Advertisement
Canadian Journal of Cardiology

Digital Health Approaches for the Assessment and Optimisation of Hypertension Care Provision

  • Raj Padwal
    Correspondence
    Corresponding author: Dr Raj Padwal, Clinical Epidemiology, Clinical Pharmacology and General Internal Medicine, University of Alberta, 5-134A Clinical Sciences Building, 11350 83rd Ave, Edmonton, Alberta T6G 2G3, Canada. Tel.: +1-780-492-3686; fax: +1-780-407-7277.
    Affiliations
    Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
    Search for articles by this author
  • Peter W. Wood
    Affiliations
    Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
    Search for articles by this author
Published:December 16, 2020DOI:https://doi.org/10.1016/j.cjca.2020.12.009

      Abstract

      Although many aspects of our lives have been transformed by digital innovation, widespread adoption of digital health advancements within the health care sector in general, and for hypertension care specifically, has been limited. However, it is likely that, over the next decade, material increases in the uptake of digital health innovations for hypertension care delivery will be seen. In this narrative review, we summarise those innovations thought to have the greatest chance for impact in the next decade. These include provision of virtual care combined with home blood pressure (BP) telemonitoring, use of digital registries and protocolised care, leveraging continuous BP measurement to collect vast amounts of individual and population-based BP data, and adoption of digital therapeutics to provide low-cost scalable interventions for patients with or at risk for hypertension. Of these, home BP telemonitoring is likely the most ready for implementation, but it needs to be done in a way that enables efficient guideline-concordant care in a cost-effective manner. In addition, efforts must be focused on implementing digital health solutions in a manner that addresses the major challenges to digital adoption. This entails ensuring that innovations are accessible, usable, secure, validated, evidence based, cost-effective, and integrated into the electronic systems that are already used by patients or providers. Increasing the use of broader digital innovations such as artificial/augmented intelligence, data analytics, and interactive voice response is also critically important. The digital revolution holds substantial promise, but success will depend on the ability of collaborative stakeholders to adopt and implement innovative, usable solutions.

      Résumé

      Bien que l’innovation numérique ait déjà transformé de nombreux aspects de notre vie, force est de constater que l’adoption à grande échelle des découvertes dans le domaine de l’information numérique sur la santé n’a pas, dans le secteur des soins de santé en général et plus particulièrement de l’hypertension, demeure limitée. Cependant, il est probable qu’au cours de la prochaine décennie le déploiement du matériel pour l’adoption des innovations en information numérique sur la santé connaîtra un essor dans la prise en charge thérapeutique de l’hypertension. Dans cet article de synthèse, nous dresserons un résumé des innovations susceptibles d’avoir la plus grande incidence au cours de la prochaine décennie. Ces innovations comprennent la prestation de soins virtuels de pair avec la télésurveillance de la pression artérielle (PA) à domicile, l’utilisation de registres numériques et de protocoles thérapeutiques, le recours à la mesure continue de la PA pour la collecte de grandes quantités de données auprès des individus et des populations, et l’adoption de la thérapeutique numérique pour offrir des interventions évolutives à faible coût aux patients atteints d’hypertension ou prédisposés à celle-ci. Parmi toutes ces innovations, la télésurveillance de la PA à domicile est sans doute celle dont la mise en œuvre est la plus probable, mais cela doit se faire de manière à favoriser des soins efficaces et économiques dans le respect des lignes directrices. De plus, il faut veiller à instaurer des solutions d’information numérique sur la santé qui visent à résoudre les difficultés que pose l’adoption du numérique. Ainsi, ces innovations doivent être accessibles, utilisables, sécuritaires, validées, économiques et fondées sur des données probantes, et s’intégrer aux systèmes électroniques que les patients ou les soignants utilisent déjà. Il est également très important d’accroître l’utilisation d’innovations numériques plus vastes telles que l’intelligence artificielle ou amplifiée, l’analyse des données et la réponse vocale interactive. La révolution numérique est prometteuse, mais sa réussite dépendra de la capacité des divers intervenants à adopter et à mettre en œuvre des solutions innovantes et utilisables.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Global Burden of Disease Risk Factor Collaborators
        Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017.
        Lancet. 2018; 392: 1923-1994
        • Mills K.T.
        • Bundy J.D.
        • Kelly T.N.
        • et al.
        Global disparities of hypertension prevalence and control: A systematic analysis of population-based studies from 90 countries.
        Circulation. 2016; 134: 441-450
        • Non Communicable Disease (NCD) Risk Factor Collaboration
        Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19.1 million participants.
        Lancet. 2017; 389: 37-55
        • Saklayen M.G.
        • Deshpande N.V.
        Timeline of history of hypertension treatment.
        Front Cardiovasc Med. 2016; 3: 3
        • Leung A.A.
        • Williams J.V.A.
        • McAlister F.A.
        • Campbell N.R.C.
        • Padwal R.S.
        Worsening hypertension awareness, treatment, and control rates in canadian women between 2007 and 2017.
        Can J Cardiol. 2020; 36: 732-739
        • Muntner P.
        • Hardy S.T.
        • Fine L.J.
        • et al.
        Trends in blood pressure control among US adults with hypertension, 1999-2000 to 2017-2018.
        JAMA. 2020; 324: 1190-1200
        • Chow C.K.
        • Gupta R.
        Blood pressure control: a challenge to global health systems.
        Lancet. 2019; 394: 613-615
        • Egan B.M.
        • Kjeldsen S.E.
        • Grassi G.
        • Esler M.
        • Mancia G.
        The global burden of hypertension exceeds 1.4 billion people: should a systolic blood pressure target below 130 become the universal standard.
        J Hypertens. 2019; 37: 1148-1153
        • Canada Health Infoway
        What is digital health?.
        (Available at:)
        • Bhavnani S.P.
        • Narula J.
        • Sengupta P.P.
        Mobile technology and the digitization of healthcare.
        Eur Heart J. 2016; 37: 1428-1438
        • Dzau V.J.
        • Balatbat C.A.
        Future of hypertension.
        Hypertension. 2019; 74: 450-457
        • Palacholla R.S.
        • Fischer N.
        • Coleman A.
        • et al.
        Provider- and patient-related barriers to and facilitators of digital health technology adoption for hypertension management: scoping review.
        JMIR Cardio. 2019; 3e11951
        • Alessa T.
        • Hawley M.S.
        • Hock E.S.
        • de Witte L.
        Smartphone apps to support self-management of hypertension: review and content analysis.
        JMIR Mhealth Uhealth. 2019; 7e13645
        • Wood P.W.
        • Boulanger P.
        • Padwal R.S.
        Home blood pressure telemonitoring: rationale for use, required elements, and barriers to implementation in Canada.
        Can J Cardiol. 2017; 33: 619-625
        • Cloutier L.
        • Daskalopoulou S.
        • Padwal R.S.
        • et al.
        A new algorithm for the diagnosis of hypertension in Canada.
        Can J Cardiol. 2015; 31: 620-630
        • Muntner P.
        • Shimbo D.
        • Carey R.M.
        • et al.
        Measurement of blood pressure in humans: a scientific statement from the American Heart Association.
        Hypertension. 2019; 73: e35-e66
        • Rabi D.M.
        • McBrien K.A.
        • Sapir-Pichhadze R.
        • et al.
        Hypertension Canada’s 2020 comprehensive guidelines for the prevention, diagnosis, risk assessment, and treatment of hypertension in adults and children.
        Can J Cardiol. 2020; 36: 596-624
        • Whelton P.K.
        • Carey R.M.
        • Aronow W.S.
        • et al.
        2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines.
        Hypertension. 2018; 71: e13-115
        • National Institute for Health and Care Excellence
        Hypertension in adults: diagnosis and management. Clinical guideline CG136.
        (Available at:)
        https://www.nice.org.uk/guidance/ng136
        Date: 2019
        Date accessed: September 12, 2020
        • Canadian Medical Association
        Virtual care. Recommendations for scaling up virtual medical services. Report of the Virtual Care Task Force.
        (Available at:)
        • Alexander G.C.
        • Tajanlangit M.
        • Heyward J.
        • et al.
        Use and content of primary care office-based vs telemedicine care visits during the COVID-19 pandemic in the US.
        JAMA Netw Open. 2020; 3e2021476
        • Levine D.M.
        • Dixon R.F.
        • Linder J.A.
        Association of structured virtual visits for hypertension follow-up in primary care with blood pressure control and use of clinical services.
        J Gen Intern Med. 2018; 33: 1862-1867
        • McManus R.J.
        • Mant J.
        • Haque M.S.
        • et al.
        Effect of self-monitoring and medication self-titration on systolic blood pressure in hypertensive patients at high risk of cardiovascular disease.
        JAMA. 2014; 312: 799-808
        • Albrecht L.
        • Wood P.W.
        • Fradette M.
        • et al.
        Usability and acceptability of a home blood pressure telemonitoring device among community-dwelling senior citizens with hypertension: qualitative study.
        JMIR Aging. 2018; 1e10975
        • Bancej C.M.
        • Campbell N.
        • McKay D.W.
        • et al.
        Home blood pressure monitoring among Canadian adults with hypertension: results from the 2009 Survey on Living with Chronic Diseases in Canada.
        Can J Cardiol. 2010; 26: e152-e157
        • Duan Y.
        • Xie Z.
        • Dong F.
        • et al.
        Effectiveness of home blood pressure telemonitoring: a systematic review and meta-analysis of randomised controlled studies.
        J Hum Hypertens. 2017; 31: 427-437
        • Margolis K.L.
        • Asche S.E.
        • Bergdall A.R.
        • et al.
        Effect of home blood pressure telemonitoring and pharmacist management on blood pressure control: a cluster randomized clinical trial.
        JAMA. 2013; 310: 46-56
        • McManus R.J.
        • Mant J.
        • Bray E.P.
        • et al.
        Telemonitoring and self-management in the control of hypertension (TASMINH2): a randomised controlled trial.
        Lancet. 2010; 376: 163-172
        • Kaambwa B.
        • Bryan S.
        • Jowett S.
        • et al.
        Telemonitoring and self-management in the control of hypertension (TASMINH2): a cost-effectiveness analysis.
        Eur J Prev Cardiol. 2013; 21: 1517-1530
        • Padwal R.S.
        • So H.
        • Wood P.W.
        • et al.
        Cost-effectiveness of home blood pressure telemonitoring and case management in the secondary prevention of cerebrovascular disease in Canada.
        J Clin Hypertens. 2019; 21: 159-168
        • Moran A.E.
        • Odden M.C.
        • Thanataveerat A.
        • et al.
        Cost-effectiveness of hypertension therapy according to 2014 guidelines.
        N Engl J Med. 2015; 372: 447-455
        • Shimbo D.
        • Artinian N.T.
        • Basile J.N.
        • et al.
        Self-measured blood pressure monitoring at home: a joint policy statement from the American Heart Association and American Medical Association.
        Circulation. 2020; 142: e42-63
        • Hammersley V.
        • Parker R.
        • Paterson M.
        • et al.
        Telemonitoring at scale for hypertension in primary care: an implementation study.
        PLoS Med. 2020; 17: e1003124
        • Statista.com
        Number of smartphone users worldwide from 2016 to 2020.
        (Available at:)
        • International Standards Organization
        ISO 81060-2:2020/AMD 1:2020. Non-invasive sphygmomanometers—part 2: Clinical investigation of intermittent automated measurement type. Amendment 1.
        (Available at:)
        https://www.iso.org/standard/75432.html
        Date: 2020
        Date accessed: October 5, 2020
        • Sharman J.E.
        • O’Brien E.
        • Alpert B.
        • et al.
        Lancet Commission on Hypertension Group position statement on the global improvement of accuracy standards for devices that measure blood pressure.
        J Hypertens. 2020; 38: 21-29
        • Alpert B.S.
        Can “FDA-cleared” blood pressure devices be trusted? A call to action.
        Blood Press Monit. 2017; 22: 179-181
        • Kumar N.
        • Khunger M.
        • Gupta A.
        • Garg N.
        A content analysis of smartphone-based applications for hypertension management.
        J Am Soc Hypertens. 2015; 9: 130-136
        • Jaffe M.G.
        • Lee G.A.
        • Young J.D.
        • Sidney S.
        • Go A.S.
        Improved blood pressure control associated with a large-scale hypertension program.
        JAMA. 2013; 310: 699-705
        • Jaffe M.G.
        • Young J.D.
        The Kaiser Permanente northern California story: improving hypertension control from 44% to 90% in 13 years (2000 to 2013).
        J Clin Hypertens. 2016; 18: 260-261
        • World Health Organization
        HEARTS technical package for cardiovascular disease management in primary health care: team-based care.
        World Health Organization, Geneva2018
        • Campbell N.R.C.
        • Ordunez P.
        • DiPette D.J.
        • et al.
        Monitoring and evaluation framework for hypertension programs. A collaboration between the Pan American Health Organization and World Hypertension League.
        J Clin Hypertens. 2018; 20: 984-990
        • Avezum A.
        • Perel P.
        • Oliveira G.B.F.
        • et al.
        Challenges and opportunities to scale up cardiovascular disease secondary prevention in Latin America and the Caribbean.
        Glob Heart. 2018; 13: 83-91
        • Frieden T.R.
        • Varghese C.V.
        • Kishore S.P.
        • et al.
        Scaling up effective treatment of hypertension—a pathfinder for universal health coverage.
        J Clin Hypertens. 2019; 21: 1442-1449
        • Simple.org
        What we are learning by creating an ultra-thin EMR.
        (Available at:)
        https://www.simple.org/blog/what-we-are-learning/
        Date: 2020
        Date accessed: October 4, 2020
      1. SImple.org. Simple. About the project.
        (Available at:)
        https://www.simple.org/about/
        Date: 2020
        Date accessed: October 4, 2020
        • Ma H.T.
        Cuffless and continuous blood pressure monitoring: a methodological review.
        Biomed Res Int. 2014; 2014: 571623
        • Mukkamala R.
        • Hahn J.-O.
        • Inan O.T.
        • et al.
        Toward ubiquitous blood pressure monitoring via pulse transit time: theory and practice.
        IEEE Trans Biomed Eng. 2015; 62: 1879-1901
        • Standards Committee of the IEEE Engineering in Medicine and Biology Society
        IEEE 1708-2014—IEEE standard for wearable, cuffless blood pressure measuring devices. August 8, 2014.
        (Available at:)
        • Padwal R.
        Cuffless blood pressure measurement: how did accuracy become an afterthought.
        Am J Hypertens. 2019; 32: 807-809
        • Liu J.
        • Cheng H.-M.
        • Chen C.-H.
        • et al.
        Patient-specific oscillometric blood pressure measurement.
        IEEE Trans Biomed Eng. 2016; 63: 1220-1228
        • Federal Trade Commission
        Marketers of blood pressure app settle FTC charges regarding accuracy of app readings.
        (Available at:)
        • Ghosh S.
        • Banerjee A.
        • Ray N.
        • Wood P.W.
        • Boulanger P.
        • R P.
        Using Accelerometric and Gyroscopic Data to Improve Blood Pressure Prediction from Pulse Transit Time Using Recurrent Neural Network. Presented at: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing; Calgary, Alberta.
        (Available at:)
        • Dang A.
        • Arora D.
        • Rane P.
        Role of digital therapeutics and the changing future of healthcare.
        J Family Med Prim Care. 2020; 9: 2207-2213
        • Kvedar J.C.
        • Fogel A.L.
        • Elenko E.
        • Zohar D.
        Digital medicine’s march on chronic disease.
        Nat Biotechnol. 2016; 34: 239-246
        • Sepah S.C.
        • Jiang L.
        • Peters A.L.
        Long-term outcomes of a web-based diabetes prevention program: 2-year results of a single-arm longitudinal study.
        J Med Internet Res. 2015; 17: e92
        • Webb T.L.
        • Joseph J.
        • Yardley L.
        • Michie S.
        Using the internet to promote health behavior change: a systematic review and meta-analysis of the impact of theoretical basis, use of behavior change techniques, and mode of delivery on efficacy.
        J Med Internet Res. 2010; 12: e4
        • Milani R.V.
        • Lavie C.J.
        • Bober R.M.
        • Milani A.R.
        • Ventura H.O.
        Improving hypertension control and patient engagement using digital tools.
        Am J Med. 2017; 130: 14-20
        • Conway C.M.
        • Kelechi T.J.
        Digital health for medication adherence in adult diabetes or hypertension: an integrative review.
        JMIR Diabetes. 2017; 2e20
        • Stogios N.
        • Kaur B.
        • Huszti E.
        • Vasanthan J.
        • Nolan R.P.
        Advancing digital health interventions as a clinically applied science for blood pressure reduction: a systematic review and meta-analysis.
        Can J Cardiol. 2020; 36: 764-774
        • Nordyke R.J.
        • Appelbaum K.
        • Berman M.A.
        Estimating the impact of novel digital therapeutics in type 2 diabetes and hypertension: health economic analysis.
        J Med Internet Res. 2019; 21e15814
        • United States Food and Drug Administration
        Software as a Medical Device (SaMD).
        (Available at:)