Advertisement
Canadian Journal of Cardiology
Editorial| Volume 37, ISSUE 8, P1153-1155, August 2021

Artificial Intelligence to Diagnose Heart Failure Based on Chest X-Rays and Potential Clinical Implications

Published:March 01, 2021DOI:https://doi.org/10.1016/j.cjca.2021.02.016
      Heart failure (HF) is the most rapidly increasing cardiovascular disease globally and is associated with high rates of morbidity and mortality and high burden on health systems.
      • Ziaeian B.
      • Fonarow G.C.
      Epidemiology and aetiology of heart failure.
      HF is a clinical syndrome defined hemodynamically by the inability of the heart to pump blood at a rate commensurate with metabolic demands or the ability of the heart to meet metabolic demands only with high filling pressures.
      • Pfeffer M.A.
      • Shah A.M.
      • Borlaug B.A.
      Heart failure with preserved ejection fraction in perspective.
      There remains no single diagnostic test for the diagnosis of HF, and history, physical examination, laboratory markers, and imaging are integrated to establish a diagnosis and guide clinical management.
      • Ezekowitz J.A.
      • O’Meara E.
      • McDonald M.A.
      • et al.
      2017 comprehensive update of the Canadian Cardiovascular Society guidelines for the management of heart failure.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ziaeian B.
        • Fonarow G.C.
        Epidemiology and aetiology of heart failure.
        Nat Rev Cardiol. 2016; 13: 368-378
        • Pfeffer M.A.
        • Shah A.M.
        • Borlaug B.A.
        Heart failure with preserved ejection fraction in perspective.
        Circ Res. 2019; 124: 1598-1617
        • Ezekowitz J.A.
        • O’Meara E.
        • McDonald M.A.
        • et al.
        2017 comprehensive update of the Canadian Cardiovascular Society guidelines for the management of heart failure.
        Can J Cardiol. 2017; 33: 1342-1433
        • Uriel N.
        • Sayer G.
        • Imamura T.
        • et al.
        Relationship between noninvasive assessment of lung fluid volume and invasively measured cardiac hemodynamics.
        J Am Heart Assoc. 2018; 7e009175
        • Dini F.L.
        • Carluccio E.
        • Montecucco F.
        • Rosa G.M.
        • Fontanive P.
        Combining echo and natriuretic peptides to guide heart failure care in the outpatient setting: a position paper.
        Eur J Clin Invest. 2017; 47: 1-9
        • Stevenson L.W.
        • Perloff J.K.
        The limited reliability of physical signs for estimating hemodynamics in chronic heart failure.
        JAMA. 1989; 261: 884-888
        • Chakko S.
        • Woska D.
        • Martinez H.
        • et al.
        Clinical, radiographic, and hemodynamic correlations in chronic congestive heart failure: conflicting results may lead to inappropriate care.
        Am J Med. 1991; 90: 353-359
        • Dash H.
        • Lipton M.J.
        • Chatterjee K.
        • Parmley W.W.
        Estimation of pulmonary artery wedge pressure from chest radiograph in patients with chronic congestive cardiomyopathy and ischaemic cardiomyopathy.
        Br Heart J. 1980; 44: 322-329
        • Hirata Y.
        • Kusunose K.
        • Tsuji T.
        • et al.
        Deep learning for detection of elevated pulmonary artery wedge pressure using standard chest x-ray.
        Can J Cardiol. 2021; 37: 1198-1206
        • Adams S.J.
        • Henderson R.D.E.
        • Yi X.
        • Babyn P.
        Artificial intelligence solutions for analysis of x-ray images.
        Can Assoc Radiol J. 2020; 72: 60-72
        • Nagueh S.F.
        • Smiseth O.A.
        • Appleton C.P.
        • et al.
        Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging.
        J Am Soc Echocardiogr. 2016; 29: 277-314
        • Rajpurkar P.
        • Irvin J.
        • Zhu K.
        • et al.
        CheXNet: radiologist-level pneumonia detection on chest x-rays with deep learning.
        2017 (arXiv:1711.05225)
        • Rajpurkar P.
        • Irvin J.
        • Ball R.L.
        • et al.
        Deep learning for chest radiograph diagnosis: a retrospective comparison of the CheXNeXt algorithm to practicing radiologists.
        PLoS Med. 2018; 15e1002686
        • Wang X.
        • Peng Y.
        • Lu L.
        • Lu Z.
        • Bagheri M.
        • Summers R.M.
        Chestx-ray8: hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases.
        Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017; : 2097-2106
        • Irvin J.
        • Rajpurkar P.
        • Ko M.
        • et al.
        CheXpert: a large chest radiograph dataset with uncertainty labels and expert comparison.
        Proceedings of the AAAI Conference on Artificial Intelligence. 2019; 33: 590-597
        • Johnson A.E.W.
        • Pollard T.J.
        • Berkowitz S.J.
        • et al.
        MIMIC-CXR, a de-identified publicly available database of chest radiographs with free-text reports.
        Sci Data. 2019; 6: 317

      Linked Article