Advertisement
Canadian Journal of Cardiology

Pulmonary Hypertension Due to Left Heart Disease—A Practical Approach to Diagnosis and Management

Published:November 17, 2020DOI:https://doi.org/10.1016/j.cjca.2020.11.003

      Abstract

      Pulmonary hypertension (PH) due to left heart disease (LHD) is a frequent complication of heart failure (HF) and is associated with exercise intolerance, poor quality of life, increased risk of hospitalisations, and reduced overall survival. Since the recent Sixth World Symposium on Pulmonary Hypertension in 2018, there have been significant changes in the hemodynamic definitions and clinical classification of PH-LHD. PH-LHD can be subdivided into (1) isolated postcapillary PH (IpcPH) and (2) combined precapillary and postcapillary PH (CpcPH). This categorisation of PH-LHD is important because CpcPH shares certain pathophysiologic, clinical, and hemodynamic characteristics with pulmonary arterial hypertension and is associated with worse outcomes compared with IpcPH. A systematic approach using clinical history and noninvasive investigations is required in the diagnosis of PH-LHD. Right heart catheterisation with and without provocative testing is performed in expert centres and is indicated in selected individuals. Although the definition of IpcPH and CpcPH is based on measurements made with right heart catheterisation, distinguishing between these two entities is not always necessary. Despite strong evidence for medical therapy in patients with pulmonary arterial hypertension, those options have limited benefit in PH-LHD. Expert PH centres in Canada have been established to provide ongoing care for the more complex patient subgroups.

      Résumé

      L'hypertension pulmonaire (HP) secondaire à l'insuffisance cardiaque gauche (ICG) est une complication fréquente de l'insuffisance cardiaque (IC) et est associée à une intolérance à l'effort, à une piètre qualité de vie, à une augmentation du risque d'hospitalisation, et à une réduction de la survie globale. Depuis le sixième World Symposium on Pulmonary Hypertension ayant eu lieu en 2018, des modifications significatives ont été apportées dans les définitions hémodynamiques et la classification clinique de l'HP-ICG. Celle-ci peut être subdivisée en deux catégories : 1) l'HP post-capillaire isolée et 2) l'HP pré-capillaire et post-capillaire combinée. L'utilisation de ces catégories d'HP-ICG est importante, puisque l'HP pré-capillaire et post-capillaire combinée partage certaines caractérisques pathophysiologiques, cliniques et hémodynamiques avec l'hypertension artérielle pulmonaire et est associée à des résultats moins favorables, comparativement à l'HP post-capillaire isolée. Une approche systématique se basant sur les antécédents cliniques et des évaluations non invasives est nécessaire pour poser un diagnostic d'HP-ICG. Un cathétérisme cardiaque droit combiné ou non à un test de provocation est réalisé dans les centres spécialisés et est indiqué chez certains patients. Même si la définition de l'HP post-capillaire isolée et de l'HP pré-capillaire et post-capillaire combinée s'appuie sur les mesures effectuées par le cathétérisme cardiaque droit, il n'est pas toujours nécessaire de distinguer une forme de l'autre. Malgré les solides données probantes appuyant l'utilisation d'un traitement médical chez les patients atteints d'hypertension artérielle pulmonaire, ces options thérapeutiques ont des bienfaits limités dans les cas d'HP-ICG. Des centres canadiens spécialisés dans l'HP ont été mis sur pied pour offrir des soins continus à ces sous-groupes de patients dont la prise en charge est plus complexe.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Humbert M.
        • Guignabert C.
        • Bonnet S.
        • et al.
        Pathology and pathobiology of pulmonary hypertension: state of the art and research perspectives.
        Eur Respir J. 2019; 53: 1801887
        • Hoeper M.M.
        • Humbert M.
        • Souza R.
        • et al.
        A global view of pulmonary hypertension.
        Lancet Respir Med. 2016; 4: 306-322
        • Simonneau G.
        • Montani D.
        • Celermajer D.S.
        • et al.
        Haemodynamic definitions and updated clinical classification of pulmonary hypertension.
        Eur Respir J. 2019; 53: 1801913
        • Vachiéry J.L.
        • Adir Y.
        • Barberà J.A.
        • et al.
        Pulmonary hypertension due to left heart disease.
        J Am Coll Cardiol. 2013; 62: D100-D108
        • Galiè N.
        • Humbert M.
        • Vachiéry J.L.
        • et al.
        2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension: the Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT).
        Eur Heart J. 2016; 37: 67-119
        • Guazzi M.
        • Galiè N.
        Pulmonary hypertension in left heart disease.
        Eur Respir Rev. 2012; 21: 338-346
        • Weitsman T.
        • Weisz G.
        • Farkash R.
        • et al.
        Pulmonary hypertension with left heart disease: prevalence, temporal shifts in etiologies and outcome.
        Am J Med. 2017; 130: 1272-1279
        • Vanderpool R.R.
        • Saul M.
        • Nouraie M.
        • Gladwin M.T.
        • Simon M.A.
        Association between hemodynamic markers of pulmonary hypertension and outcomes in heart failure with preserved ejection fraction.
        JAMA Cardiol. 2018; 3: 298-306
        • Maron B.A.
        • Hess E.
        • Maddox T.M.
        • et al.
        Association of borderline pulmonary hypertension with mortality and hospitalization in a large patient cohort: insights from the Veterans Affairs Clinical Assessment, Reporting, and Tracking Program.
        Circulation. 2016; 133: 1240-1248
        • Briongos Figuero S.
        • Moya Mur J.L.
        • García-Lledó A.
        • et al.
        Predictors of persistent pulmonary hypertension after mitral valve replacement.
        Heart Vessels. 2016; 31: 1091-1099
        • Masri A.
        • Abdelkarim I.
        • Sharbaugh M.S.
        • et al.
        Outcomes of persistent pulmonary hypertension following transcatheter aortic valve replacement.
        Heart. 2018; 104: 821-827
        • Damy T.
        • Goode K.M.
        • Kallvikbacka-Bennett A.
        • et al.
        Determinants and prognostic value of pulmonary arterial pressure in patients with chronic heart failure.
        Eur Heart J. 2010; 31: 2280-2290
        • Hoeper M.M.
        • Bogaard H.J.
        • Condliffe R.
        • et al.
        Definitions and diagnosis of pulmonary hypertension.
        J Am Coll Cardiol. 2013; 62: D42-D50
        • Kovacs G.
        • Berghold A.
        • Scheildl S.
        • Olschewski H.
        Pulmonary arterial pressure doing rest and exercise in healthy subjects: a systematic review.
        Eur Respir J. 2009; 34: 888-894
        • Assad T.R.
        • Maron B.A.
        • Robbins I.M.
        • et al.
        Prognostic effect and longitudinal hemodynamic assessment of borderline pulmonary hypertension.
        JAMA Cardiol. 2017; 2: 1361-1368
        • Vachiéry J.L.
        • Tedford R.J.
        • Rosenkranz S.
        • et al.
        Pulmonary hypertension due to left heart disease.
        Eur Respir J. 2019; 53: 1801897
        • Galiè N.
        • McLaughlin V.V.
        • Rubin L.J.
        • Simonneau G.
        An overview of the 6th World Symposium on Pulmonary Hypertension.
        Eur Respir J. 2019; 53: 1802148
        • Guazzi M.
        • Labate V.
        Pulmonary hypertension in heart failure patients: pathophysiology and prognostic implications.
        Curr Heart Fail Rep. 2016; 13: 281-294
        • Tampakakis E.
        • Leary P.J.
        • Selby V.N.
        • et al.
        The diastolic pulmonary gradient does not predict survival in patients with pulmonary hypertension due to left heart disease.
        JACC Heart Fail. 2015; 3: 9-16
        • Dragu R.
        • Hardak E.
        • Ohanyan A.
        • Adir Y.
        • Aronson D.
        Prognostic value and diagnostic properties of the diastolic pulmonary pressure gradient in patients with pulmonary hypertension and left heart disease.
        Int J Cardiol. 2019; 290: 138-143
        • Assad T.R.
        • Hemnes A.R.
        • Larkin E.K.
        • et al.
        Clinical and biological insights into combined post- and pre-capillary pulmonary hypertension.
        J Am Coll Cardiol. 2016; 68: 2525-2536
        • Crawford T.C.
        • Leary P.J.
        • Fraser C.D.
        • et al.
        Impact of the new pulmonary hypertension definition on heart transplant outcomes: expanding the hemodynamic risk profile.
        Chest. 2020; 157: 151-161
        • Rosenkranz S.
        • Gibbs J.S.
        • Wachter R.
        • et al.
        Left ventricular heart failure and pulmonary hypertension.
        Eur Heart J. 2016; 37: 942-954
        • Dupuis J.
        • Guazzi M.
        Pathophysiology and clinical relevance of pulmonary remodelling in pulmonary hypertension due to left heart diseases.
        Can J Cardiol. 2015; 31: 416-429
        • Kapanci Y.
        • Burgan S.
        • Pietra G.G.
        • Conne B.
        • Gabbiani G.
        Modulation of actin isoform expression in alveolar myofibroblasts (contractile interstitial cells) during pulmonary hypertension.
        Am J Pathol. 1990; 136: 881-889
        • Guazzi M.
        • Borlaug B.A.
        Pulmonary hypertension due to left heart disease.
        Circulation. 2012; 126: 975-990
        • Naeije R.
        • Gerges M.
        • Vachiéry J.L.
        • et al.
        Hemodynamic phenotyping of pulmonary hypertension in left heart failure.
        Circ Heart Fail. 2017; 10e004082
        • Frost A.
        • Badesch D.
        • Gibbs J.S.R.
        • et al.
        Diagnosis of pulmonary hypertension.
        Eur Respir J. 2019; 53: 1801904
        • Rudski L.G.
        • Lai W.W.
        • Afilalo J.
        • et al.
        Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography.
        J Am Soc Echocardiogr. 2010; 23: 685-713
        • d’Alto M.
        • Romeo E.
        • Argiento P.
        • et al.
        Accuracy and precision of echocardiography versus right heart catheterization for the assessment of pulmonary hypertension.
        Int J Cardiol. 2013; 168: 4058-4062
        • Lancellotti P.
        • Pellikka P.A.
        • Budts W.
        • et al.
        The clinical use of stress echocardiography in nonischaemic heart disease: recommendations from the European Association of Cardiovascular Imaging and the American Society of Echocardiography.
        Eur Heart J Cardiovasc Imaging. 2016; 17: 1191-1229
        • Farina S.
        • Correale M.
        • Bruno N.
        • et al.
        The role of cardiopulmonary exercise tests in pulmonary arterial hypertension.
        Eur Respir Rev. 2018; 27: 170134
        • Guazzi M.
        • Cahalin L.P.
        • Arena R.
        Cardiopulmonary exercise testing as a diagnostic tool for the detection of left-sided pulmonary hypertension in heart failure.
        J Card Fail. 2013; 19: 461-467
        • Berthelot E.
        • Montani D.
        • Algalarrondo V.
        • et al.
        A clinical and echocardiographic score to identify pulmonary hypertension due to HFpEF.
        J Card Fail. 2017; 23: 29-35
        • Jacobs W.
        • Konings T.C.
        • Heymans M.W.
        • et al.
        Noninvasive identification of left-sided heart failure in a population suspected of pulmonary arterial hypertension.
        Eur Respir J. 2015; 46: 422-430
        • d’Alto M.
        • Romeo E.
        • Argiento P.
        • et al.
        Echocardiographic prediction of pre- versus postcapillary pulmonary hypertension.
        J Am Soc Echocardiogr. 2015; 28: 108-115
        • Bonno E.L.
        • Viray M.C.
        • Jackson G.R.
        • Houston B.A.
        • Tedford R.J.
        Modern right heart catheterization: beyond simple hemodynamics.
        Adv Pulm Hypertens. 2020; 19: 6-15
        • Kovacs G.
        • Avian A.
        • Pienn M.
        • Naeije R.
        • Olschewski H.
        Reading pulmonary vascular pressure tracings. How to handle the problems of zero levelling and respiratory swings.
        Am J Respir Crit Care Med. 2014; 190: 252-257
        • Konstam M.A.
        • Kiernan M.S.
        • Bernstein D.
        • et al.
        Evaluation and management of right-sided heart failure: a scientific statement from the American Heart Association.
        Circulation. 2018; 137: e578-e622
        • Sorajja P.
        • Borlaug B.A.
        • Dimas V.V.
        • et al.
        SCAI/HFSA clinical expert consensus document on the use of invasive hemodynamics for the diagnosis and management of cardiovascular disease.
        Catheter Cardiovasc Interv. 2017; 89: E233-E247
        • Kovacs G.
        • Herve P.
        • Barbera J.A.
        • et al.
        An official European Respiratory Society statement: pulmonary haemodynamics during exercise.
        Eur Respir J. 2017; 50: 1700578
        • Esfandiari S.
        • Wright S.P.
        • Goodman J.M.
        • Sasson Z.
        • Mak S.
        Pulmonary artery wedge pressure relative to exercise work rate in older men and women.
        Med Sci Sports Exerc. 2017; 49: 1297-1304
        • Wolsk E.
        • Bakkestrøm R.
        • Thomsen J.H.
        • et al.
        The influence of age on hemodynamic parameters during rest and exercise in healthy individuals.
        JACC: Heart Failure. 2017; 5: 337-346
        • Andersen M.J.
        • Olson T.P.
        • Melenovsky V.
        • Kane G.C.
        • Borlaug B.A.
        Differential hemodynamic effects of exercise and volume expansion in people with and without heart failure.
        Circ Heart Fail. 2015; 8: 41-48
        • van Empel V.P.
        • Mariani J.
        • Borlaug B.A.
        • Kaye D.M.
        Impaired myocardial oxygen availability contributes to abnormal exercise hemodynamics in heart failure with preserved ejection fraction.
        J Am Heart Assoc. 2014; 3e001293
        • Maeder M.T.
        • Thompson B.R.
        • Htun N.
        • Kaye D.M.
        Hemodynamic determinants of the abnormal cardiopulmonary exercise response in heart failure with preserved left ventricular ejection fraction.
        J Card Fail. 2012; 18: 702-710
        • Andersen M.J.
        • Ersbøll M.
        • Bro-Jeppesen J.
        • et al.
        Exercise hemodynamics in patients with and without diastolic dysfunction and preserved ejection fraction after myocardial infarction.
        Circ Heart Fail. 2012; 5: 444-451
        • Esfandiari S.
        • Wolsk E.
        • Granton D.
        • et al.
        Pulmonary arterial wedge pressure at rest and during exercise in healthy adults: a systematic review and meta-analysis.
        J Card Fail. 2019; 25: 114-122
        • Huis in’t Veld A.E.
        • Oosterveer F.P.T.
        • de Man F.S.
        • et al.
        Hemodynamic effects of pulmonary arterial hypertension-specific therapy in patients with heart failure with preserved ejection fraction and with combined post- and precapillary pulmonary hypertension.
        J Card Fail. 2020; 26: 26-34
        • Moghaddam N.
        • Swiston J.R.
        • Levy R.D.
        • et al.
        Clinical and hemodynamic factors in predicting response to fluid challenge during right heart catheterization.
        Pulm Circ. 2019; 9 (2045894018819803)
        • d’Alto M.
        • Romeo E.
        • Argiento P.
        • et al.
        Clinical relevance of fluid challenge in patients evaluated for pulmonary hypertension.
        Chest. 2017; 151: 119-126
        • Robbins I.M.
        • Hemnes A.R.
        • Pugh M.E.
        • et al.
        High prevalence of occult pulmonary venous hypertension revealed by fluid challenge in pulmonary hypertension.
        Circ Heart Fail. 2014; 7: 116-122
        • Fujimoto N.
        • Borlaug B.A.
        • Lewis G.D.
        • et al.
        Hemodynamic responses to rapid saline loading: the impact of age, sex, and heart failure.
        Circulation. 2013; 127: 55-62
        • Fox B.D.
        • Shimony A.
        • Langleben D.
        • et al.
        High prevalence of occult left heart disease in scleroderma-pulmonary hypertension.
        Eur Respir J. 2013; 42: 1083-1091
        • Berry N.C.
        • Manyoo A.
        • Oldham W.M.
        • et al.
        Protocol for exercise hemodynamic assessment: performing an invasive cardiopulmonary exercise test in clinical practice.
        Pulm Circ. 2015; 5: 610-618
        • Maron B.A.
        • Cockrill B.A.
        • Waxman A.B.
        • Systrom D.M.
        The invasive cardiopulmonary exercise test.
        Circulation. 2013; 127: 1157-1164
        • Bermejo J.
        • Yotti R.
        • García-Orta R.
        • et al.
        Sildenafil for improving outcomes in patients with corrected valvular heart disease and persistent pulmonary hypertension: a multicenter, double-blind, randomized clinical trial.
        Eur Heart J. 2018; 39: 1255-1264
        • Hoendermis E.S.
        • Liu L.C.
        • Hummel Y.M.
        • et al.
        Effects of sildenafil on invasive haemodynamics and exercise capacity in heart failure patients with preserved ejection fraction and pulmonary hypertension: a randomized controlled trial.
        Eur Heart J. 2015; 36: 2565-2573
        • Guazzi M.
        • Vicenzi M.
        • Arena R.
        Phosphodiesterase 5 inhibition with sildenafil reverses exercise oscillatory breathing in chronic heart failure: a long-term cardiopulmonary exercise testing placebo-controlled study.
        Eur J Heart Fail. 2012; 14: 82-90
        • Guazzi M.
        • Vicenzi M.
        • Arena R.
        • Guazzi M.D.
        Pulmonary hypertension in heart failure with preserved ejection fraction: a target of phosphodiesterase-5 inhibition in a 1-year study.
        Circulation. 2011; 124: 164-174
        • Vachiéry J.L.
        • Delcroix M.
        • Al-Hiti H.
        • et al.
        Macitentan in pulmonary hypertension due to left ventricular dysfunction.
        Eur Respir J. 2018; 51: 1701886
        • Koller B.
        • Steringer-Mascherbauer R.
        • Ebner C.H.
        • et al.
        Pilot study of endothelin receptor blockade in heart failure with diastolic dysfunction and pulmonary hypertension (BADDHY-Trial).
        Heart Lung Circ. 2017; 26: 433-441
        • Bonderman D.
        • Ghio S.
        • Felix S.B.
        • et al.
        Riociguat for patients with pulmonary hypertension caused by systolic left ventricular dysfunction: a phase IIb double-blind, randomized, placebo-controlled, dose-ranging hemodynamic study.
        Circulation. 2013; 128: 502-511
        • Redfield M.M.
        • Chen H.H.
        • Borlaug B.A.
        • et al.
        Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized clinical trial.
        JAMA. 2013; 309: 1268-1277
        • Amin A.
        • Mahmoudi E.
        • Navid H.
        • Chitsazan M.
        Is chronic sildenafil therapy safe and clinically beneficial in patients with systolic heart failure?.
        Congest Heart Fail. 2013; 19: 99-103
        • Guazzi M.
        • Vicenzi M.
        • Arena R.
        • Guazzi M.D.
        PDE5 inhibition with sildenafil improves left ventricular diastolic function, cardiac geometry, and clinical status in patients with stable systolic heart failure: results of a 1-year, prospective, randomized, placebo-controlled study.
        Circ Heart Fail. 2011; 4: 8-17
        • Packer M.
        • McMurray J.J.V.
        • Krum H.
        • et al.
        Long-term effect of endothelin receptor antagonism with bosentan on the morbidity and mortality of patients with severe chronic heart failure: primary results of the ENABLE trials.
        JACC Heart Fail. 2017; 5: 317-326
        • Gheorghiade M.
        • Greene S.J.
        • Butler J.
        • et al.
        Effect of vericiguat, a soluble guanylate cyclase stimulator, on natriuretic peptide levels in patients with worsening chronic heart failure and reduced ejection fraction: the SOCRATES-REDUCED randomized trial.
        JAMA. 2015; 314: 2251-2262
        • Pieske B.
        • Maggioni A.P.
        • Lam C.S.P.
        • et al.
        Vericiguat in patients with worsening chronic heart failure and preserved ejection fraction: results of the Soluble Guanylate Cyclase Stimulator in Heart Failure Patients with Preserved EF (SOCRATES-PRESERVED) study.
        Eur Heart J. 2017; 38: 1119-1127
        • Armstrong P.W.
        • Pieske B.
        • Anstrom K.J.
        • et al.
        Vericiguat in patients with heart failure and reduced ejection fraction.
        N Engl J Med. 2020; 382: 1883-1893
        • Ezekowitz J.A.
        • O’Meara E.
        • McDonald M.A.
        • et al.
        2017 Comprehensive update of the Canadian Cardiovascular Society guidelines for the management of heart failure.
        Can J Cardiol. 2017; 33: 1342-1433
        • O’Meara E.
        • McDonald M.
        • Chan M.
        • et al.
        CCS/CHFS heart failure guidelines: clinical trial update on functional mitral regurgitation, SGLT2 inhibitors, ARNI in HFpEF, and tafamidis in amyloidosis.
        Can J Cardiol. 2020; 36: 159-169
        • Clements R.T.
        • Vang A.
        • Fernandez-Nicolas A.
        • et al.
        Treatment of pulmonary hypertension with angiotensin II receptor blocker and neprilysin inhibitor sacubitril/valsartan.
        Circ Heart Fail. 2019; 12e005819
        • Kia D.S.
        • Benza E.
        • Bachman T.N.
        • et al.
        Angiotensin receptor-neprilysin inhibition attenuates right ventricular remodelling in pulmonary hypertension.
        J Am Heart Assoc. 2020; 9e015708
        • Desai A.S.
        • Shah A.M.
        • Mitchell G.F.
        • et al.
        Effects of sacubitril-valsartan compared with enalapril on pulmonary artery pressure in patients with heart failure and reduced ejection fraction [abstract].
        Circulation. 2019; 140: A14392
        • Romano G.
        • Vitale G.
        • Ajello L.
        • et al.
        The effects of sacubitril/valsartan on clinical, biochemical and echocardiographic parameters in patients with heart failure with reduced ejection fraction: the “hemodynamic recovery.
        J Clin Med. 2019; 8: 2165
        • Bleeker G.B.
        • Schalij M.J.
        • Nihoyannopoulos P.
        • et al.
        Left ventricular dyssynchrony predicts right ventricular remodelling after cardiac resynchronization therapy.
        J Am Coll Cardiol. 2005; 46: 2264-2269
        • Hünlich M.
        • Lubos E.
        • Beuthner B.E.
        • et al.
        Acute and long-term hemodynamic effects of MitraClip implantation on a preexisting secondary right heart failure.
        Biomed Res Int. 2018; 2018: 6817832
        • Tang M.
        • Liu X.
        • Lin C.
        • et al.
        Meta-analysis of outcomes and evolution of pulmonary hypertension before and after transcatheter aortic valve implantation.
        Am J Cardiol. 2017; 119: 91-99
        • Abraham W.T.
        • Adamson P.B.
        • Bourge R.C.
        • et al.
        Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial.
        Lancet. 2011; 377: 658-666
        • Benza R.L.
        • Raina A.
        • Abraham W.T.
        • et al.
        Pulmonary hypertension related to left heart disease: insight from a wireless implantable hemodynamic monitor.
        J Heart Lung Transplant. 2015; 34: 329-337
        • Feldman T.
        • Mauri L.
        • Kahwash R.
        • et al.
        Transcatheter interatrial shunt device for the treatment of heart failure with preserved ejection fraction (REDUCE LAP-HF I [Reduce Elevated Left Atrial Pressure in Patients with Heart Failure]): a phase 2, randomized, sham-controlled trial.
        Circulation. 2018; 137: 364-375
        • Shah S.J.
        • Feldman T.
        • Ricciardi M.J.
        • et al.
        One-year safety and clinical outcomes of a transcatheter interatrial shunt device for the treatment of heart failure with preserved ejection fraction in the Reduce Elevated Left Atrial Pressure in Patients with Heart Failure (REDUCE LAP-HF I) trial: a randomized clinical trial.
        JAMA Cardiol. 2018; 3: 968-977
        • Wessler J.
        • Kaye D.
        • Gustafsson F.
        • et al.
        Impact of baseline hemodynamics on the effects of a transcatheter interatrial shunt device in heart failure with preserved ejection fraction.
        Circ Heart Fail. 2018; 11e004540
        • Simard T.
        • Labinaz M.
        • Zahr F.
        • et al.
        Percutaneous atriotomy for levoatrial–to–coronary sinus shunting in symptomatic heart failure: first-in-human experience.
        JACC: Cardiovasc Interv. 2020; 13: 1236-1247
        • Mehra M.R.
        • Canter C.E.
        • Hannan M.M.
        • et al.
        The 2016 International Society for Heart Lung Transplantation listing criteria for heart transplantation: a 10-year update.
        J Heart Lung Transplant. 2016; 35: 1-23
        • Ando M.
        • Takayama H.
        • Kurlansky P.A.
        • et al.
        Effect of pulmonary hypertension on transplant outcomes in patients with ventricular assist devices.
        Ann Thorac Surg. 2020; 110: 158-164
        • Feldman D.
        • Pamboukian S.V.
        • Teuteberg
        • et al.
        The 2013 International Society for Heart and Lung Transplantation Guidelines for mechanical circulatory support: executive summary.
        J Heart Lung Transplant. 2013; 32: 157-187
        • Park M.
        • Ewald G.
        • Franco V.
        • et al.
        SOPRANO: study of macitentan in patients with pulmonary hypertension (PH) post–left ventricular assist device (LVAD) implantation.
        J Card Fail. 2016; 22: S14
        • Tampakakis E.
        • Shah S.J.
        • Borlaug B.A.
        • et al.
        Pulmonary effective arterial elastance as a measure of right ventricular afterload and its prognostic value in pulmonary hypertension due to left heart disease.
        Circ Heart Fail. 2018; 11e004436
        • Wright S.P.
        • Groves L.
        • Vishram-Nielsen J.K.K.
        • et al.
        Elevated pulmonary arterial elastance and right ventricular uncoupling are associated with greater mortality in advanced heart failure.
        J Heart Lung Transplant. 2020; 39: 657-665