Advertisement
Canadian Journal of Cardiology
Review| Volume 37, ISSUE 11, P1818-1827, November 2021

The Rapidly-Developing Area of Radiocardiology: Principles, Complications and Applications of Radiotherapy on the Heart

      Abstract

      Ventricular arrhythmias are the leading cause of sudden cardiac death. Current treatment strategies for ventricular tachycardia, including antiarrhythmic drugs and catheter ablation, have limited efficacy in patients with structural heart disease. Noninvasive ablation with the use of externally applied radiation (cardiac radioablation) has emerged as a promising and novel approach to treating recurrent ventricular tachycardias. However, the heart is generally an “organ at risk” for radiation treatments, such that very little is known on the effects of radiotherapy on cardiac ultrastructure and electrophysiologic properties. Furthermore, there has been limited interaction between the fields of cardiology and radiation oncology and physics. The advent of cardiac radioablation will undoubtedly increase interactions between cardiologists, cardiac electrophysiologists, radiation oncologists and physicists. There is an important knowledge gap separating these specialties, but scientific developments, technical optimisation, and improvements depend on intense multidisciplinary collaboration. This manuscript seeks to review the basic of radiation physics and biology for cardiovascular specialists in an effort to facilitate constructive scientific and clinical collaborations to improve patient outcomes.

      Résumé

      Les arythmies ventriculaires sont la principale cause de mort subite d'origine cardiaque. Les stratégies de traitement actuelles des tachycardies ventriculaires, y compris les antiarythmiques et l’ablation par cathéter, sont peu efficaces chez les patients atteints d’une cardiopathie structurelle. L’ablation non invasive au moyen d’un rayonnement externe (ablation cardiaque par radiofréquence) est une nouvelle approche prometteuse pour traiter les tachycardies ventriculaires récurrentes. Cependant, le cœur est généralement un organe vulnérable à la radiothérapie, de sorte qu’on en sait très peu sur les effets de la radiothérapie sur l’ultrastructure cardiaque et les propriétés électrophysiologiques. Qui plus est, il y a peu d’interactions entre les domaines de la cardiologie, de la radio-oncologie et de la physique. L’avènement de l’ablation cardiaque par radiofréquence fera sans aucun doute augmenter les interactions entre les cardiologues, les cardiologues-électrophysiologues, les radio-oncologues et les physiciens. Un manque de connaissances important sépare ces spécialités, mais les avancées scientifiques, l’optimisation technique et les améliorations dépendent de collaborations multidisciplinaires étroites. Ce mémoire cherche à examiner les fondements de la physique des rayonnements et de la biologie pour les spécialistes des maladies cardiovasculaires dans le but de favoriser les collaborations cliniques et scientifiques constructives afin d’améliorer les résultats pour les patients.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Connell P.P.
        • Hellman S.
        Advances in radiotherapy and implications for the next century: a historical perspective.
        Cancer Res. 2009; 6: 383-392
        • Desai M.Y.
        • Windecker S.
        • Lancellotti P.
        • et al.
        Prevention, diagnosis, and management of radiation-associated cardiac disease: JACC Scientific Expert Panel.
        J Am Coll Cardiol. 2019; 7: 905-927
        • Cvek J.
        • Neuwirth R.
        • Knybel L.
        • Molenda L.
        • Otahal B.
        • Pindor J.
        • et al.
        Cardiac radiosurgery for malignant ventricular tachycardia.
        Cureus. 2014; 6: 7
        • Loo Jr., B.W.
        • Soltys S.G.
        • Wang L.
        • et al.
        Stereotactic ablative radiotherapy for the treatment of refractory cardiac ventricular arrhythmia.
        Circ Arrhythm Electrophysiol. 2015; 8: 748-750
        • Monroy E.
        • Azpiri J.
        • de la Pena C.
        • et al.
        Late gadolinium enhancement cardiac magnetic resonance imaging post-robotic radiosurgical pulmonary vein isolation (RRPVI): first case in the world.
        Cureus. 2016; 8: e738
        • Cuculich P.S.
        • Schill M.R.
        • Kashani R.
        • et al.
        Noninvasive cardiac radiation for ablation of ventricular tachycardia.
        N Engl J Med. 2017; 3: 2325-2336
        • Zei P.C.
        • Soltys S.
        Ablative radiotherapy as a noninvasive alternative to catheter ablation for cardiac arrhythmias.
        Curr Cardiol Rep. 2017; 1: 79
        • Jumeau R.
        • Ozsahin M.
        • Schwitter J.
        • et al.
        Rescue procedure for an electrical storm using robotic noninvasive cardiac radio-ablation.
        Radiother Oncol. 2018; 1: 189-191
        • Haskova J.
        • Peichl P.
        • Pirk J.
        • et al.
        Stereotactic radiosurgery as a treatment for recurrent ventricular tachycardia associated with cardiac fibroma.
        HeartRhythm Case Rep. 2019; 5: 44-47
        • Robinson C.G.
        • Samson P.P.
        • Moore K.M.S.
        • et al.
        Phase I/II trial of electrophysiology-guided noninvasive cardiac radioablation for ventricular tachycardia.
        Circulation. 2019; 1: 313-321
        • Neuwirth R.
        • Cvek J.
        • Knybel L.
        • et al.
        Stereotactic radiosurgery for ablation of ventricular tachycardia.
        Europace. 2019; 2: 1088-1095
        • Zeng L.J.
        • Huang L.H.
        • Tan H.
        • et al.
        Stereotactic body radiation therapy for refractory ventricular tachycardia secondary to cardiac lipoma: a case report.
        Pacing Clin Electrophysiol. 2019; 4: 1276-1279
        • Marti-Almor J.
        • Jimenez-Lopez J.
        • Rodriguez de Dios N.
        • et al.
        Noninvasive ablation of ventricular tachycardia with stereotactic radiotherapy in a patient with arrhythmogenic right ventricular cardiomyopathy.
        Rev Esp Cardiol (Engl Ed). 2020; 7: 97-99
        • Zei P.
        • Soltys S.
        • Loo B.
        • et al.
        First-in-man treatment of arrhythmia (ventricular tachycardia) using stereotactic radiosurgery.
        Heart Rhythm. 2013; 1: 1-554
        • Gianni C.
        • Rivera D.
        • Burkhardt J.D.
        • et al.
        Stereotactic arrhythmia radioablation for refractory scar-related ventricular tachycardia.
        Heart Rhythm. 2020;
        • Qian P.C.
        • Azpiri J.R.
        • Assad J.
        • et al.
        Noninvasive stereotactic radioablation for the treatment of atrial fibrillation: first-in-man experience.
        J Arrhythm. 2020; 3: 67-74
        • Shoji M.
        • Inaba K.
        • Itami J.
        • et al.
        Advantages and challenges for noninvasive atrial fibrillation ablation.
        J Interv Card Electrophysiol. 2020;
        • Rontgen W.C.
        On a new kind of rays.
        Science. 1896; 3: 227-231
        • Despeignes V.
        Observation concernant un cas de cancer de l’estomac traité par les rayons rontgen.
        Lyon Med. 1896; 82: 428-430
        • Regaud C.
        • Blanc J.
        The teratogenic action of X rays on seminal cells.
        C R Seances Soc Biol Fil. 1906; 6: 390-392
        • Bergonie J.
        • Tribondeau L.
        Interpretation of a few results of radiotherapy and fixation test of a rational technique.
        C R Hebd Seances Acad Sci. 1906; 1: 983-985
        • Muller H.J.
        Artificial transmutation of the gene.
        Science. 1927; 66: 84-87
        • Fletcher G.H.
        Keynote address: The scientific basis of the present and future practice of clinical radiotherapy.
        Int J Radiat Oncol Biol Phys. 1983; 9: 1073-1082
        • Prosnitz L.R.
        • Kapp D.S.
        • Weissberg J.B.
        Radiotherapy. N Engl J Med. 1983; 3: 771-777
        • Leksell L.
        Stereotactic radiosurgery.
        J Neurol Neurosurg Psychiatry. 1983; 4: 797-803
        • Lichter A.S.
        • Lawrence T.S.
        Recent advances in radiation oncology.
        N Engl J Med. 1995; 3: 371-379
        • Radford I.R.
        The level of induced DNA double-strand breakage correlates with cell killing after x-irradiation.
        Int J Radiat Biol Relat Stud Phys Chem Med. 1985; 4: 45-54
        • Turesson I.
        • Carlsson J.
        • Brahme A.
        • et al.
        Biological response to radiation therapy.
        Acta Oncol. 2003; 4: 92-106
        • Chan D.A.
        • Giaccia A.J.
        Hypoxia, gene expression, and metastasis.
        Cancer Metastasis Rev. 2007; 2: 333-339
        • Mothersill C.
        • Seymour C.
        Radiation-induced bystander effects: past history and future directions.
        Radiat Res. 2001; 1: 759-767
        • Giuranno L.
        • Ient J.
        • de Ruysscher D.
        • Vooijs M.A.
        Radiation-induced lung injury (RILI).
        Front Oncol. 2019; 9: 877
        • Shadad A.K.
        • Sullivan F.J.
        • Martin J.D.
        • Egan L.J.
        Gastrointestinal radiation injury: symptoms, risk factors and mechanisms.
        World J Gastroenterol. 2013; 1: 185-198
        • Darby S.C.
        • Ewertz M.
        • McGale P.
        • et al.
        Risk of ischemic heart disease in women after radiotherapy for breast cancer.
        N Engl J Med. 2013; 3: 987-998
        • van Leeuwen–Segarceanu E.M.
        • Bos W.J.
        • Dorresteijn L.D.
        • et al.
        Screening Hodgkin lymphoma survivors for radiotherapy induced cardiovascular disease.
        Cancer Treat Rev. 2011; 3: 391-403
        • Andersen R.
        • Wethal T.
        • Gunther A.
        • et al.
        Relation of coronary artery calcium score to premature coronary artery disease in survivors >15 years of Hodgkin’s lymphoma.
        Am J Cardiol. 2010; 1: 149-152
        • van Nimwegen F.A.
        • Schaapveld M.
        • Cutter D.J.
        • et al.
        Radiation dose-response relationship for risk of coronary heart disease in survivors of Hodgkin lymphoma.
        J Clin Oncol. 2016; 3: 235-243
        • Ruiz C.R.
        • Mesa-Pabon M.
        • Soto K.
        • Roman J.H.
        • Lopez-Candales A.
        Radiation-induced coronary artery disease in young patients.
        Heart Views. 2018; 1: 23-26
        • Dunsmore L.D.
        • LoPonte M.A.
        • Dunsmore R.A.
        Radiation-induced coronary artery disease.
        J Am Coll Cardiol. 1986; 8: 239-244
        • Ananthan K.
        • Lyon A.R.
        The role of biomarkers in cardio-oncology.
        J Cardiovasc Transl Res. 2020; 1: 431-450
        • Cau R.
        • Bassareo P.
        • Cherchi V.
        • et al.
        Early diagnosis of chemotherapy-induced cardiotoxicity by cardiac MRI.
        Eur J Radiol. 2020; 1: 109158
        • Trapani D.
        • Zagami P.
        • Nicolo E.
        • Pravettoni G.
        • Curigliano G.
        Management of cardiac toxicity induced by chemotherapy.
        J Clin Med. 2020; 9: 9
        • Upshaw J.N.
        The role of biomarkers to evaluate cardiotoxicity.
        Curr Treat Options Oncol. 2020; 2: 79
        • Amino M.
        • Yoshioka K.
        • Tanabe T.
        • Tanaka E.
        • Mori H.
        • Furusawa Y.
        • et al.
        Heavy ion radiation up-regulates Cx43 and ameliorates arrhythmogenic substrates in hearts after myocardial infarction.
        Cardiovasc Res. 2006; 7: 412-421
        • Amino M.
        • Yoshioka K.
        • Fujibayashi D.
        • et al.
        Year-long upregulation of connexin43 in rabbit hearts by heavy ion irradiation.
        Am J Physiol Heart Circ Physiol. 2010; 2: H1014-H1021
        • Sharma A.
        • Wong D.
        • Weidlich G.
        • et al.
        Noninvasive stereotactic radiosurgery (CyberHeart) for creation of ablation lesions in the atrium.
        Heart Rhythm. 2010; 7: 802-810
        • Gardner E.A.
        • Sumanaweera T.S.
        • Blanck O.
        • et al.
        In vivo dose measurement using TLDs and MOSFET dosimeters for cardiac radiosurgery.
        J Appl Clin Med Phys. 2012; 1: 3745
        • Blanck O.
        • Bode F.
        • Gebhard M.
        • et al.
        Dose-escalation study for cardiac radiosurgery in a porcine model.
        Int J Radiat Oncol Biol Phys. 2014; 8: 590-598
        • Lehmann H.I.
        • Richter D.
        • Prokesch H.
        • et al.
        Atrioventricular node ablation in Langendorff-perfused porcine hearts using carbon ion particle therapy: methods and an in vivo feasibility investigation for catheter-free ablation of cardiac arrhythmias.
        Circ Arrhythm Electrophysiol. 2015; 8: 429-438
        • Prall M.
        • Lehmann H.I.
        • Prokesch H.
        • et al.
        Treatment of arrhythmias by external charged particle beams: a Langendorff feasibility study.
        Biomed Tech (Berl). 2015; 6: 147-156
        • Lehmann H.I.
        • Graeff C.
        • Simoniello P.
        • et al.
        Feasibility study on cardiac arrhythmia ablation using high-energy heavy ion beams.
        Sci Rep. 2016; 6: 38895
        • Amino M.
        • Yoshioka K.
        • Furusawa Y.
        • et al.
        Inducibility of ventricular arrhythmia 1 year following treatment with heavy ion irradiation in dogs with myocardial infarction.
        Pacing Clin Electrophysiol. 2017; 4: 379-390
        • Lehmann H.I.
        • Deisher A.J.
        • Takami M.
        • et al.
        External arrhythmia ablation using photon beams: ablation of the atrioventricular junction in an intact animal model.
        Circ Arrhythm Electrophysiol. 2017; 10: 4
        • Refaat M.M.
        • Ballout J.A.
        • Zakka P.
        • et al.
        Swine atrioventricular node ablation using stereotactic radiosurgery: methods and in vivo feasibility investigation for catheter-free ablation of cardiac arrhythmias.
        J Am Heart Assoc. 2017; 6: 11
        • Zei P.C.
        • Wong D.
        • Gardner E.
        • Fogarty T.
        • Maguire P.
        Safety and efficacy of stereotactic radioablation targeting pulmonary vein tissues in an experimental model.
        Heart Rhythm. 2018; 1: 1420-1427
        • Hohmann S.
        • Deisher A.J.
        • Suzuki A.
        • et al.
        Left ventricular function after noninvasive cardiac ablation using proton beam therapy in a porcine model.
        Heart Rhythm. 2019; 1: 1710-1719
        • Wei C.
        • Qian P.
        • Tedrow U.
        • Mak R.
        • Zei P.C.
        Noninvasive stereotactic radioablation: a new option for the treatment of ventricular arrhythmias.
        Arrhythm Electrophysiol Rev. 2019; 8: 285-293
        • van der Ree M.H.
        • Blanck O.
        • Limpens J.
        • et al.
        Cardiac radioablation—a systematic review.
        Heart Rhythm. 2020; 17: 1381-1392
        • Jumeau R.
        • Ozsahin M.
        • Schwitter J.
        • et al.
        Stereotactic radiotherapy for the management of refractory ventricular tachycardia: promise and future directions.
        Front Cardiovasc Med. 2020; 7: 108
        • Cilliers G.D.
        • Harper I.S.
        • Lochner A.
        Radiation-induced changes in the ultrastructure and mechanical function of the rat heart.
        Radiother Oncol. 1989; 1: 311-326
        • Yoshida T.
        • Goto S.
        • Kawakatsu M.
        • Urata Y.
        • Li T-s
        Mitochondrial dysfunction, a probable cause of persistent oxidative stress after exposure to ionizing radiation.
        Free RadicRes. 2012; 4: 147-153
        • Sag C.M.
        • Wolff H.A.
        • Neumann K.
        • Opiela M.-K.
        • Zhang J.
        • Steuer F.
        • et al.
        Ionizing radiation regulates cardiac Ca handling via increased ROS and activated CaMKII.
        Basic Res Cardiol. 2013; 1: 385
        • Fajardo L F.
        • Robert Stewart J.
        Capillary injury preceding radiation-induced myocardial fibrosis.
        Radiology. 1971; 101: 429-433
        • Boerma M.
        • Kruse J.J.
        • van Loenen M.
        • et al.
        Increased deposition of von Willebrand factor in the rat heart after local ionizing irradiation.
        Strahlenther Onkol. 2004; 1: 109-116
        • Verheij M.
        • Dewit L.G.
        • Boomgaard M.N.
        • Brinkman H.J.
        • van Mourik J.A.
        Ionizing radiation enhances platelet adhesion to the extracellular matrix of human endothelial cells by an increase in the release of von Willebrand factor.
        Radiat Res. 1994; 1: 202-207
        • Azzam E.I.
        • de Toledo S.M.
        • Little J.B.
        Oxidative metabolism, gap junctions and the ionizing radiation-induced bystander effect.
        Oncogene. 2003; 2: 7050-7057