Advertisement
Canadian Journal of Cardiology

Physical Activity Promotion in Pediatric Congenital Heart Disease: Are We Running Late?

      Abstract

      Low levels of habitual physical activity in children and adolescents with congenital heart disease (CHD) leads to various negative health outcomes, yet review of the literature indicates that many physicians, caregivers, and patients restrict physical activity owing to safety concerns. There is no evidence supporting absolute restriction of physical activity in pediatric patients with CHD; in fact, physically active lifestyles are as important for pediatric patients living with CHD as for the general population. To encourage long-term maintenance of physically active lifestyles, physical activity counselling and exercise prescription should be started early in childhood and be a core component of every patient encounter. Physical activity counselling should include clear messaging from physicians about recommended physical activities—not just restrictions—and a personalised written exercise prescription for the patient and family. Regular follow-up is essential to ensure adherence to recommendations, monitor patient responses to the increased physical activity level, and long-term surveillance. This review discusses the importance of a physically active lifestyle in children and adolescents with and without surgically repaired CHD and hypertrophic cardiomyopathy, excluding those with electrical abnormalities and channelopathies. It outlines gaps in knowledge regarding best practices for physical activity promotion in these patient populations, and provides recommendations on how to include physical activity promotion and exercise prescription in clinical practice based on existing literature. An important role for clinicians is identified, because the type of messaging they provide regarding physical activity will have a major impact on patients’ and families’ decisions to adopt an active lifestyle.

      Résumé

      Le manque d’activité physique régulière chez les enfants et les adolescents présentant une cardiopathie congénitale nuit de différentes manières à la santé et pourtant, une revue de la littérature révèle que beaucoup de médecins, d’aidants et de patients limitent l’activité physique pour des raisons de santé. Rien n’indique pourtant qu’il soit nécessaire d’interdire l’activité physique chez les enfants présentant une cardiopathie congénitale; au contraire, un mode de vie physiquement actif est aussi important pour ces patients que pour la population générale. Pour favoriser l’adoption à long terme d’un mode de vie actif, il convient de mettre en place un programme de counseling visant à encourager l’instauration d’un régime d’exercice physique tôt durant l’enfance; cette intervention devrait faire partie du traitement de tous les patients vus en consultation. Le counseling sur l’activité physique doit transmettre des messages clairs quant aux recommandations en matière d’activité physique – et non seulement quant aux restrictions; le médecin devrait remettre par écrit un plan d’activité physique personnalisé au patient et à sa famille. Un suivi régulier est essentiel pour assurer l’adhésion aux recommandations, surveiller les effets de l’augmentation de l’activité physique et exercer une surveillance à long terme. Nous discutons ici de l’importance d’un mode de vie physiquement actif pour les enfants et les adolescents atteints d’une cardiopathie congénitale ou d’une cardiomyopathie hypertrophique (ayant ou non fait l’objet d’une réparation par voie chirurgicale), exception faite de ceux qui présentent des anomalies électriques ou une canalopathie. Nous soulignons en outre le manque de connaissance des pratiques exemplaires en matière de promotion de l’activité physique auprès de ces populations de patients et, en nous fondant sur la littérature publiée, nous formulons des recommandations sur la façon d’inclure dans la pratique clinique la promotion de l’activité physique et la prescription d’un régime d’exercice physique. Les cliniciens ont un rôle important à jouer à cet égard, parce que la teneur des messages qu’ils transmettent au sujet de l’activité physique aura une grande incidence sur les décisions du patient et de sa famille quant à l’adoption d’un mode de vie actif.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Longmuir P.E.
        • Brothers J.A.
        • de Ferranti S.D.
        • et al.
        Promotion of physical activity for children and adults with congenital heart disease: a scientific statement from the American Heart Association.
        Circulation. 2013; 127: 2147-2159
        • Takken T.
        • Giardini A.
        • Reybrouck T.
        • et al.
        Recommendations for physical activity, recreation sport, and exercise training in paediatric patients with congenital heart disease: a report from the Exercise, Basic & Translational Research Section of the European Association of Cardiovascular Prevention and Rehabilitation, the European Congenital Heart and Lung Exercise Group, and the Association for European Paediatric Cardiology.
        Eur J Prev Cardiol. 2012; 19: 1034-1065
        • Sothern M.S.
        • Loftin M.
        • Suskind R.M.
        • Udall J.N.
        • Blecker U.
        The health benefits of physical activity in children and adolescents: implications for chronic disease prevention.
        Eur J Pediatr. 1999; 158: 271-274
        • Dean P.N.
        • Gillespie C.W.
        • Greene E.A.
        • et al.
        Sports participation and quality of life in adolescents and young adults with congenital heart disease.
        Congenit Heart Dis. 2015; 10: 169-179
        • Diller G.P.
        • Dimopoulos K.
        • Okonko D.
        • et al.
        Exercise intolerance in adult congenital heart disease: comparative severity, correlates, and prognostic implication.
        Circulation. 2005; 112: 828-835
      1. Lopez J, Voss C, Kuan M, et al. Physical activity is associated with better vascular function in children and adolescents with congenital heart disease [e-pub before print]. Can J Cardiol. https://doi.org/10.1016/j.cjca.2019.12.019.

        • Stefan M.A.
        • Hopman W.M.
        • Smythe J.F.
        Effect of activity restriction owing to heart disease on obesity.
        Arch Pediatr Adolesc Med. 2005; 159: 477-481
        • Vaccaro P.
        • Galioto F.M.
        • Bradley L.M.
        • Vaccaro J.
        Effect of physical training on exercise tolerance of children following surgical repair of D-transposition of the great arteries.
        J Sports Med Phys Fitness. 1987; 27: 443-448
        • Longmuir P.E.
        • McCrindle B.W.
        Physical activity restrictions for children after the Fontan operation: disagreement between parent, cardiologist, and medical record reports.
        Am Heart J. 2009; 157: 853-859
        • Moons P.
        • Bovijn L.
        • Budts W.
        • Belmans A.
        • Gewillig M.
        Temporal trends in survival to adulthood among patients born with congenital heart disease from 1970 to 1992 in Belgium.
        Circulation. 2010; 122: 2264-2272
        • Tarride J.E.
        • Lim M.
        • DesMeules M.
        • et al.
        A review of the cost of cardiovascular disease.
        Can J Cardiol. 2009; 25: 195-202
        • Katzmarzyk P.T.
        • Janssen I.
        The economic costs associated with physical inactivity and obesity in Canada: an update.
        Can J Appl Physiol. 2004; 29: 90-115
        • Ekelund U.
        • Luan J.
        • Sherar L.B.
        • et al.
        Moderate to vigorous physical activity and sedentary time and cardiometabolic risk factors in children and adolescents.
        JAMA. 2012; 307: 704-712
        • Roberts K.C.
        • Yao X.
        • Carson V.
        • et al.
        Meeting the Canadian 24-hour movement guidelines for children and youth.
        Health Rep. 2017; 28: 3-7
        • Hirth A.
        • Reybrouck T.
        • Bjarnason-Wehrens B.
        • Lawrenz W.
        • Hoffmann A.
        Recommendations for participation in competitive and leisure sports in patients with congenital heart disease: a consensus document.
        Eur J Cardiovasc Prev Rehabil. 2006; 13: 293-299
        • Voss C.
        • Duncombe S.L.
        • Dean P.H.
        • de Souza A.M.
        • Harris K.C.
        Physical activity and sedentary behavior in children with congenital heart disease.
        J Am Heart Assoc. 2017; 6e004665
        • Longmuir P.E.
        • Corey M.
        • Faulkner G.
        • Russell J.L.
        • McCrindle B.W.
        Children after fontan have strength and body composition similar to healthy peers and can successfully participate in daily moderate-to-vigorous physical activity.
        Pediatr Cardiol. 2015; 36: 759-767
        • Zaqout M.
        • Vandekerckhove K.
        • Michels N.
        • et al.
        Physical fitness and metabolic syndrome in children with repaired congenital heart disease compared with healthy children.
        J Pediatr. 2017; 191: 125-132
        • Stone N.
        • Obeid J.
        • Dillenburg R.
        • Milenkovic J.
        • MacDonald M.J.
        • Timmons B.W.
        Objectively measured physical activity levels of young children with congenital heart disease.
        Cardiol Young. 2015; 25: 520-525
        • Reybrouck T.
        • Mertens L.
        Physical performance and physical activity in grown-up congenital heart disease.
        Eur J Cardiovasc Prev Rehabil. 2005; 12: 498-502
        • Shustak R.J.
        • McGuire S.B.
        • October T.W.
        • Phoon C.K.
        • Chun A.J.
        Prevalence of obesity among patients with congenital and acquired heart disease.
        Pediatr Cardiol. 2012; 33: 8-14
        • Harris K.C.
        • Voss C.
        • Rankin K.
        • et al.
        Modifiable cardiovascular risk factors in adolescents and adults with congenital heart disease.
        Congenit Heart Dis. 2018; 13: 563-570
        • Deen J.F.
        • Krieger E.V.
        • Slee A.E.
        • et al.
        Metabolic syndrome in adults with congenital heart disease.
        J Am Heart Assoc. 2016; 5e001132
        • O’Byrne M.L.
        • McBride M.G.
        • Paridon S.
        • Goldmuntz E.
        Association of habitual activity and body mass index in survivors of congenital heart surgery: a study of children and adolescents with tetralogy of Fallot, transposition of the great arteries, and Fontan palliation.
        World J Pediatr Congenit Heart Surg. 2018; 9: 177-184
        • Pinto N.M.
        • Marino B.S.
        • Wernovsky G.
        • et al.
        Obesity is a common comorbidity in children with congenital and acquired heart disease.
        Pediatrics. 2007; 120: e1157-e1164
        • Wong C.Y.
        • O’Moore-Sullivan T.
        • Leano R.
        • et al.
        Alterations of left ventricular myocardial characteristics associated with obesity.
        Circulation. 2004; 110: 3081-3087
        • Deanfield J.
        Management of grown up congenital heart disease.
        Eur Heart J. 2003; 24: 1035-1084
        • Inuzuka R.
        • Diller G.P.
        • Borgia F.
        • et al.
        Comprehensive use of cardiopulmonary exercise testing identifies adults with congenital heart disease at increased mortality risk in the medium term.
        Circulation. 2012; 125: 250-259
        • Müller J.
        • Christov F.
        • Schreiber C.
        • Hess J.
        • Hager A.
        Exercise capacity, quality of life, and daily activity in the long-term follow-up of patients with univentricular heart and total cavopulmonary connection.
        Eur Heart J. 2009; 30: 2915-2920
        • Fredriksen P.M.
        • Ingjer E.
        • Thaulow E.
        Physical activity in children and adolescents with congenital heart disease. Aspects of measurements with an activity monitor.
        Cardiol Young. 2000; 10: 98-106
        • Lunt D.
        • Briffa T.
        • Briffa N.K.
        • Ramsay J.
        Physical activity levels of adolescents with congenital heart disease.
        Aust J Physiother. 2003; 49: 43-50
        • McCrindle B.W.
        • Williams R.V.
        • Mital S.
        • et al.
        Physical activity levels in children and adolescents are reduced after the Fontan procedure, independent of exercise capacity, and are associated with lower perceived general health.
        Arch Dis Child. 2007; 92: 509
        • Falk B.
        • Bar-Mor G.
        • Zigel L.
        • et al.
        Daily physical activity and perception of condition severity among male and female adolescents with congenital heart malformation.
        J Pediatr Nurs. 2006; 21: 244-249
      2. Cordina R. Exercise in the Fontan patient: the other medication. American College of Cardiology 69th Annual Scientific Session; March 28-30, 2020; Chicago, IL.

        • Moola F.
        • McCrindle B.W.
        • Longmuir P.E.
        Physical activity participation in youth with congenital heart disease: devising guidelines so Johnny can participate.
        Pediatr Child Health. 2009; 14: 167-170
        • Muller J.
        • Bohm B.
        • Semsch S.
        • et al.
        Currently, children with congenital heart disease are not limited in their submaximal exercise performance.
        Eur J Cardiothorac Surg. 2013; 43: 1096-1100
        • Banks L.
        • McCrindle B.W.
        • Russell J.L.
        • Longmuir P.E.
        Enhanced physiology for submaximal exercise in children after the fontan procedure.
        Med Sci Sports Exerc. 2013; 45: 615-621
        • Chaix M.A.
        • Marcotte F.
        • Dore A.
        • et al.
        Risks and benefits of exercise training in adults with congenital heart disease.
        Can J Cardiol. 2016; 32: 459-466
        • Duppen N.
        • Takken T.
        • Hopman M.T.
        • et al.
        Systematic review of the effects of physical exercise training programmes in children and young adults with congenital heart disease.
        Int J Cardiol. 2013; 168: 1779-1787
        • Sutherland N.
        • Jones B.
        • d’Udekem Y.
        Should we recommend exercise after the Fontan procedure?.
        Heart Lung Circ. 2015; 24: 753-768
        • Rhodes J.
        • Ubeda Tikkanen A.
        • Jenkins K.J.
        Exercise testing and training in children with congenital heart disease.
        Circulation. 2010; 122: 1957-1967
        • Tikkanen A.U.
        • Oyaga A.R.
        • Riano O.A.
        • Alvaro E.M.
        • Rhodes J.
        Paediatric cardiac rehabilitation in congenital heart disease: a systematic review.
        Cardiol Young. 2012; 22: 241-250
        • Roston T.M.
        • de Souza A.M.
        • Sandor G.G.
        • Sanatani S.
        • Potts J.E.
        Physical activity recommendations for patients with electrophysiologic and structural congenital heart disease: a survey of Canadian health care providers.
        Pediatr Cardiol. 2013; 34: 1374-1381
        • Bar-Mor G.
        • Bar-Tal Y.
        • Krulik T.
        • Zeevi B.
        Self-efficacy and physical activity in adolescents with trivial, mild, or moderate congenital cardiac malformations.
        Cardiol Young. 2000; 10: 561-566
        • Moola F.
        • Fusco C.
        • Kirsh J.A.
        The perceptions of caregivers toward physical activity and health in youth with congenital heart disease.
        Qual Health Res. 2011; 21: 278-291
        • Dulfer K.
        • Duppen N.
        • Van Dijk A.P.
        • et al.
        Parental mental health moderates the efficacy of exercise training on health-related quality of life in adolescents with congenital heart disease.
        Pediatr Cardiol. 2015; 36: 33-40
        • Cheuk D.K.
        • Wong S.M.
        • Choi Y.P.
        • Chau A.K.
        • Cheung Y.F.
        Parents’ understanding of their child’s congenital heart disease.
        Heart. 2004; 90: 435-439
        • Horner T.
        • Liberthson R.
        • Jellinek M.S.
        Psychosocial profile of adults with complex congenital heart disease.
        Mayo Clin Proc. 2000; 75: 31-36
        • Ray T.D.
        • Henry K.
        Self-efficacy and physical activity in children with congenital heart disease: Is there a relationship?.
        J Spec Pediatr Nurs. 2011; 16: 105-112
        • Banks L.
        • Rosenthal S.
        • Manlhiot C.
        • et al.
        Exercise capacity and self-efficacy are associated with moderate-to-vigorous intensity physical activity in children with congenital heart disease.
        Pediatr Cardiol. 2017; 38: 1206-1214
        • Ruttenberg H.D.
        • Adams T.D.
        • Orsmond G.S.
        • Conlee R.K.
        • Fisher A.G.
        Effects of exercise training on aerobic fitness in children after open heart surgery.
        Pediatr Cardiol. 1983; 4: 19-24
        • Minamisawa S.
        • Nakazawa M.
        • Momma K.
        • Imai Y.
        • Satomi G.
        Effect of aerobic training on exercise performance in patients after the Fontan operation.
        Am J Cardiol. 2001; 88: 695-698
        • Reybrouck T.
        • Deroost F.
        • van der Hauwaert L.G.
        Evaluation of breath-by-breath measurement of respiratory gas exchange in pediatric exercise testing.
        Chest. 1992; 102: 147-152
        • Bradley L.M.
        • Galioto Jr., F.M.
        • Vaccaro P.
        • Hansen D.A.
        • Vaccaro J.
        Effect of intense aerobic training on exercise performance in children after surgical repair of tetralogy of Fallot or complete transposition of the great arteries.
        Am J Cardiol. 1985; 56: 816-818
        • Balfour I.C.
        • Drimmer A.M.
        • Nouri S.
        • et al.
        Pediatric cardiac rehabilitation.
        Am J Dis Child. 1991; 145: 627-630
        • Duppen N.
        • Etnel J.R.
        • Spaans L.
        • et al.
        Does exercise training improve cardiopulmonary fitness and daily physical activity in children and young adults with corrected tetralogy of Fallot or Fontan circulation? A randomized controlled trial.
        Am Heart J. 2015; 170: 606-614
        • Duppen N.
        • Geerdink L.M.
        • Kuipers I.M.
        • et al.
        Regional ventricular performance and exercise training in children and young adults after repair of tetralogy of Fallot.
        Circ Cardiovasc Imaging. 2015; 8e002006
        • Rhodes J.
        • Curran T.J.
        • Camil L.
        • et al.
        Impact of cardiac rehabilitation on the exercise function of children with serious congenital heart disease.
        Pediatrics. 2005; 116: 1339-1345
        • Goldberg B.
        • Fripp R.R.
        • Lister G.
        • et al.
        Effect of physical training on exercise performance of children following surgical repair of congenital heart disease.
        Pediatrics. 1981; 68: 691-699
        • Stieber N.A.
        • Gilmour S.
        • Morra A.
        • et al.
        Feasibility of improving the motor development of toddlers with congenital heart defects using a home-based intervention.
        Pediatric Cardiology. 2012; 33: 521-532
        • Müller J.
        • Pringsheim M.
        • Engelhardt A.
        • et al.
        Motor training of sixty minutes once per week improves motor ability in children with congenital heart disease and retarded motor development: a pilot study.
        Cardiol Young. 2013; 23: 717-721
        • Longmuir P.E.
        • Tyrrell P.N.
        • Corey M.
        • et al.
        Home-based rehabilitation enhances daily physical activity and motor skill in children who have undergone the Fontan procedure.
        Pediatr Cardiol. 2013; 34: 1130-1151
        • Opocher F.
        • Varnier M.
        • Sanders S.P.
        • et al.
        Effects of aerobic exercise training in children after the Fontan operation.
        Am J Cardiol. 2005; 95: 150-152
        • Moalla W.
        • Maingourd Y.
        • Gauthier R.
        • et al.
        Effect of exercise training on respiratory muscle oxygenation in children with congenital heart disease.
        Eur J Cardiovasc Prev Rehabil. 2006; 13: 604-611
        • Morrison M.L.
        • Sands A.J.
        • McCusker C.G.
        • et al.
        Exercise training improves activity in adolescents with congenital heart disease.
        Heart. 2013; 99: 1122
        • Takken T.
        • Hulzebos H.J.
        • Blank A.C.
        • et al.
        Exercise prescription for patients with a Fontan circulation: current evidence and future directions.
        Neth Heart J. 2007; 15: 142-147
        • Sandberg C.
        • Crenshaw A.G.
        • Elcadi G.H.
        • et al.
        Slower skeletal muscle oxygenation kinetics in adults with complex congenital heart disease.
        Can J Cardiol. 2019; 35: 1815-1823
        • Calzolari A.
        • Turchetta A.
        • Biondi G.
        • et al.
        Rehabilitation of children after total correction of tetralogy of Fallot.
        Int J Cardiol. 1990; 28: 151-158
        • Tomassoni T.L.
        • Galioto F.M.
        • Vaccaro P.
        • Vaccaro J.
        Effect of exercise training on exercise tolerance and cardiac output in children after repair of congenital heart disease.
        Sports Med Train Rehabil. 1990; 2: 57-62
        • Sklansky M.S.P.J.
        • Smith O.
        • Morris J.
        • Bricker T.
        Exercise training hemodynamics and the prevalence of arrhythmias in children following tetralogy of Fallot repair.
        Pediatr Exerc Sci. 1994; 6: 188-200
        • Brassard P.
        • Poirier P.
        • Martin J.
        • et al.
        Impact of exercise training on muscle function and ergoreflex in Fontan patients: a pilot study.
        Int J Cardiol. 2006; 107: 85-94
        • McBride M.G.
        • Binder T.J.
        • Paridon S.M.
        Safety and feasibility of inpatient exercise training in pediatric heart failure: a preliminary report.
        J Cardiopulm Rehabil Prev. 2007; 27: 219-222
        • Jacobsen R.M.
        • Ginde S.
        • Mussatto K.
        • et al.
        Can a home-based cardiac physical activity program improve the physical function quality of life in children with Fontan circulation?.
        Congenital Heart Disease. 2016; 11: 175-182
        • Morrow J.
        • Freedson P.
        Relationship between habitual physical activity and aerobic fitness in adolescents.
        Pediatr Exerc Sci. 1994; 6: 315-329
        • Wells G.D.
        • Banks L.
        • Caterini J.E.
        • et al.
        The association among skeletal muscle phosphocreatine recovery, adiposity, and insulin resistance in children.
        Pediatr Obes. 2017; 12: 163-170
        • Wells G.D.
        • O’Gorman C.S.
        • Rayner T.
        • et al.
        Skeletal muscle abnormalities in girls and adolescents with Turner syndrome.
        J Clin Endocrinol Metab. 2013; 98: 2521-2527
        • Moalla W.
        • Elloumi M.
        • Chamari K.
        • et al.
        Training effects on peripheral muscle oxygenation and performance in children with congenital heart diseases.
        Appl Physiol Nutr Metab. 2012; 37: 621-630
        • Robertson R.G.F.
        • Bell J.A.
        • et al.
        Self-regulated cycling using the children’s OMNI scale of perceived exertion.
        Med Sci Sports Exerc. 2002; 34: 1168-1175
        • Telama R.
        Tracking of physical activity from childhood to adulthood: a review.
        Obes Facts. 2009; 2: 187-195
        • Caplan R.
        • Allen P.J.
        Physical activity recommendations for adolescents with repaired tetralogy of Fallot: review of the literature and guidelines for practitioners.
        Pediatr Nurs. 2011; 37: 191-199
        • Kovacs A.H.
        • Kaufman T.M.
        • Broberg C.S.
        Cardiac rehabilitation for adults with congenital heart disease: physical and psychosocial considerations.
        Can J Cardiol. 2018; 34: S270-S277
        • Moola F.J.
        • Faulkner G.E.J.
        • Kirsh J.A.
        • Schneiderman J.E.
        Developing physical activity interventions for youth with cystic fibrosis and congenital heart disease: learning from their parents.
        Psychol Sport Exerc. 2011; 12: 599-608
        • McKillop A.
        • McCrindle B.W.
        • Dimitropoulos G.
        • Kovacs A.H.
        Physical activity perceptions and behaviors among young adults with congenital heart disease: a mixed-methods study.
        Congenit Heart Dis. 2018; 13: 232-240
        • Longmuir P.E.
        • Russell J.L.
        • Corey M.
        • Faulkner G.
        • McCrindle B.W.
        Factors associated with the physical activity level of children who have the Fontan procedure.
        Am Heart J. 2011; 161: 411-417
        • Williams C.A.
        • Gowing L.
        • Horn R.
        • Stuart A.G.
        A survey of exercise advice and recommendations in United Kingdom paediatric cardiac clinics.
        Cardiol Young. 2017; 27: 951-956
        • Lobelo F.
        • Duperly J.
        • Frank E.
        Physical activity habits of doctors and medical students influence their counselling practices.
        Br J Sports Med. 2009; 43: 89-92
        • Swinburn B.A.
        • Walter L.G.
        • Arroll B.
        • Tilyard M.W.
        • Russell D.G.
        The green prescription study: a randomized controlled trial of written exercise advice provided by general practitioners.
        Am J Public Health. 1998; 88: 288-291
        • Moola F.
        • Faulkner G.E.
        • Kirsh J.A.
        • Kilburn J.
        Physical activity and sport participation in youth with congenital heart disease: perceptions of children and parents.
        Adapt Phys Activ Q. 2008; 25: 49-70
        • Dulfer K.
        • Duppen N.
        • Kuipers I.M.
        • et al.
        Aerobic exercise influences quality of life of children and youngsters with congenital heart disease: a randomized controlled trial.
        J Adolesc Health. 2014; 55: 65-72
        • Rhodes J.
        • Curran T.J.
        • Camil L.
        • et al.
        Sustained effects of cardiac rehabilitation in children with serious congenital heart disease.
        Pediatrics. 2006; 118: e586-e593
        • Handel M.J.
        mHealth (mobile health)—using apps for health and wellness.
        Explore (NY). 2011; 7: 256-261
        • Patrick K.
        • Griswold W.G.
        • Raab F.
        • Intille S.S.
        Health and the mobile phone.
        Am J Prev Med. 2008; 35: 177-181
        • National Institutes of Health
        National Institutes of Health launches summer institute on mHealth.
        (February 28, 2011. Available at:)
        • Mita G.
        • Ni Mhurchu C.
        • Jull A.
        Effectiveness of social media in reducing risk factors for noncommunicable diseases: a systematic review and meta-analysis of randomized controlled trials.
        Nutr Rev. 2016; 74: 237-247
        • Ridgers N.D.
        • McNarry M.A.
        • Mackintosh K.A.
        Feasibility and effectiveness of using wearable activity trackers in youth: a systematic review.
        JMIR Mhealth Uhealth. 2016; 4: e129
        • Christian S.
        • Somerville M.
        • Giuffre M.
        • Atallah J.
        Physical activity restriction for children and adolescents diagnosed with an inherited arrhythmia or cardiomyopathy and its impact on body mass index.
        J Cardiovasc Electrophysiol. 2018; 29: 1648-1653