Abstract
Background
Familial hypercholesterolemia (FH), familial combined hyperlipidemia (FCHL), and elevated
lipoprotein (a) (Lp[a]) increase risk of premature coronary artery disease (CAD).
The objective of this study was to assess the prevalence of FH, FCHL, elevated Lp(a)
and their impact on management in patients with premature CAD.
Methods
We prospectively recruited men ≤ 50 years and women ≤ 55 with obstructive CAD. FH
was defined as Dutch Lipid Clinic Network scores ≥ 6. FCHL was defined as apolipoprotein
B > 1.2 g/L, triglyceride and total cholesterol > 90th population percentile, and
family history of premature cardiovascular disease. Lp(a) ≥ 50 mg/dL was considered
to be elevated.
Results
Among 263 participants, 9.1% met criteria for FH, 12.5% for FCHL, and 19.4% had elevated
Lp(a). Among patients with FH, 37.5% had FH-causing DNA variants. Patients with FH,
but not other dyslipidemias, were more likely than nondyslipidemic patients to have
received lipid-lowering therapy before presenting with CAD (33.3% vs 12.3%, P = 0.04) and combined lipid-lowering therapy after the presentation (41.7% vs 7.7%,
P < 0.001). One year after presentation, 58.3%, 54.5%, and 58.8% of patients with FH,
FCHL, and elevated Lp(a) had low-density lipoprotein cholesterol (LDL-C) < 1.8 mmol/L,
respectively, compared with 68.0 % in reference group. Patients with FCHL were more
likely to have non–high-density lipoprotein (HDL) and apolipoprotein B above recommended
lipid goals (70.0% and 87.9%, respectively).
Conclusions
FH, FCHL, and elevated Lp(a) are common in patients with premature CAD and have differing
impact on treatment and achievement of lipid targets. Assessment for these conditions
in patients with premature CAD provides valuable information for individualized management.
Résumé
Contexte
L’hypercholestérolémie familiale (HF), l’hyperlipidémie combinée familiale (HCF) et
les taux élevés de lipoprotéines (a) [Lp(a)] augmentent le risque de coronaropathie
précoce. L’objectif de cette étude était d’évaluer la prévalence de l’HF, de l’HCF
et des taux élevés de Lp(a) ainsi que leur incidence sur la prise en charge des patients
atteints de coronaropathie précoce.
Méthodologie
Nous avons recruté de façon prospective des hommes ≤ 50 ans et des femmes ≤ 55 ans
atteints de coronaropathie obstructive. L’HF était définie par des scores DLCN (Dutch Lipid Clinic Network) ≥ 6. L’HCF était définie par un taux d’apolipoprotéine B > 1,2 g/l, un taux de triglycérides
et de cholestérol total > 90e percentile de la population, et des antécédents familiaux de maladies cardiovasculaires
précoces. Un taux de Lp(a) ≥ 50 mg/dl était considéré comme élevé.
Résultats
Parmi les 263 participants, 9,1 % répondaient aux critères pour l’HF, 12,5 %, à ceux
pour l’HCF, et 19,4 % présentaient des taux de Lp(a) élevés. Parmi les patients atteints
d’HF, 37,5 % présentaient des variants d'ADN causant l’HF. Les patients atteints d’HF,
mais pas d’autres dyslipidémies étaient plus susceptibles que les patients non dyslipidémiques
d’avoir reçu un traitement hypolipidémiant avant de présenter une coronaropathie (33,3
% vs 12,3 %, p = 0,04) et un traitement hypolipidémiant combiné après sa manifestation (41,7 % vs
7,7 %, p < 0,001). Un an après la manifestation, 58,3 %, 54,5 % et 58,8 % des patients atteints
d’HF ou d’HCF, ou présentant un taux élevé de Lp(a), respectivement, avaient un taux
de cholestérol de lipoprotéines à faible densité (C-LDL) < 1,8 mmol/l, contre 68,0
% dans le groupe de référence. Les patients atteints d’HCF étaient plus susceptibles
de présenter des taux de cholestérol non de lipoprotéines à haute densité (HDL) et
d’apolipoprotéine B supérieurs aux cibles lipidiques recommandées (70,0 % et 87,9
%, respectivement).
Conclusions
L’HF, L’HCF et le taux de Lp(a) élevé sont fréquents chez les patients atteints de
coronaropathie précoce et ont une incidence différente sur le traitement et l’atteinte
des cibles lipidiques. L’évaluation de ces maladies chez les patients atteints de
coronaropathie précoce fournit de précieux renseignements pour une prise en charge
personnalisée.
To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Canadian Journal of CardiologyAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
References
- Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study.Lancet. 2004; 364: 937-952
- Risk factors for coronary heart disease in men 18 to 39 years of age.Ann Intern Med. 2001; 134: 433-439
- Estimating the prevalence of heterozygous familial hypercholesterolaemia: a systematic review and meta-analysis.BMJ Open. 2017; 7e016461
- Worldwide prevalence of familial hypercholesterolemia: meta-analyses of 11 million subjects.J Am Coll Cardiol. 2020; 75: 2553-2566
- Hyperlipidemia in coronary heart disease II. Genetic analysis of lipid levels in 176 families and delineation of a new inherited disorder, combined hyperlipidemia.J Clin Invest. 1973; 52: 1544-1568
- Coronary Artery Disease Risk in Familial Combined Hyperlipidemia and Familial Hypertriglyceridemia.Circulation. 2003; 108: 519-523
- Genetically elevated lipoprotein(a) and increased risk of myocardial infarction.JAMA. 2009; 301: 2331-2339
- Lipoprotein(a) levels and the risk of myocardial infarction among 7 ethnic groups.Circulation. 2019; 139: 1472-1482
- Small dense low-density lipoprotein cholesterol is the most atherogenic lipoprotein parameter in the prospective framingham offspring study.J Am Heart Assoc. 2021; 10e019140
- Prevalence of heterozygous familial hypercholesterolemia and combined hyperlipidemia phenotype in very young survivors of myocardial infarction and their association with the severity of atheromatous burden.J Clin Lipidol. 2019; 13: 502-508
- Familial-combined hyperlipidaemia in very young myocardial infarction survivors (≤ 40 years of age).Eur Heart J. 2009; 30: 1073-1079
- Familial lipoprotein disorders in patients with premature coronary artery disease.Circulation. 1992; 85: 2025-2033
- Familial hypercholesterolemia among young adults with myocardial infarction.J Am Coll Cardiol. 2019; 73: 2439-2450
- Genetically confirmed familial hypercholesterolemia in patients with acute coronary syndrome.J Am Coll Cardiol. 2017; 70: 1732-1740
- Post mortem molecularly defined familial hypercholesterolemia and sudden cardiac death of young men.Forensic Sci Int. 1999; 106: 87-92
- Prevalence of familial hypercholesterolemia in patients with premature myocardial infarction.Clin Cardiol. 2019; 42: 385-390
- Prevalence of DNA-confirmed familial hypercholesterolaemia in young patients with myocardial infarction.Eur J Intern Med. 2015; 26: 127-130
- Long-term risk of atherosclerotic cardiovascular disease in us adults with the familial hypercholesterolemia phenotype.Circulation. 2016; 134: 9-19
- Prevalence and management of familial hypercholesterolaemia in patients with acute coronary syndromes.Eur Heart J. 2015; 36: 2438-2445
- The design and rationale of SAVE BC: the Study to Avoid CardioVascular Events in British Columbia.Clin Cardiol. 2018; 41: 888-895
- Lipid-lowering therapy for primary prevention of premature atherosclerotic coronary artery disease: eligibility, utilization, target achievement, and predictors of initiation.Am J Prev Cardiol. 2020; 2: 100036
- 2021 Canadian Cardiovascular Society guidelines for the management of dyslipidemia for the prevention of cardiovascular disease in adults.Can J Cardiol. 2021; 37: 1129-1150
- Familial combined hyperlipidemia and hyperlipoprotein(a) as phenotypic mimics of familial hypercholesterolemia: frequencies, associations and predictions.J Clin Lipidol. 2016; 10: 1329-1337.e3
- Guidelines for the diagnosis and management of heterozygous familial hypercholesterolemia.Atherosclerosis. 2004; 173: 55-68
- Disorders of lipoprotein metabolism.in: Jameson J.L. Fauci A.S. Kasper D.L. Harrison's Principles of Internal Medicine. 20th ed. McGraw-Hill, New York, NY2018 (part 12, chapter 400)
- Cardiovascular health measures of the household population.(Available at:)https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1310032601Date accessed: January 12, 2021
- Nomogram to diagnose familial combined hyperlipidemia on the basis of results of a 5-year follow-up study.Circulation. 2004; 109: 2980-2985
- Diagnostic yield and clinical utility of sequencing familial hypercholesterolemia genes in patients with severe hypercholesterolemia.J Am Coll Cardiol. 2016; 67 (2578-89.3)
- ClinVar: public archive of relationships among sequence variation and human phenotype.Nucleic Acids Res. 2014; 42: D980-D985
- Use of next-generation sequencing to detect LDLR gene copy number variation in familial hypercholesterolemia.J Lipid Res. 2017; 58: 2202-2209
- Risk of premature atherosclerotic disease in patients with monogenic versus polygenic familial hypercholesterolemia.J Am Coll Cardiol. 2019; 74: 512-522
- Polygenic versus monogenic causes of hypercholesterolemia ascertained clinically.Arterioscler Thromb Vasc Biol. 2016; 36: 2439-2445
- Relationships of abdominal obesity and hyperinsulinemia to angiographically assessed coronary artery disease in men with known mutations in the LDL receptor gene.Circulation. 1998; 97: 871-877
Article info
Publication history
Published online: August 26, 2021
Accepted:
August 20,
2021
Received:
May 25,
2021
Footnotes
See page 1741 for disclosure information.
Identification
Copyright
© 2021 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.