Advertisement
Canadian Journal of Cardiology
Clinical Research| Volume 37, ISSUE 11, P1790-1797, November 2021

Alternative to Body Surface Area as a Solution to Correct Systematic Bias in Pediatric Echocardiography z Scores

      ABSTRACT

      Background

      Z scores are the method of choice to report dimensions in pediatric echocardiography. Z scores based on body surface area (BSA) have been shown to cause systematic biases in overweight and obese children. Using aortic valve (AoV) diameters as a paradigm, the aims of this study were to assess the magnitude of z score underestimation in children with increased body mass index z score (BMI-z) and to determine if a predicting model with height and weight as independent predictors would minimise this bias.

      Methods

      In this multicentre, retrospective, cross-sectional study, 15,006 normal echocardiograms in healthy children 1-18 years old were analyzed. Residual associations with body size were assessed for previously published z score. BSA-based and alternate prediction models based on height and weight were developed and validated in separate training and validation samples.

      Results

      Existing BSA-based z scores incompletely adjusted for weight, BSA, and BMI-z and led to an underestimation of > 0.8 z score units in subjects with higher BMI-z compared with lean subjects. BSA-based models led to overestimation of predicted AoV diameters with increasing weight or BMI-z. Models using height and weight as independent predictors improved adjustment with body size, including in children with higher BMI-z.

      Conclusions

      BSA-based models result in underestimation of z scores in patients with high BMI-z. Prediction models using height and weight as independent predictors minimise residual associations with body size and generate well fitted predicted values that could apply to all children, including those with low or high BMI-z.

      RÉSUMÉ

      Contexte

      Les scores z sont la méthode de choix pour rapporter les mesures faites à l’échocardiographie pédiatrique. Il a été montré que les scores z basés sur la surface corporelle étaient associés à des biais systématiques chez les enfants en surpoids et obèses. En utilisant comme paradigme le diamètre de la valve aortique, les auteurs de cette étude ont voulu évaluer l'ampleur de la sous-estimation des scores z chez les enfants avec un score z de l'indice de masse corporelle (IMC-z) élevé, et déterminer si un modèle prédictif utilisant la taille et le poids comme variables prédictives indépendantes pouvait minimiser ce biais.

      Méthodologie

      Dans cette étude transversale, rétrospective et multicentrique, 15 006 échocardiogrammes normaux d'enfants en bonne santé et âgés de 1 à 18 ans ont été analysés. Les associations résiduelles avec la taille corporelle ont été évaluées par rapport aux scores z déjà publiés. Des modèles basés sur la surface corporelle et d'autres modèles basés sur la taille et le poids ont été conçus et validés à l'aide d'échantillons d'apprentissage et de validation distincts.

      Résultats

      Les scores z existants basés sur la surface corporelle ne permettent qu'un ajustement partiel du poids, de la surface corporelle et de l'IMC-z, et ont entraîné une sous-estimation de plus de 0,8 unité du score z chez les sujets dont l'IMC-z est élevés, comparativement aux sujets sans surpoids. Les modèles basés sur la surface corporelle ont entraîné une surestimation des diamètres prédits de la valve aortique lorsque les valeurs du poids ou de l'IMC-z augmentaient. Des modèles utilisant la taille et le poids comme facteurs prédictifs indépendants ont permis d'améliorer l'ajustement en fonction de la taille corporelle, y compris chez les enfants dont l'IMC-z est plus élevé.

      Conclusions

      Les modèles basés sur la surface corporelle entraînent une sous-estimation des scores z chez les patients dont l'IMC-z est élevé. Les modèles prédictifs utilisant la taille et le poids comme facteurs prédictifs indépendants permettent de minimiser les associations résiduelles avec la taille corporelle, et produisent des valeurs prédites mieux ajustées pouvant être appliquées à tous les enfants, y compris ceux dont l'IMC-z est faible ou élevé.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Colan SD.
        The why and how of z scores.
        J Am Soc Echocardiogr. 2013; 26: 38-40
        • Blais S
        • Berbari J
        • Counil FP
        • Dallaire F.
        A systematic review of reference values in pediatric cardiopulmonary exercise testing.
        Pediatr Cardiol. 2015; 36: 1553-1564
        • Dallaire F
        • Bigras JL
        • Prsa M
        • Dahdah N.
        Bias related to body mass index in pediatric echocardiographic z scores.
        Pediatr Cardiol. 2015; 36: 667-676
        • Dallaire F
        • Sarkola T.
        Growth of cardiovascular structures from the fetus to the young adult.
        Adv Exp Med Biol. 2018; 1065: 347-360
        • Mawad W
        • Drolet C
        • Dahdah N
        • Dallaire F.
        A review and critique of the statistical methods used to generate reference values in pediatric echocardiography.
        J Am Soc Echocardiogr. 2013; 26: 29-37
        • Cantinotti M
        • Kutty S
        • Franchi E
        • et al.
        Pediatric echocardiographic nomograms: what has been done and what still needs to be done.
        Trends Cardiovasc Med. 2017; 27: 336-349
        • Cantinotti M
        • Scalese M
        • Molinaro S
        • Murzi B
        • Passino C.
        Limitations of current echocardiographic nomograms for left ventricular, valvular and arterial dimensions in children: a critical review.
        J Am Soc Echocardiogr. 2012; 25: 142-152
        • Sluysmans T
        • Colan SD.
        Theoretical and empirical derivation of cardiovascular allometric relationships in children.
        J Appl Physiol. 2005; 99: 445-457
        • Foster BJ
        • Gao T
        • Mackie AS
        • et al.
        Limitations of expressing left ventricular mass relative to height and to body surface area in children.
        J Am Soc Echocardiogr. 2012; 26: 410-418
        • Cantinotti M
        • Giordano R
        • Scalese M
        • et al.
        Nomograms for two-dimensional echocardiography derived valvular and arterial dimensions in caucasian children.
        J Cardiol. 2017; 69: 208-215
        • Lopez L
        • Colan S
        • Stylianou M
        • et al.
        Relationship of echocardiographic z scores adjusted for body surface area to age, sex, race, and ethnicity: the Pediatric Heart Network Normal Echocardiogram Database.
        Circ Cardiovasc Imaging. 2017; 10
        • Dallaire F
        • Battista M-C
        • Greenway SC
        • et al.
        The Canadian Pediatric Cardiology Research Network: a model national data-sharing organization to facilitate the study of pediatric heart diseases.
        CJC Open. 2021; 3: 510-515
        • Harris PA
        • Taylor R
        • Thielke R
        • Payne J
        • Gonzalez N
        • Conde JG.
        Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support.
        J Biomed Inform. 2009; 42: 377-381
        • Grotenhuis HB
        • Dallaire F
        • Verpalen IM
        • van den Akker MJE
        • Mertens L
        • Friedberg MK.
        Aortic root dilatation and aortic-related complications in children after tetralogy of Fallot repair.
        Circ Cardiovasc Imaging. 2018; 11e007611
        • Haycock GB
        • Schwartz GJ
        • Wisotsky DH.
        Geometric method for measuring body surface area: a height-weight formula validated in infants, children, and adults.
        J Pediatr. 1978; 93: 62-66
        • de Onis M
        • Garza C
        • Victora CG
        • et al.
        The WHO Multicentre Growth Reference Study: planning, study design, and methodology.
        Food Nutr Bull. 2004; 25: S15-S26
        • de Onis M
        • Onyango AW
        • Borghi E
        • et al.
        Development of a WHO growth reference for school-aged children and adolescents.
        Bull World Health Organ. 2007; 85: 660-667
        • Blanchard J
        • Blais S
        • Chetaille P
        • et al.
        New reference values for cardiopulmonary exercise testing in children.
        Med Sci Sports Exerc. 2018; 50: 1125-1133
        • Cardinal MP
        • Blais S
        • Dumas A
        • et al.
        Novel z scores to correct biases due to ventricular volume indexing to body surface area in adolescents and young adults.
        Can J Cardiol. 2020;
        • Rao DP
        • Kropac E
        • Do MT
        • Roberts KC
        • Jayaraman GC.
        Childhood overweight and obesity trends in Canada.
        Health Promot Chronic Dis Prev Can. 2016; 36: 194-198
        • Kumar S
        • Kelly AS.
        Review of childhood obesity: from epidemiology, etiology, and comorbidities to clinical assessment and treatment.
        Mayo Clin Proc. 2017; 92: 251-265
        • Torigoe T
        • Dallaire F
        • Slorach C
        • et al.
        New comprehensive reference values for arterial vascular parameters in children.
        J Am Soc Echocardiogr. 2020; 33 (1014-22.e1014)