Advertisement
Canadian Journal of Cardiology
Clinical Research| Volume 37, ISSUE 10, P1578-1585, October 2021

The Effect of Artificial Pulsatility on the Peripheral Vasculature in Patients With Continuous-Flow Ventricular Assist Devices

      Abstract

      Background

      Implantation of left-ventricular assist systems (LVASs) has become the standard of care for advanced heart failure (HF). The absence of pulsatility in previous devices contributes to vascular and endothelial dysfunction related to atherosclerotic or vascular complications. We hypothesized that the artificial pulsatility provided by the HeartMate 3 (HM3) (Abbott, Chicago, IL) LVAS would exert a favourable effect on the vasculature.

      Methods

      In 32 patients implanted with HM3 (5 female patients, mean age 55 ± 13.6 years), the reactive hyperemia index (RHI) and peripheral augmentation index (AI), markers of endothelial function and arterial stiffness, were measured with an EndoPAT2000 before and in the third and sixth month after implantation. RHI and AI data from 30 HeartMate II (HM II) (Abbott) recipients in the third and sixth month after implantation, from 15 patients with advanced HF without LVASs and from 13 healthy volunteers were also analyzed.

      Results

      In HM3 recipients, the mean RHI significantly decreased at 3 and 6 months after implantation. The RHI was substantially lower at baseline than that of healthy or the HF reference group. Increasing AI values, indicating worsening arterial stiffness, were also observed. Similar trends were observed in HM II recipients between the third and sixth months but with higher absolute values of RHI and AI.

      Conclusions

      We detected impaired vascular function in HM3 patients and provided additional evidence on the negative effect of low pulsatility on vascular function after LVAS implantation. The results suggest that the artificial pulsatility of the HM3 does not avert the progression of endothelial dysfunction.

      Résumé

      Contexte

      L'implantation de dispositifs d'assistance ventriculaire gauche (DAVG) est devenue un standard des soins pour une insuffisance cardiaque (IC) avancée. L'absence de pulsatilité dans les dispositifs précédents contribue à la dysfonction vasculaire et endothéliale liée aux complications athérosclérotiques ou vasculaires. Nous avons émis l'hypothèse que la pulsatilité artificielle fournie par le DAVG HeartMate 3 (HM3) (Abbott, Chicago, IL) entraînerait un effet bénéfique sur le système vasculaire.

      Méthodes

      Chez 32 patients implantés avec le HM3 (5 femmes, âge moyen 55 ± 13,6 ans), l'indice d'hyperémie réactive (IHR) et l'indice d'amplification périphérique (IAP), marqueurs de la fonction endothéliale et de la rigidité artérielle, ont été mesurés par un EndoPAT2000 avant puis trois et six mois après implantation. Les données IHR et IAP de 30 patients porteurs de HeartMate II (HM II) (Abbott) au troisième et sixième mois post-implantation, de 15 patients atteints d'une IC avancée sans DAVG et de 13 volontaires sains ont également été analysées.

      Résultats

      Chez les receveurs du HM3, l'IHR moyen a significativement diminué trois et six mois après implantation. L'IHR basal était sensiblement plus faible que celui des personnes en bonne santé ou du groupe IC de référence. Des valeurs croissantes de l'IAP, indiquant une exacerbation de la rigidité artérielle, ont également été observées. Des tendances similaires ont été constatées chez les receveurs du HM II entre le troisième et le sixième mois, mais avec des valeurs absolues de l'IHR et de l'IAP plus élevées.

      Conclusions

      Nous avons décelé une fonction vasculaire altérée chez les patients porteurs du HM3 et fourni des éléments supplémentaires de l'effet négatif d'une faible pulsatilité sur la fonction vasculaire après l'implantation d'un DAVG. Les résultats suggèrent que la pulsatilité artificielle du HM3 n'empêche pas la progression de la dysfonction endothéliale.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Aleksova N
        • Chih S.
        The role of durable left ventricular assist devices in advanced heart failure: would my patient benefit?.
        Can J Cardiol. 2017; 33: 540-554
        • Lewis K
        • Harkness K
        • MacIver J.
        Destination therapy: left ventricular assist devices: recommendations for the way forward.
        Can J Cardiol. 2019; 35: S199
        • Hasin T
        • Matsuzawa Y
        • Guddetti RR
        • et al.
        Attenuation in peripheral endothelial function after continuous flow left ventricular assist device therapy is associated with cardiovascular adverse events.
        Circ J. 2015; 79: 770-777
        • Amir O
        • Radovancevic B
        • Delgado RM
        • et al.
        Peripheral vascular reactivity in patients with pulsatile vs axial flow left ventricular assist device support.
        J Heart Lung Transplant. 2006; 25: 391-394
        • Witman MA
        • Garten RS
        • Gifford JR
        • et al.
        Further peripheral vascular dysfunction in heart failure patients with a continuous-flow left ventricular assist device: the role of pulsatility.
        JACC Heart Fail. 2015; 9: 703-711
        • John R
        • Panch S
        • Hrabe J
        • et al.
        Activation of endothelial and coagulation systems in left ventricular assist device recipients.
        Ann Thorac Surg. 2009; 88: 1171-1179
        • Martin BJ
        • Anderson TJ.
        Risk prediction in cardiovascular disease: the prognostic singnificance of endothelial dysfunction.
        Can J Cardiol. 2009; 25: 15A-20A
        • Willey JZ
        • Demmer RT
        • Takayama H
        • Colombo PC
        • Lazar RM.
        Cerebrovascular disease in the era of left ventricular assist devices with continuous flow: risk factors, diagnosis, and treatment.
        J Heart Lung Transplant. 2014; 33: 878-887
        • Jabbar HR
        • Abbas A
        • Ahmed M
        • et al.
        The incidence, predictors and outcomes of gastrointestinal bleeding in patients with left ventricular assist device (LVAD).
        Dig Dis Sci. 2015; 60: 3697-3706
        • Bourque K
        • Dague C
        • Farrar D
        • et al.
        In vivo assessment of a rotary left ventricular assist device-induced artificial pulse in the proximal and distal aorta.
        Artif Organs. 2006; 30: 638-642
        • Ising M
        • Warren S
        • Sobieski MA
        • et al.
        Flow modulation algorithms for continuous flow left ventricular assist devices to increase vascular pulsatility: a computer simulation study.
        Cardiovasc Eng Technol. 2011; 2: 90-100
        • Soucy K
        • Giridharan GA
        • Choi Y
        • et al.
        Rotary pump speed modulation for generating pulsatile flow and phasic left ventricular volume unloading in a bovine model of chronic ischemic heart failure.
        J Heart Lung Transplant. 2015; 34: 122-131
        • Guihaire J
        • Haddad F
        • Hoppenfeld M
        • et al.
        Physiology of the assisted circulation in cardiogenic shock: a state-of-the-art perspective.
        Can J Cardiol. 2020; 36: 170-183
        • Mehra M
        • Uriel N
        • Naka Y
        • et al.
        A fully magnetically levitated left ventricular assist device: final report.
        N Engl J Med. 2019; 380: 1618-1627
        • Kuvin JT
        • Patel AR
        • Sliney KA
        • et al.
        Assessment of peripheral vascular endothelial function with finger arterial pulse wave amplitude.
        Am Heart J. 2003; 146: 168-174
        • Flammer AJ
        • Anderson T
        • Celermajer DS
        • et al.
        The assessment of endothelial function: from research into clinical practice.
        Circulation. 2012; 126: 753-767
        • Axtell AL
        • Gomari FA
        • Cooke JP.
        Assessing endothelial vasodilator function with the Endo-PAT2000.
        J Vis Exp. 2010; : 2167
        • Yang WI
        • Park S
        • Youn JC
        • et al.
        Augmentation index association with reactive hyperemia as assessed by peripheral arterial tonometry in hypertension.
        Am J Hypertens. 2011; 24: 1234-1238
        • Moerland M
        • Kales AJ
        • Schrier L
        • et al.
        Evaluation of the EndoPAT as a tool to assess endothelial function.
        Int J Vasc Med. 2012; 2012904141
        • Khan T
        • Levin H R
        • Oz M C
        • Katz SD.
        Delayed reversal of impaired metabolic vasodilation in patients with end-stage heart failure during long-term circulatory support with a left ventricular assist device.
        J Heart Lung Transplant. 1997; 16: 449-453
        • Drakos S G
        • Kfoury A G
        • Hammond E H
        • et al.
        Impact of mechanical unloading on microvascular and associated central remodeling features of the failing human heart.
        J Am Coll Cardiol. 2010; 56: 382-391
        • Poredos P
        • Mateja K.
        • Jezovnik MK
        • Radovancevic R
        • Gregoric ID.
        Endothelial function in patients with continuous-flow left ventricular assist devices.
        Angiology. 2020; 63319720946977
        • Lou X
        • Templeton DL
        • John R
        • Dengel DR
        Effects of continuous flow left ventricular assist device support on microvascular endothelial function.
        J Cardiovasc Transl Res. 2012; 5: 345-350
        • Hutcheson IR
        • Griffith TM.
        Release of endothelium-derived relaxing factor is modulated both by frequency and amplitude of pulsatile flow.
        Am J Physiol. 1991; 261: H257-H262
        • Busse R
        • Fleming I.
        Pulsatile stretch and shear stress: physical stimuli determining the production of endothelium-derived relaxing factors.
        J Vasc Res. 1998; 35: 73-84
        • Nakata M
        • Tatsumi E
        • Tsukiya T
        • et al.
        Augmentative effect of pulsatility on the wall shear stress in tube flow.
        Artif Organs. 1999; 23: 727-731
        • Sharman JE
        • Davies JE
        • Jenkins C
        • Marwick TH.
        Augmentation index, left ventricular contractility, and wave reflection.
        Hypetension. 2009; 54: 1099-1105
        • Tesauro M
        • Mauriello A
        • Rovella V
        • et al.
        Arterial ageing: from endothelial dysfunction to vascular calcification.
        J Intern Med. 2017; 281: 471-482
        • Patel AC
        • Dodson RB
        • Cornwell WK
        • et al.
        Dynamic changes in aortic vascular stiffness in patients bridged to transplant with continuous-flow left ventricular assist devices.
        JACC Heart Fail. 2017; 5: 449-459