disease.
        N Engl J Med. 2020; 382: 244-255
        • Tsimikas S.
        RNA-targeted therapeutics for lipid disorders.
        Curr Opin Lipidol. 2018; 29: 459-466
        • Lozano P.
        • Henrikson N.B.
        • Dunn J.
        • et al.
        Lipid screening in childhood and adolescence for detection of familial hypercholesterolemia: a systematic evidence review for the U.S. Preventive Services Task Force.
        Agency for Healthcare Research and Quality, Rockville, MDAugust 2016 (Report no. 14-05204-EF-2)
        • Semova I.
        • Levenson A.E.
        • Krawczyk J.
        • et al.
        Type 1 diabetes is associated with an increase in cholesterol absorption markers but a decrease in cholesterol synthesis markers in a young adult population.
        J Clin Lipidol. 2019; 13: 940-946
        • Pollex R.L.
        • Hegele R.A.
        Genetic determinants of the metabolic syndrome.
        Nat Clin Pract Cardiovasc Med. 2006; 3: 482-489
        • Lanktree M.B.
        • Hassell R.G.
        • Lahiry P.
        • Hegele R.A.
        Phenomics: expanding the role of clinical evaluation in genomic studies.
        J Investig Med. 2010; 58: 700-706
        • Valérie M.
        Promoting optimal monitoring of child growth in Canada: using the new World Health Organization growth charts.
        Paediatr Child Health. 2010; 15: 77-79
        • Tamayo C.
        • Manlhiot C.
        • Patterson K.
        • Lalani S.
        • McCrindle B.W.
        Longitudinal evaluation of the prevalence of overweight/obesity in children with congenital heart disease.
        Can J Cardiol. 2015; 31: 117-123
        • Stahel P.
        • Xiao C.
        • Hegele R.A.
        • Lewis G.F.
        The atherogenic dyslipidemia complex and novel approaches to cardiovascular disease prevention in diabetes.
        Can J Cardiol. 2018; 34: 595-604
        • McCrindle B.W.
        Cardiovascular consequences of childhood obesity.
        Can J Cardiol. 2015; 31: 124-130
        • Poirier P.
        • McCrindle B.W.
        • Leiter L.A.
        Obesity—it must not remain the neglected risk factor in cardiology.
        Can J Cardiol. 2015; 31: 105-108
        • Despres J.P.
        Abdominal obesity and cardiovascular disease: is inflammation the missing link?.
        Can J Cardiol. 2012; 28: 642-652
        • Tchernof A.
        • Despres J.P.
        Pathophysiology of human visceral obesity: an update.
        Physiol Rev. 2013; 93: 359-404
        • Lewis G.F.
        Devastating metabolic consequences of a life of plenty: focus on the dyslipidemia of overnutrition.
        Clin Invest Med. 2013; 36: E242-247
        • Daniels S.R.
        Screening and treatment of dyslipidemias in children and adolescents.
        Horm Res Paediatr. 2011; 76: 47-51
        • Urbina E.M.
        • de Ferranti S.D.
        Lipid screening in children and adolescents.
        JAMA. 2016; 316: 589-591
        • Richardson L.
        • Paulis W.D.
        • van Middelkoop M.
        • Koes B.W.
        An overview of national clinical guidelines for the management of childhood obesity in primary care.
        Prev Med. 2013; 57: 448-455
        • Chung S.
        Update on low-density lipoprotein cholesterol quantification.
        Curr Opin Lipidol. 2019; 30: 273-283
        • Ference B.A.
        • Ginsberg H.N.
        • Graham I.
        • et al.
        Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel.
        Eur Heart J. 2017; 38: 2459-2472
        • Defesche J.C.
        • Gidding S.S.
        • Harada-Shiba M.
        • et al.
        Familial hypercholesterolaemia.
        Nat Rev Dis Primers. 2017; 3: 17093
        • Nordestgaard B.G.
        • Chapman M.J.
        • Humphries S.E.
        • et al.
        Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: consensus statement of the European Atherosclerosis Society.
        Eur Heart J. 2013; 34 (3478-90a)
        • Soran H.
        • Ho J.H.
        • Adam S.
        • Durrington P.N.
        Non-HDL cholesterol should not generally replace LDL cholesterol in the management of hyperlipidaemia.
        Curr Opin Lipidol. 2019; 30: 263-272
        • Wilkins J.T.
        • Gidding S.S.
        • Robinson J.G.
        Can atherosclerosis be cured?.
        Curr Opin Lipidol. 2019; 30: 477-484
        • Anderson T.J.
        • Gregoire J.
        • Pearson G.J.
        • et al.
        2016 Canadian Cardiovascular Society guidelines for the management of dyslipidemia for the prevention of cardiovascular disease in the adult.
        Can J Cardiol. 2016; 32: 1263-1282
        • Brunton L.L.
        • Heasley L.E.
        cAMP export and its regulation by prostaglandin A1.
        Methods Enzymol. 1988; 159: 83-93
        • Diffenderfer M.R.
        • Schaefer E.J.
        The composition and metabolism of large and small LDL.
        Curr Opin Lipidol. 2014; 25: 221-226
        • Gerber P.A.
        • Nikolic D.
        • Rizzo M.
        Small, dense LDL: an update.
        Curr Opin Cardiol. 2017; 32: 454-459
        • Sniderman A.D.
        How, when, and why to use apolipoprotein B in clinical practice.
        Am J Cardiol. 2002; 90: 48i-54i
        • Sniderman A.D.
        Apolipoprotein B and apolipoprotein AI as predictors of coronary artery disease.
        Can J Cardiol. 1988; 4: 24A-30A
        • Wilkins J.T.
        • Li R.C.
        • Sniderman A.
        • Chan C.
        • Lloyd-Jones D.M.
        Discordance between apolipoprotein B and LDL-cholesterol in young adults predicts coronary artery calcification: the CARDIA study.
        J Am Coll Cardiol. 2016; 67: 193-201
        • Robinson J.G.
        • Williams K.J.
        • Gidding S.
        • et al.
        Eradicating the burden of atherosclerotic cardiovascular disease by lowering apolipoprotein B lipoproteins earlier in life.
        J Am Heart Assoc. 2018; 7e009778