Advertisement
Canadian Journal of Cardiology

Drugs for Prevention and Treatment of Aortic Stenosis: How Close Are We?

Published:March 03, 2021DOI:https://doi.org/10.1016/j.cjca.2021.02.017

      Abstract

      Aortic stenosis is one of the most common cardiovascular diseases in the world. Extensive work on the underlying pathophysiology responsible for calcific aortic valve disease and its progression to aortic stenosis has described a complex process involving inflammation, lipid deposition, mineralisation, and genetic factors such as elevated lipoprotein(a). With the advancement of gene silencing technology and development of novel therapeutic agents, we may now be closer than ever to having medical therapies that prevent, or at least slow the progression of aortic stenosis. In this review, we highlight the pathophysiology and risk factors of calcific aortic valve disease, along with current, potential, and emerging novel medical therapies. We also provide potential explanations for the failure of statin trials and suggest new avenues for research and new randomised trials in this area.

      Résumé

      La sténose aortique est l’une des maladies cardiovasculaires les plus répandues dans le monde. La physiopathologie sous-jacente en cause dans la valvulopathie aortique calcifiée et son évolution vers la sténose aortique a fait l’objet de travaux approfondis, qui ont permis de décrire un processus complexe faisant intervenir une inflammation, un dépôt lipidique, une minéralisation et des facteurs génétiques tels qu’un taux élevé de lipoprotéine(a). Avec l’avancement des technologies de silençage génique et le développement d’agents thérapeutiques novateurs, nous pourrions maintenant être plus près que jamais de traitements médicaux qui préviennent, ou du moins ralentissent l’évolution de la sténose aortique. Dans cette revue, nous présentons la physiopathologie et les facteurs de risque pour la valvulopathie aortique calcifiée de même que les traitements médicaux existants, potentiels ou inédits. Nous fournissons aussi des explications possibles à l’échec des essais sur les statines et suggérons de nouvelles avenues de recherche et de nouveaux essais à répartition aléatoire dans ce domaine.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Roth G.A.
        • Johnson C.
        • Abajobir A.
        • et al.
        Global, regional, and national burden of cardiovascular diseases for 10 causes 1990 to 2015.
        J Am Coll Cardiol. 2017; 70: 1-25
        • Nkomo V.T.
        • Gardin J.M.
        • Skelton T.N.
        • Gottdiener J.S.
        • Scott C.G.
        • Enriquez-Sarano M.
        Burden of valvular heart diseases: a population-based study.
        Lancet. 2006; 368: 1005-1011
        • Boon B.
        Leonardo da Vinci on atherosclerosis and the function of the sinuses of Valsalva.
        Neth Heart J. 2009; 17: 496-499
        • Benjamin E.J.
        • Blaha M.J.
        • Chiuve S.E.
        • et al.
        Heart disease and stroke statistics—2017 update: a report from the American Heart Association.
        Circulation. 2017; 135: e146-e603
        • Virani S.S.
        • Alonso A.
        • Benjamin E.J.
        • et al.
        Heart disease and stroke statistics—2020 update: a report from the American Heart Association.
        Circulation. 2020; 141: e139-e596
        • Maganti K.
        • Rigolin V.H.
        • Sarano M.E.
        • Bonow R.O.
        Valvular heart disease: diagnosis and management.
        Mayo Clin Proc. 2010; 85: 483-500
        • Nishimura R.A.
        • Otto C.M.
        • Bonow R.O.
        • et al.
        2017 AHA/ACC focused update of the 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines.
        Circulation. 2017; 135: e1159-e1195
        • Alushi B.
        • Curini L.
        • Christopher M.R.
        • et al.
        Calcific aortic valve disease-natural history and future therapeutic strategies.
        Front Pharmacol. 2020; 11: 685
      1. Sawyer D.B. Vasan R.S. Encyclopedia of Cardiovascular Research and Medicine. Elsevier, 2018
        • Thanassoulis G.
        Preventing aortic stenosis by changing the way we think about an old disease.
        JAMA Cardiol. 2020; 5: 627-629
        • Otto C.M.
        • Lind B.K.
        • Kitzman D.W.
        • Gersh B.J.
        • Siscovick D.S.
        Association of aortic-valve sclerosis with cardiovascular mortality and morbidity in the elderly.
        N Engl J Med. 1999; 341: 142-147
        • Osnabrugge R.L.J.
        • Mylotte D.
        • Head S.J.
        • et al.
        Aortic stenosis in the elderly: disease prevalence and number of candidates for transcatheter aortic valve replacement: a meta-analysis and modeling study.
        J Am Coll Cardiol. 2013; 62: 1002-1012
        • Yan A.T.
        • Koh M.
        • Chan K.K.
        • et al.
        Association between cardiovascular risk factors and aortic stenosis: the CANHEART aortic stenosis study.
        J Am Coll Cardiol. 2017; 69: 1523-1532
        • Lindroos M.
        • Kupari M.
        • Heikkilä J.
        • Tilvis R.
        Prevalence of aortic valve abnormalities in the elderly: an echocardiographic study of a random population sample.
        J Am Coll Cardiol. 1993; 21: 1220-1225
        • Stewart B.F.
        • Siscovick D.
        • Lind B.K.
        • et al.
        Clinical factors associated with calcific aortic valve disease. Cardiovascular Health Study.
        J Am Coll Cardiol. 1997; 29: 630-634
        • Mundal L.J.
        • Hovland A.
        • Igland J.
        • et al.
        Association of low-density lipoprotein cholesterol with risk of aortic valve stenosis in familial hypercholesterolemia.
        JAMA Cardiol. 2019; 4: 1156-1159
        • Horne B.D.
        • Camp N.J.
        • Muhlestein J.B.
        • Cannon-Albright L.A.
        Evidence for a heritable component in death resulting from aortic and mitral valve diseases.
        Circulation. 2004; 110: 3143-3148
        • Probst V.
        • Le Scouarnec S.
        • Legendre A.
        • et al.
        Familial aggregation of calcific aortic valve stenosis in the western part of France.
        Circulation. 2006; 113: 856-860
        • Bella J.N.
        • Tang W.
        • Kraja A.
        • et al.
        Genome-wide linkage mapping for valve calcification susceptibility loci in hypertensive sibships: the Hypertension Genetic Epidemiology Network study.
        Hypertension. 2007; 49: 453-460
        • Thanassoulis G.
        • Campbell C.Y.
        • Owens D.S.
        • et al.
        Genetic associations with valvular calcification and aortic stenosis.
        N Engl J Med. 2013; 368: 503-512
        • Afshar M.
        • Luk K.
        • Do R.
        • et al.
        Association of triglyceride-related genetic variants with mitral annular calcification.
        J Am Coll Cardiol. 2017; 69: 2941-2948
        • Kvidal P.
        • Bergström R.
        • Hörte L.G.
        • Ståhle E.
        Observed and relative survival after aortic valve replacement.
        J Am Coll Cardiol. 2000; 35: 747-756
        • Otto C.M.
        • Kuusisto J.
        • Reichenbach D.D.
        • Gown A.M.
        • O’Brien K.D.
        Characterization of the early lesion of “degenerative” valvular aortic stenosis. Histological and immunohistochemical studies.
        Circulation. 1994; 90: 844-853
        • Demer L.
        • Tintut Y.
        The roles of lipid oxidation products and receptor activator of nuclear factor–κB signaling in atherosclerotic calcification.
        Circ Res. 2011; 108: 1482-1493
        • Chan K.L.
        • Teo K.
        • Dumesnil J.G.
        • Ni A.
        • Tam J.
        • ASTRONOMER Investigators
        Effect of lipid lowering with rosuvastatin on progression of aortic stenosis: results of the Aortic Stenosis Progression Observation: Measuring Effects of Rosuvastatin (ASTRONOMER) trial.
        Circulation. 2010; 121: 306-314
        • Cowell S.J.
        • Newby D.E.
        • Prescott R.J.
        • et al.
        A randomized trial of intensive lipid-lowering therapy in calcific aortic stenosis.
        N Engl J Med. 2005; 352: 2389-2397
        • Rossebø A.B.
        • Pedersen T.R.
        • Boman K.
        • et al.
        Intensive lipid lowering with simvastatin and ezetimibe in aortic stenosis.
        N Engl J Med. 2008; 359: 1343-1356
        • O’Brien K.D.
        • Reichenbach D.D.
        • Marcovina S.M.
        • Apolipoproteins B.
        • et al.
        E accumulate in the morphologically early lesion of “degenerative” valvular aortic stenosis.
        Arterioscler Thromb Vasc Biol. 1996; 16: 523-532
        • Miller J.D.
        • Weiss R.M.
        • Serrano K.M.
        • et al.
        Lowering plasma cholesterol levels halts progression of aortic valve disease in mice.
        Circulation. 2009; 119: 2693-2701
        • Smith J.G.
        • Luk K.
        • Schulz C.-A.
        • et al.
        Association of low-density lipoprotein cholesterol-related genetic variants with aortic valve calcium and incident aortic stenosis.
        JAMA. 2014; 312: 1764-1771
        • Bouchareb R.
        • Mahmut A.
        • Nsaibia M.J.
        • et al.
        Autotaxin derived from lipoprotein(a) and valve interstitial cells promotes inflammation and mineralization of the aortic valve.
        Circulation. 2015; 132: 677-690
        • Torzewski M.
        • Ravandi A.
        • Yeang C.
        • et al.
        Lipoprotein(a) associated molecules are prominent components in plasma and valve leaflets in calcific aortic valve stenosis.
        JACC Basic Transl Sci. 2017; 2: 229-240
        • Yu B.
        • Hafiane A.
        • Thanassoulis G.
        • et al.
        Lipoprotein(a) induces human aortic valve interstitial cell calcification.
        JACC Basic Transl Sci. 2017; 2: 358-371
        • Afshar M.
        • Thanassoulis G.
        Lipoprotein(a): new insights from modern genomics.
        Curr Opin Lipidol. 2017; 28: 170-176
        • Enkhmaa B.
        • Anuurad E.
        • Berglund L.
        Lipoprotein (a): impact by ethnicity and environmental and medical conditions.
        J Lipid Res. 2016; 57: 1111-1125
        • Nordestgaard B.G.
        • Langsted A.
        Lipoprotein (a) as a cause of cardiovascular disease: insights from epidemiology, genetics, and biology.
        J Lipid Res. 2016; 57: 1953-1975
        • Libby P.
        Lipoprotein (a).
        JACC Basic Transl Sci. 2016; 1: 428-431
        • Ketelhuth D.F.J.
        • Rios F.J.O.
        • Wang Y.
        • et al.
        Identification of a danger-associated peptide from apolipoprotein B100 (ApoBDS-1) that triggers innate proatherogenic responses.
        Circulation. 2011; 124: 2433-2443
        • Thanassoulis G.
        Lipoprotein (a) in calcific aortic valve disease: from genomics to novel drug target for aortic stenosis.
        J Lipid Res. 2016; 57: 917-924
        • Bae Y.S.
        • Lee J.H.
        • Choi S.H.
        • et al.
        Macrophages generate reactive oxygen species in response to minimally oxidized low-density lipoprotein: Toll-like receptor 4– and spleen tyrosine kinase–dependent activation of NADPH oxidase 2.
        Circ Res. 2009; 104: 210-218
        • Mody N.
        • Parhami F.
        • Sarafian T.A.
        • Demer L.L.
        Oxidative stress modulates osteoblastic differentiation of vascular and bone cells.
        Free Radic Biol Med. 2001; 31: 509-519
        • Liberman M.
        • Bassi E.
        • Martinatti M.K.
        • et al.
        Oxidant generation predominates around calcifying foci and enhances progression of aortic valve calcification.
        Arterioscler Thromb Vasc Biol. 2008; 28: 463-470
        • van der Valk F.M.
        • Bekkering S.
        • Kroon J.
        • et al.
        Oxidized phospholipids on lipoprotein(a) elicit arterial wall inflammation and an inflammatory monocyte response in humans.
        Circulation. 2016; 134: 611-624
        • Erqou S.
        • Kaptoge S.
        • et al.
        • Emerging Risk Factors Collaboration
        Lipoprotein(a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality.
        JAMA. 2009; 302: 412-423
        • CARDIOGRAMplusC4D Consortium DIAGRAM Consortium CARDIOGENICS Consortium
        • et al.
        Large-scale association analysis identifies new risk loci for coronary artery disease.
        Nat Genet. 2013; 45: 25-33
        • Cairns B.J.
        • Coffey S.
        • Travis R.C.
        • et al.
        A replicated, genome-wide significant association of aortic stenosis with a genetic variant for lipoprotein(a): meta-analysis of published and novel data.
        Circulation. 2017; 135: 1181-1183
        • Chen H.Y.
        • Dufresne L.
        • Burr H.
        • et al.
        Association of LPA variants with aortic stenosis: a large-scale study using diagnostic and procedural codes from electronic health records.
        JAMA Cardiol. 2018; 3: 18-23
        • Kamstrup P.R.
        • Tybjærg-Hansen A.
        • Nordestgaard B.G.
        Elevated lipoprotein(a) and risk of aortic valve stenosis in the general population.
        J Am Coll Cardiol. 2014; 63: 470-477
        • Helgadottir A.
        • Thorleifsson G.
        • Gretarsdottir S.
        • et al.
        Genome-wide analysis yields new loci associating with aortic valve stenosis.
        Nat Commun. 2018; 9: 987
        • Arsenault B.J.
        • Boekholdt S.M.
        • Dubé M.-P.
        • et al.
        Lipoprotein(a) levels, genotype, and incident aortic valve stenosis: a prospective mendelian randomization study and replication in a case-control cohort.
        Circ Cardiovasc Genet. 2014; 7: 304-310
        • Capoulade R.
        • Chan K.L.
        • Yeang C.
        • et al.
        Oxidized phospholipids, lipoprotein(a), and progression of calcific aortic valve stenosis.
        J Am Coll Cardiol. 2015; 66: 1236-1246
        • Zheng K.H.
        • Tsimikas S.
        • Pawade T.
        • et al.
        Lipoprotein(a) and oxidized phospholipids promote valve calcification in patients with aortic stenosis.
        J Am Coll Cardiol. 2019; 73: 2150-2162
        • Nielsen L.B.
        • Stender S.
        • Kjeldsen K.
        • Nordestgaard B.G.
        Specific accumulation of lipoprotein(a) in balloon-injured rabbit aorta in vivo.
        Circ Res. 1996; 78: 615-626
        • Miller J.D.
        • Weiss R.M.
        • Heistad D.D.
        Calcific aortic valve stenosis: methods, models, and mechanisms.
        Circ Res. 2011; 108: 1392-1412
        • Seimon T.A.
        • Nadolski M.J.
        • Liao X.
        • et al.
        Atherogenic lipids and lipoproteins trigger CD36-TLR2–dependent apoptosis in macrophages undergoing endoplasmic reticulum stress.
        Cell Metab. 2010; 12: 467-482
        • Hirsch D.
        • Azoury R.
        • Sarig S.
        • Kruth H.S.
        Colocalization of cholesterol and hydroxyapatite in human atherosclerotic lesions.
        Calcif Tissue Int. 1993; 52: 94-98
        • Rutkovskiy A.
        • Malashicheva A.
        • Sullivan G.
        • et al.
        Valve interstitial cells: the key to understanding the pathophysiology of heart valve calcification.
        JAHA. 2017; 6e006339
        • Yang X.
        • Fullerton D.A.
        • Su X.
        • et al.
        Pro-osteogenic phenotype of human aortic valve interstitial cells is associated with higher levels of Toll-like receptors 2 and 4 and enhanced expression of bone morphogenetic protein 2.
        J Am Coll Cardiol. 2009; 53: 491-500
        • Sucosky P.
        • Balachandran K.
        • Elhammali A.
        • Jo H.
        • Yoganathan A.P.
        Altered shear stress stimulates upregulation of endothelial VCAM-1 and ICAM-1 in a BMP-4– and TGF-β1–dependent pathway.
        Arterioscler Thromb Vasc Biol. 2009; 29: 254-260
        • El Husseini D.
        • Boulanger M.-C.
        • Mahmut A.
        • et al.
        P2Y2 receptor represses IL-6 expression by valve interstitial cells through Akt: implication for calcific aortic valve disease.
        J Mol Cell Cardiol. 2014; 72: 146-156
        • Sansoni P.
        • Passeri G.
        • Fagnoni F.
        • et al.
        Inhibition of antigen-presenting cell function by alendronate in vitro.
        J Bone Miner Res. 2009; 10: 1719-1725
        • Kaden J.J.
        • Bickelhaupt S.
        • Grobholz R.
        • et al.
        Receptor activator of nuclear factor κB ligand and osteoprotegerin regulate aortic valve calcification.
        J Mol Cell Cardiol. 2004; 36: 57-66
        • Liu A.C.
        • Joag V.R.
        • Gotlieb A.I.
        The emerging role of valve interstitial cell phenotypes in regulating heart valve pathobiology.
        Am J Pathol. 2007; 171: 1407-1418
        • Tintut Y.
        • Demer L.
        Role of osteoprotegerin and its ligands and competing receptors in atherosclerotic calcification.
        J Invest Med. 2006; 54: 395-401
        • Persy V.
        • d’Haese P.
        Vascular calcification and bone disease: the calcification paradox.
        Trends Mol Med. 2009; 15: 405-416
        • Bucay N.
        • Sarosi I.
        • Dunstan C.R.
        • et al.
        Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification.
        Genes Dev. 1998; 12: 1260-1268
        • Kado D.M.
        • Browner W.S.
        • Blackwell T.
        • Gore R.
        • Cummings S.R.
        Rate of bone loss is associated with mortality in older women: a prospective study.
        J Bone Miner Res. 2000; 15: 1974-1980
        • Pfister R.
        • Michels G.
        • Sharp S.J.
        • et al.
        Inverse association between bone mineral density and risk of aortic stenosis in men and women in EPIC-Norfolk prospective study.
        Int J Cardiol. 2015; 178: 29-30
        • Schurgers L.J.
        • Uitto J.
        • Reutelingsperger C.P.
        Vitamin K–dependent carboxylation of matrix Gla-protein: a crucial switch to control ectopic mineralization.
        Trends Mol Med. 2013; 19: 217-226
        • Price P.A.
        • Thomas G.R.
        • Pardini A.W.
        • et al.
        Discovery of a high molecular weight complex of calcium, phosphate, fetuin, and matrix γ-carboxyglutamic acid protein in the serum of etidronate-treated rats.
        J Biol Chem. 2002; 277: 3926-3934
        • O’Brien K.D.
        • Shavelle D.M.
        • Caulfield M.T.
        • et al.
        Association of angiotensin-converting enzyme with low-density lipoprotein in aortic valvular lesions and in human plasma.
        Circulation. 2002; 106: 2224-2230
        • Helske S.
        • Lindstedt K.A.
        • Laine M.
        • et al.
        Induction of local angiotensin II-producing systems in stenotic aortic valves.
        J Am Coll Cardiol. 2004; 44: 1859-1866
        • Helske S.
        • Syväranta S.
        • Kupari M.
        • et al.
        Possible role for mast cell–derived cathepsin G in the adverse remodelling of stenotic aortic valves.
        Eur Heart J. 2006; 27: 1495-1504
        • Peltonen T.
        • Näpänkangas J.
        • Ohtonen P.
        • et al.
        (Pro)renin receptors and angiotensin converting enzyme 2/angiotensin-(1-7)/Mas receptor axis in human aortic valve stenosis.
        Atherosclerosis. 2011; 216: 35-43
        • Glaser C.
        • Heinrich J.
        • Koletzko B.
        Role of FADS1 and FADS2 polymorphisms in polyunsaturated fatty acid metabolism.
        Metabolism. 2010; 59: 993-999
        • Ferrucci L.
        • Cherubini A.
        • Bandinelli S.
        • et al.
        Relationship of plasma polyunsaturated fatty acids to circulating inflammatory markers.
        J Clin Endocrinol Metab. 2006; 91: 439-446
        • Kalogeropoulos N.
        • Panagiotakos D.B.
        • Pitsavos C.
        • et al.
        Unsaturated fatty acids are inversely associated and n-6/n-3 ratios are positively related to inflammation and coagulation markers in plasma of apparently healthy adults.
        Clin Chim Acta. 2010; 411: 584-591
        • Harris W.S.
        • Miller M.
        • Tighe A.P.
        • Davidson M.H.
        • Schaefer E.J.
        Omega-3 fatty acids and coronary heart disease risk: clinical and mechanistic perspectives.
        Atherosclerosis. 2008; 197: 12-24
        • Hodson L.
        • Skeaff C.M.
        • Fielding B.A.
        Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake.
        Prog Lipid Res. 2008; 47: 348-380
        • Tanaka T.
        • Shen J.
        • Abecasis G.R.
        • et al.
        Genome-wide association study of plasma polyunsaturated fatty acids in the InCHIANTI study.
        PLoS Genet. 2009; 5e1000338
        • Guan W.
        • Steffen B.T.
        • Lemaitre R.N.
        • et al.
        Genome-wide association study of plasma n6 polyunsaturated fatty acids within the cohorts for heart and aging research in genomic epidemiology consortium.
        Circ Cardiovasc Genet. 2014; 7: 321-331
        • Chen H.Y.
        • Cairns B.J.
        • Small A.M.
        • et al.
        Association of FADS1/2 locus variants and polyunsaturated fatty acids with aortic stenosis.
        JAMA Cardiol. 2020; 5: 694-702
        • Lehti S.
        • Käkelä R.
        • Hörkkö S.
        • et al.
        Modified lipoprotein-derived lipid particles accumulate in human stenotic aortic valves.
        PLoS One. 2013; 8e65810
        • Kochtebane N.
        • Passefort S.
        • Choqueux C.
        • et al.
        Release of leukotriene B4, transforming growth factor-β1 and microparticles in relation to aortic valve calcification.
        J Heart Valve Dis. 2013; 22: 782-788
        • Jasińska M.
        • Owczarek J.
        • Orszulak-Michalak D.
        Statins: a new insight into their mechanisms of action and consequent pleiotropic effects.
        Pharmacol Rep. 2007; 59: 483-499
        • Teo K.K.
        • Corsi D.J.
        • Tam J.W.
        • Dumesnil J.G.
        • Chan K.L.
        Lipid lowering on progression of mild to moderate aortic stenosis: meta-analysis of the randomized placebo-controlled clinical trials on 2344 patients.
        Can J Cardiol. 2011; 27: 800-808
        • Dichtl W.
        • Alber H.F.
        • Feuchtner G.M.
        • et al.
        Prognosis and risk factors in patients with asymptomatic aortic stenosis and their modulation by atorvastatin (20 mg).
        Am J Cardiol. 2008; 102: 743-748
        • Dweck M.R.
        • Jones C.
        • Joshi N.V.
        • et al.
        Assessment of valvular calcification and inflammation by positron emission tomography in patients with aortic stenosis.
        Circulation. 2012; 125: 76-86
        • Marincheva-Savcheva G.
        • Subramanian S.
        • Qadir S.
        • et al.
        Imaging of the aortic valve using fluorodeoxyglucose positron emission tomography increased valvular fluorodeoxyglucose uptake in aortic stenosis.
        J Am Coll Cardiol. 2011; 57: 2507-2515
        • Puri R.
        • Nicholls S.J.
        • Shao M.
        • et al.
        Impact of statins on serial coronary calcification during atheroma progression and regression.
        J Am Coll Cardiol. 2015; 65: 1273-1282
        • Navarese E.P.
        • Kolodziejczak M.
        • Schulze V.
        • et al.
        Effects of proprotein convertase subtilisin/kexin type 9 antibodies in adults with hypercholesterolemia: a systematic review and meta-analysis.
        Ann Intern Med. 2015; 163: 40
        • O’Donoghue M.L.
        • Fazio S.
        • Giugliano R.P.
        • et al.
        Lipoprotein(a), PCSK9 inhibition, and cardiovascular risk: insights from the FOURIER trial.
        Circulation. 2019; 139: 1483-1492
        • Bittner V.A.
        • Szarek M.
        • Aylward P.E.
        • et al.
        Effect of alirocumab on lipoprotein(a) and cardiovascular risk after acute coronary syndrome.
        J Am Coll Cardiol. 2020; 75: 133-144
        • Tsimikas S.
        • Viney N.J.
        • Hughes S.G.
        • et al.
        Antisense therapy targeting apolipoprotein(a): a randomised, double-blind, placebo-controlled phase 1 study.
        Lancet. 2015; 386: 1472-1483
        • Afshar M.
        • Kamstrup P.R.
        • Williams K.
        • et al.
        Estimating the population impact of Lp(a) lowering on the incidence of myocardial infarction and aortic stenosis—brief report.
        Arterioscler Thromb Vasc Biol. 2016; 36: 2421-2423
        • Page M.M.
        • Watts G.F.
        PCSK9 inhibitors—mechanisms of action.
        Aust Prescr. 2016; 39: 164-167
        • Bergmark B.A.
        • O’Donoghue M.L.
        • Murphy S.A.
        • et al.
        An exploratory analysis of proprotein convertase subtilisin/kexin type 9 inhibition and aortic stenosis in the FOURIER trial.
        JAMA Cardiol. 2020; 5: 709-713
        • Szarek M.
        • Bittner V.A.
        • Aylward P.
        • et al.
        Lipoprotein(a) lowering by alirocumab reduces the total burden of cardiovascular events independent of low-density lipoprotein cholesterol lowering: ODYSSEY OUTCOMES trial.
        Eur Heart J. 2020; 41: 4245-4255
        • Rinaldi C.
        • Wood M.J.A.
        Antisense oligonucleotides: the next frontier for treatment of neurological disorders.
        Nat Rev Neurol. 2018; 14: 9-21
        • Katzmann J.L.
        • Packard C.J.
        • Chapman M.J.
        • Katzmann I.
        • Laufs U.
        Targeting RNA with antisense oligonucleotides and small interfering RNA in dyslipidemias.
        J Am Coll Cardiol. 2020; 76: 563-579
        • Crooke S.T.
        • Witztum J.L.
        • Bennett C.F.
        • Baker B.F.
        RNA-targeted therapeutics.
        Cell Metab. 2018; 27: 714-739
        • Wittrup A.
        • Lieberman J.
        Knocking down disease: a progress report on siRNA therapeutics.
        Nat Rev Genet. 2015; 16: 543-552
        • Viney N.J.
        • van Capelleveen J.C.
        • Geary R.S.
        • et al.
        Antisense oligonucleotides targeting apolipoprotein(a) in people with raised lipoprotein(a): two randomised, double-blind, placebo-controlled, dose-ranging trials.
        Lancet. 2016; 388: 2239-2253
        • Tsimikas S.
        • Karwatowska-Prokopczuk E.
        • Gouni-Berthold I.
        • et al.
        Lipoprotein(a) reduction in persons with cardiovascular disease.
        N Engl J Med. 2020; 382: 244-255
        • Kramsch D.M.
        • Chan C.T.
        The effect of agents interfering with soft tissue calcification and cell proliferation on calcific fibrous-fatty plaques in rabbits.
        Circ Res. 1978; 42: 562-571
        • Rosenblum I.Y.
        • Flora L.
        • Eisenstein R.
        The effect of disodium ethane-1-hydroxy-1,1-diphosphonate (EHDP) on a rabbit model of athero-arteriosclerosis.
        Atherosclerosis. 1975; 22: 411-424
        • Price P.A.
        • Faus S.A.
        • Williamson M.K.
        Bisphosphonates alendronate and ibandronate inhibit artery calcification at doses comparable to those that inhibit bone resorption.
        Arterioscler Thromb Vasc Biol. 2001; 21: 817-824
        • Synetos A.
        • Toutouzas K.
        • Drakopoulou M.
        • et al.
        Inhibition of aortic valve calcification by local delivery of zoledronic acid—an experimental study.
        J Cardiovasc Trans Res. 2018; 11: 192-200
        • Lai T.
        • Hsu S.
        • Li T.
        • et al.
        Alendronate inhibits cell invasion and MMP-2 secretion in human chondrosarcoma cell line.
        Acta Pharmacol Sin. 2007; 28: 1231-1235
        • Giraudo E.
        • Inoue M.
        • Hanahan D.
        An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis.
        J Clin Invest. 2004; 114: 623-633
        • Elmariah S.
        • Delaney J.A.C.
        • O’Brien K.D.
        • et al.
        Bisphosphonate use and prevalence of valvular and vascular calcification in women MESA (the Multi-Ethnic Study of Atherosclerosis).
        J Am Coll Cardiol. 2010; 56: 1752-1759
        • Innasimuthu A.L.
        • Katz W.E.
        Effect of bisphosphonates on the progression of degenerative aortic stenosis.
        Echocardiography. 2011; 28: 1-7
        • Skolnick A.H.
        • Osranek M.
        • Formica P.
        • Kronzon I.
        Osteoporosis treatment and progression of aortic stenosis.
        Am J Cardiol. 2009; 104: 122-124
        • Sterbakova G.
        • Vyskocil V.
        • Linhartova K.
        Bisphosphonates in calcific aortic stenosis: association with slower progression in mild disease—a pilot retrospective study.
        Cardiology. 2010; 117: 184-189
        • Aksoy O.
        • Cam A.
        • Goel S.S.
        • et al.
        Do bisphosphonates slow the progression of aortic stenosis?.
        J Am Coll Cardiol. 2012; 59: 1452-1459
        • Dweck M.R.
        • Newby D.E.
        Osteoporosis is a major confounder in observational studies investigating bisphosphonate therapy in aortic stenosis.
        J Am Coll Cardiol. 2012; 60: 1027
        • Helas S.
        • Goettsch C.
        • Schoppet M.
        • et al.
        Inhibition of receptor activator of NF-κB ligand by denosumab attenuates vascular calcium deposition in mice.
        Am J Pathol. 2009; 175: 473-478
        • Brandenburg V.M.
        • Reinartz S.
        • Kaesler N.
        • et al.
        Slower progress of aortic valve calcification with vitamin K supplementation: results from a prospective interventional proof-of-concept study.
        Circulation. 2017; 135: 2081-2083
        • Thanassoulis G.
        • Massaro J.M.
        • Cury R.
        • et al.
        Associations of long-term and early adult atherosclerosis risk factors with aortic and mitral valve calcium.
        J Am Coll Cardiol. 2010; 55: 2491-2498
        • Tastet L.
        • Capoulade R.
        • Clavel M.-A.
        • et al.
        Systolic hypertension and progression of aortic valve calcification in patients with aortic stenosis: results from the PROGRESSA study.
        Eur Heart J Cardiovasc Imaging. 2017; 18: 70-78
        • Hachicha Z.
        • Dumesnil J.G.
        • Pibarot P.
        Usefulness of the valvuloarterial impedance to predict adverse outcome in asymptomatic aortic stenosis.
        J Am Coll Cardiol. 2009; 54: 1003-1011
        • Ziori H.
        • Kyriakidis M.
        • Zioris H.
        • et al.
        The effects of enalapril on p53 expression in left ventricular cardiomyocytes after aortic stenosis.
        In Vivo. 2006; 20: 459-465
        • Grimm D.
        • Kromer E.P.
        • Böcker W.
        • et al.
        Regulation of extracellular matrix proteins in pressure-overload cardiac hypertrophy: effects of angiotensin converting enzyme inhibition.
        J Hypertens. 1998; 16: 1345-1355
        • Dahl J.S.
        • Videbaek L.
        • Poulsen M.K.
        • et al.
        Effect of candesartan treatment on left ventricular remodeling after aortic valve replacement for aortic stenosis.
        Am J Cardiol. 2010; 106: 713-719
        • Ngo D.T.
        • Stafford I.
        • Sverdlov A.L.
        • et al.
        Ramipril retards development of aortic valve stenosis in a rabbit model: mechanistic considerations: ramipril retards development of aortic valve stenosis.
        Br J Pharmacol. 2011; 162: 722-732
        • Chockalingam A.
        • Venkatesan S.
        • Subramaniam T.
        • et al.
        Safety and efficacy of angiotensin-converting enzyme inhibitors in symptomatic severe aortic stenosis: Symptomatic Cardiac Obstruction—Pilot Study of Enalapril in Aortic Stenosis (SCOPE-AS).
        Am Heart J. 2004; 147: 740
        • Dalsgaard M.
        • Iversen K.
        • Kjaergaard J.
        • et al.
        Short-term hemodynamic effect of angiotensin-converting enzyme inhibition in patients with severe aortic stenosis.
        Am Heart J. 2014; 167: 226-234
        • Capoulade R.
        • Clavel M.-A.
        • Mathieu P.
        • et al.
        Impact of hypertension and renin-angiotensin system inhibitors in aortic stenosis.
        Eur J Clin Invest. 2013; 43: 1262-1272
        • Côté N.
        • Couture C.
        • Pibarot P.
        • Després J.-P.
        • Mathieu P.
        Angiotensin receptor blockers are associated with a lower remodelling score of stenotic aortic valves: angiotensin receptor blockers and aortic stenosis.
        Eur J Clin Invest. 2011; 41: 1172-1179
        • Mason R.P.
        • Libby P.
        • Bhatt D.L.
        Emerging mechanisms of cardiovascular protection for the omega-3 fatty acid eicosapentaenoic acid.
        Arterioscler Thromb Vasc Biol. 2020; 40: 1135-1147
        • Budoff M.J.
        • Bhatt D.L.
        • Kinninger A.
        • et al.
        Effect of icosapent ethyl on progression of coronary atherosclerosis in patients with elevated triglycerides on statin therapy: final results of the EVAPORATE trial.
        Eur Heart J. 2020; 41: 3925-3932
        • Bhatt D.L.
        • Steg P.G.
        • Miller M.
        • et al.
        Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia.
        N Engl J Med. 2019; 380: 11-22
        • Borow K.M.
        • Nelson J.R.
        • Mason R.P.
        Biologic plausibility, cellular effects, and molecular mechanisms of eicosapentaenoic acid (EPA) in atherosclerosis.
        Atherosclerosis. 2015; 242: 357-366