Canadian Journal of Cardiology

The Evolving Role of Artificial Intelligence in Cardiac Image Analysis

Published:October 03, 2021DOI:


      Research in artificial intelligence (AI) has progressed over the past decade. The field of cardiac imaging has seen significant developments using newly developed deep learning methods for automated image analysis and AI tools for disease detection and prognostication. This review is aimed at those without special background in AI. We review AI concepts and survey the growing contemporary applications of AI for image analysis in echocardiography, nuclear cardiology, cardiac computed tomography, cardiac magnetic resonance, and invasive angiography.


      La recherche en intelligence artificielle (IA) a progressé au cours de la dernière décennie. Le domaine de l’imagerie cardiaque a connu des avancées significatives. Ainsi, de nouvelles méthodes d’apprentissage profond permettent maintenant l’analyse automatisée d’images, et des outils d’IA sont utilisés pour la détection et le pronostic des maladies. Le présent article de synthèse s’adresse à des lecteurs sans connaissances particulières en IA. Nous passons en revue les concepts de l’IA et nous offrons une vue d’ensemble des applications contemporaines toujours plus nombreuses de l’IA en matière d’analyse d’images dans les domaines de l’échocardiographie, de la cardiologie nucléaire, de la tomodensitométrie cardiaque, de l’imagerie par résonance magnétique cardiaque et de l’angiographie invasive.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Russell S.J.
        Artificial Intelligence: A Modern Approach.
        3rd ed. Prentice Hall, Upper Saddle River, NJ2010
        • Skandarani Y.
        • Lalande A.
        • Afilalo J.
        • Jodoin P-M.
        Generative adversarial networks in cardiology.
        Can J Cardiol. 2022; 38: 196-203
        • Khamis H.
        • Zurakhov G.
        • Azar V.
        • et al.
        Automatic apical view classification of echocardiograms using a discriminative learning dictionary.
        Med Image Anal. 2017; 36: 15-21
        • Zhang J.
        • Gajjala S.
        • Agrawal P.
        • et al.
        Fully automated echocardiogram interpretation in clinical practice: feasibility and diagnostic accuracy.
        Circulation. 2018; 138: 1623-1635
        • Madani A.
        • Arnaout R.
        • Mofrad M.
        • Arnaout R.
        Fast and accurate view classification of echocardiograms using deep learning.
        NPJ Digit Med. 2018; 1: 6
        • Schneider M.
        • Bartko P.
        • Geller W.
        • et al.
        A machine learning algorithm supports ultrasound-naïve novices in the acquisition of diagnostic echocardiography loops and provides accurate estimation of LVEF.
        Int J Cardiovasc Imaging. 2021; 37: 577-586
        • Ouyang D.
        • He B.
        • Ghorbani A.
        • et al.
        Video-based AI for beat-to-beat assessment of cardiac function.
        Nature. 2020; 580: 252-256
        • Asch F.M.
        • Poilvert N.
        • Abraham T.
        • et al.
        Automated echocardiographic quantification of left ventricular ejection fraction without volume measurements using a machine learning algorithm mimicking a human expert.
        Circ Cardiovasc Imaging. 2019; 12e009303
        • Ghorbani A.
        • Ouyang D.
        • Abid A.
        • et al.
        Deep learning interpretation of echocardiograms.
        NPJ Digit Med. 2020; 3: 10
        • Pellikka P.A.
        • She L.
        • Holly T.A.
        • et al.
        Variability in ejection fraction measured by echocardiography, gated single-photon emission computed tomography, and cardiac magnetic resonance in patients with coronary artery disease and left ventricular dysfunction.
        JAMA Netw Open. 2018; 1e181456
        • Kusunose K.
        • Abe T.
        • Haga A.
        • et al.
        A deep learning approach for assessment of regional wall motion abnormality from echocardiographic images.
        JACC Cardiovasc Imaging. 2020; 13: 374-381
        • Narula S.
        • Shameer K.
        • Salem Omar A.M.
        • Dudley J.T.
        • Sengupta P.P.
        Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography.
        J Am Coll Cardiol. 2016; 68: 2287-2295
        • Sengupta P.P.
        • Huang Y.-M.
        • Bansal M.
        • et al.
        Cognitive machine-learning algorithm for cardiac imaging: a pilot study for differentiating constrictive pericarditis from restrictive cardiomyopathy.
        Circ Cardiovasc Imaging. 2016; 9e004330
        • Sanchez-Martinez S.
        • Duchateau N.
        • Erdei T.
        • et al.
        Machine learning analysis of left ventricular function to characterize heart failure with preserved ejection fraction.
        Circ Cardiovasc Imaging. 2018; 11e007138
        • Tabassian M.
        • Sunderji I.
        • Erdei T.
        • et al.
        Diagnosis of heart failure with preserved ejection fraction: machine learning of spatiotemporal variations in left ventricular deformation.
        J Am Soc Echocardiogr. 2018; 31: 1272-1284.e9
        • Jin C.-N.
        • Salgo I.S.
        • Schneider R.J.
        • et al.
        Using anatomic intelligence to localize mitral valve prolapse on three-dimensional echocardiography.
        J Am Soc Echocardiogr. 2016; 29: 938-945
        • Andreassen B.S.
        • Veronesi F.
        • Gerard O.
        • Solberg A.H.S.
        • Samset E.
        Mitral annulus segmentation using deep learning in 3-D transesophageal echocardiography.
        IEEE J Biomed Health Inform. 2020; 24: 994-1003
        • Vafaeezadeh M.
        • Behnam H.
        • Hosseinsabet A.
        • Gifani P.
        A deep learning approach for the automatic recognition of prosthetic mitral valve in echocardiographic images.
        Comput Biol Med. 2021; 133104388
        • Vaquerizo B.
        • Spaziano M.
        • Alali J.
        • et al.
        Three-dimensional echocardiography vs computed tomography for transcatheter aortic valve replacement sizing.
        Eur Heart J Cardiovasc Imaging. 2016; : 15-23
        • Prihadi E.A.
        • van Rosendael P.J.
        • Vollema E.M.
        • et al.
        Feasibility, accuracy, and reproducibility of aortic annular and root sizing for transcatheter aortic valve replacement using novel automated three-dimensional echocardiographic software: comparison with multi–detector row computed tomography.
        J Am Soc Echocardiogr. 2018; 31: 505-514.e3
        • Thalappillil R.
        • Datta P.
        • Datta S.
        • et al.
        Artificial intelligence for the measurement of the aortic valve annulus.
        J Cardiothorac Vasc Anesth. 2020; 34: 65-71
        • Slomka P.
        Leveraging latest computer science tools to advance nuclear cardiology.
        J Nucl Cardiol. 2019; 26: 1501-1504
        • Slomka P.
        • Nishina H.
        • Berman D.
        • et al.
        Automated quantification of myocardial perfusion SPECT using simplified normal limits.
        J Nucl Cardiol. 2005; 12: 66-77
        • Arsanjani R.
        • Xu Y.
        • Hayes S.W.
        • et al.
        Comparison of fully automated computer analysis and visual scoring for detection of coronary artery disease from myocardial perfusion SPECT in a large population.
        J Nucl Med. 2013; 54: 221-228
        • Arsanjani R.
        • Xu Y.
        • Dey D.
        • et al.
        Improved accuracy of myocardial perfusion SPECT for the detection of coronary artery disease using a support vector machine algorithm.
        J Nucl Med. 2013; 54: 549-555
        • Arsanjani R.
        • Xu Y.
        • Dey D.
        • et al.
        Improved accuracy of myocardial perfusion SPECT for detection of coronary artery disease by machine learning in a large population.
        J Nucl Cardiol. 2013; 20: 553-562
        • Betancur J.
        • Commandeur F.
        • Motlagh M.
        • et al.
        Deep learning for prediction of obstructive disease from fast myocardial perfusion SPECT.
        JACC Cardiovasc Imaging. 2018; 11: 1654-1663
        • Arsanjani R.
        • Dey D.
        • Khachatryan T.
        • et al.
        Prediction of revascularization after myocardial perfusion SPECT by machine learning in a large population.
        J Nucl Cardiol. 2015; 22: 877-884
        • Betancur J.
        • Hu L.-H.
        • Commandeur F.
        • et al.
        Deep learning analysis of upright-supine high-efficiency SPECT myocardial perfusion imaging for prediction of obstructive coronary artery disease: a multicenter study.
        J Nucl Med. 2019; 60: 664-670
        • Betancur J.
        • Otaki Y.
        • Motwani M.
        • et al.
        Prognostic value of combined clinical and myocardial perfusion imaging data using machine learning.
        JACC Cardiovasc Imaging. 2018; 11: 1000-1009
        • Slomka P.J.
        • Betancur J.
        • Liang J.X.
        • et al.
        Rationale and design of the Registry of Fast Myocardial Perfusion Imaging with Next Generation SPECT (REFINE SPECT).
        J Nucl Cardiol. 2020; 27: 1010-1021
        • Hu L.-H.
        • Betancur J.
        • Sharir T.
        • et al.
        Machine learning predicts per-vessel early coronary revascularization after fast myocardial perfusion SPECT: results from multicentre REFINE SPECT registry.
        Eur Heart J Cardiovasc Imaging. 2020; 21: 549-559
        • Garcia E.V.
        • Klein J.L.
        • Moncayo V.
        • et al.
        Diagnostic performance of an artificial intelligence-driven cardiac-structured reporting system for myocardial perfusion SPECT imaging.
        J Nucl Cardiol. 2020; 27: 1652-1664
        • Juarez-Orozco L.E.
        • Martinez-Manzanera O.
        • van der Zant F.M.
        • Knol R.J.J.
        • Knuuti J.
        Deep learning in quantitative PET myocardial perfusion imaging.
        JACC Cardiovasc Imaging. 2020; 13: 180-182
        • Togo R.
        • Hirata K.
        • Manabe O.
        • et al.
        Cardiac sarcoidosis classification with deep convolutional neural network–based features using polar maps.
        Comput Biol Med. 2019; 104: 81-86
        • Agatston A.S.
        • Janowitz W.R.
        • Hildner F.J.
        • et al.
        Quantification of coronary artery calcium using ultrafast computed tomography.
        J Am Coll Cardiol. 1990; 15: 827-832
        • Pearson G.J.
        • Thanassoulis G.
        • Anderson T.J.
        • et al.
        2021 Canadian Cardiovascular Society guidelines for the management of dyslipidemia for the prevention of cardiovascular disease in adults.
        Can J Cardiol. 2021; 37: 1129-1150
        • Išgum I.
        • Rutten A.
        • Prokop M.
        • van Ginneken B.
        Detection of coronary calcifications from computed tomography scans for automated risk assessment of coronary artery disease: detection of coronary calcifications.
        Med Phys. 2007; 34: 1450-1461
        • Kurkure U.
        • Chittajallu D.R.
        • Brunner G.
        • Le Y.H.
        • Kakadiaris I.A.
        A supervised classification-based method for coronary calcium detection in noncontrast CT.
        Int J Cardiovasc Imaging. 2010; 26: 817-828
        • Brunner G.
        • Chittajallu D.R.
        • Kurkure U.
        • Kakadiaris I.A.
        Toward the automatic detection of coronary artery calcification in noncontrast computed tomography data.
        Int J Cardiovasc Imaging. 2010; 26: 829-838
        • Shahzad R.
        • van Walsum T.
        • Schaap M.
        • et al.
        Vessel specific coronary artery calcium scoring.
        Acad Radiol. 2013; 20: 1-9
        • Wolterink J.M.
        • Leiner T.
        • Takx R.A.P.
        • Viergever M.A.
        • Isgum I.
        Automatic coronary calcium scoring in non–contrast-enhanced ECG-triggered cardiac CT with ambiguity detection.
        IEEE Trans Med Imaging. 2015; 34: 1867-1878
        • de Vos B.D.
        • Wolterink J.M.
        • Leiner T.
        • et al.
        Direct automatic coronary calcium scoring in cardiac and chest CT.
        IEEE Trans Med Imaging. 2019; 38: 2127-2138
        • van Velzen S.G.M.
        • Lessmann N.
        • Velthuis B.K.
        • et al.
        Deep learning for automatic calcium scoring in CT: validation using multiple cardiac CT and chest CT protocols.
        Radiology. 2020; 295: 66-79
        • Martin S.S.
        • van Assen M.
        • Rapaka S.
        • et al.
        Evaluation of a deep learning–based automated CT coronary artery calcium scoring algorithm.
        JACC Cardiovasc Imaging. 2020; 13: 524-526
        • Lee H.
        • Martin S.
        • Burt J.R.
        • et al.
        Machine learning and coronary artery calcium scoring.
        Curr Cardiol Rep. 2020; 22: 90
        • Mylonas I.
        • Alam M.
        • Amily N.
        • et al.
        Quantifying coronary artery calcification from a contrast-enhanced cardiac computed tomography angiography study.
        Eur Heart J Cardiovasc Imaging. 2014; 15: 210-215
        • Schuhbaeck A.
        • Otaki Y.
        • Achenbach S.
        • et al.
        Coronary calcium scoring from contrast coronary CT angiography using a semiautomated standardized method.
        J Cardiovasc Comput Tomogr. 2015; 9: 446-453
        • Wolterink J.M.
        • Leiner T.
        • de Vos B.D.
        • et al.
        Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networks.
        Med Image Anal. 2016; 34: 123-136
        • Eem C.
        • Hong H.
        • Noh Y.
        Deep-learning model to predict coronary artery calcium scores in humans from electrocardiogram data.
        Appl Sci. 2020; 10: 8746
        • Al’Aref S.J.
        • Maliakal G.
        • Singh G.
        • et al.
        Machine learning of clinical variables and coronary artery calcium scoring for the prediction of obstructive coronary artery disease on coronary computed tomography angiography: analysis from the CONFIRM registry.
        Eur Heart J. 2020; 41: 359-367
        • Kang D.
        • Dey D.
        • Slomka P.J.
        • et al.
        Structured learning algorithm for detection of nonobstructive and obstructive coronary plaque lesions from computed tomography angiography.
        J Med Imaging. 2015; 2014003
        • Zreik M.
        • van Hamersvelt R.W.
        • Wolterink J.M.
        • et al.
        A recurrent CNN for automatic detection and classification of coronary artery plaque and stenosis in coronary CT angiography.
        IEEE Trans Med Imaging. 2019; 38: 1588-1598
        • Boden W.E.
        • O’Rourke R.A.
        • Teo K.K.
        • et al.
        Optimal medical therapy with or without PCI for stable coronary disease.
        N Engl J Med. 2007; 356: 1503-1516
        • Maron D.J.
        • Hochman J.S.
        • Reynolds H.R.
        • et al.
        Initial invasive or conservative strategy for stable coronary disease.
        N Engl J Med. 2020; 382: 1395-1407
        • Tonino P.A.L.
        • de Bruyne B.
        • Pijls N.H.J.
        • et al.
        Fractional flow reserve versus angiography for guiding percutaneous coronary intervention.
        N Engl J Med. 2009; 360: 213-224
        • Narula J.
        • Chandrashekhar Y.
        • Ahmadi A.
        • et al.
        SCCT 2021 expert consensus document on coronary computed tomographic angiography: a report of the Society of Cardiovascular Computed Tomography.
        J Cardiovasc Comput Tomogr. 2021; 15: 192-217
        • Koo B.-K.
        • Erglis A.
        • Doh J.-H.
        • et al.
        Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms.
        J Am Coll Cardiol. 2011; 58: 1989-1997
        • Itu L.
        • Rapaka S.
        • Passerini T.
        • et al.
        A machine-learning approach for computation of fractional flow reserve from coronary computed tomography.
        J Appl Physiol. 2016; 121: 42-52
        • Ferencik M.
        • Mayrhofer T.
        • Bittner D.O.
        • et al.
        Use of high-risk coronary atherosclerotic plaque detection for risk stratification of patients with stable chest pain: a secondary analysis of the PROMISE randomized clinical trial.
        JAMA Cardiol. 2018; 3: 144-152
        • Motwani M.
        • Dey D.
        • Berman D.S.
        • et al.
        Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis.
        Eur Heart J. 2016; 38: 500-507
        • van Rosendael A.R.
        • Maliakal G.
        • Kolli K.K.
        • et al.
        Maximization of the usage of coronary CTA derived plaque information using a machine learning based algorithm to improve risk stratification; insights from the CONFIRM registry.
        J Cardiovasc Comput Tomogr. 2018; 12: 204-209
        • Dey D.
        • Gaur S.
        • Ovrehus K.A.
        • et al.
        Integrated prediction of lesion-specific ischaemia from quantitative coronary CT angiography using machine learning: a multicentre study.
        Eur Radiol. 2018; 28: 2655-2664
        • van Assen M.
        • Varga-Szemes A.
        • Schoepf U.J.
        • et al.
        Automated plaque analysis for the prognostication of major adverse cardiac events.
        Eur J Radiol. 2019; 116: 76-83
        • Kwan A.C.
        • McElhinney P.A.
        • Tamarappoo B.K.
        • et al.
        Prediction of revascularization by coronary CT angiography using a machine learning ischemia risk score.
        Eur Radiol. 2021; 31: 1227-1235
        • Tesche C.
        • Bauer M.J.
        • Baquet M.
        • et al.
        Improved long-term prognostic value of coronary CT angiography–derived plaque measures and clinical parameters on adverse cardiac outcome using machine learning.
        Eur Radiol. 2021; 31: 486-493
        • von Knebel Doeberitz P.L.
        • de Cecco C.N.
        • Schoepf U.J.
        • et al.
        Coronary CT angiography–derived plaque quantification with artificial intelligence CT fractional flow reserve for the identification of lesion-specific ischemia.
        Eur Radiol. 2019; 29: 2378-2387
      1. Pugliese F. MBF from dynamic CT perfusion imaging. American College of Cardiology, April 26, 2019. Available at: Accessed December 20, 2021.

        • Xiong G.
        • Kola D.
        • Heo R.
        • Elmore K.
        • Cho I.
        • Min J.K.
        Myocardial perfusion analysis in cardiac computed tomography angiographic images at rest.
        Med Image Anal. 2015; 24: 77-89
        • Han D.
        • Lee J.H.
        • Rizvi A.
        • et al.
        Incremental role of resting myocardial computed tomography perfusion for predicting physiologically significant coronary artery disease: A machine learning approach.
        J Nucl Cardiol. 2018; 25: 223-233
        • Mannil M.
        • von Spiczak J.
        • Manka R.
        • Alkadhi H.
        Texture analysis and machine learning for detecting myocardial infarction in noncontrast low-dose computed tomography: unveiling the invisible.
        Invest Radiol. 2018; 53: 338-343
        • Cheng V.Y.
        • Dey D.
        • Tamarappoo B.
        • et al.
        Pericardial fat burden on ECG-gated noncontrast CT in asymptomatic patients who subsequently experience adverse cardiovascular events.
        JACC Cardiovasc Imaging. 2010; 3: 352-360
        • Goeller M.
        • Achenbach S.
        • Marwan M.
        • et al.
        Epicardial adipose tissue density and volume are related to subclinical atherosclerosis, inflammation and major adverse cardiac events in asymptomatic subjects.
        J Cardiovasc Comput Tomogr. 2018; 12: 67-73
        • Dey D.
        • Suzuki Y.
        • Suzuki S.
        • et al.
        Automated quantitation of pericardiac fat from noncontrast CT.
        Invest Radiol. 2008; 43: 145-153
        • Mihl C.
        • Loeffen D.
        • Versteylen M.O.
        • et al.
        Automated quantification of epicardial adipose tissue (EAT) in coronary CT angiography; comparison with manual assessment and correlation with coronary artery disease.
        J Cardiovasc Comput Tomogr. 2014; 8: 215-221
        • Commandeur F.
        • Goeller M.
        • Betancur J.
        • et al.
        Deep learning for quantification of epicardial and thoracic adipose tissue from non-contrast CT.
        IEEE Trans Med Imaging. 2018; 37: 1835-1846
        • Commandeur F.
        • Goeller M.
        • Razipour A.
        • et al.
        Fully automated CT quantification of epicardial adipose tissue by deep learning: a multicenter study.
        Radiol Artif Intell. 2019; 1e190045
        • Otaki Y.
        • Hell M.
        • Slomka P.J.
        • et al.
        Relationship of epicardial fat volume from noncontrast CT with impaired myocardial flow reserve by positron emission tomography.
        J Cardiovasc Comput Tomogr. 2015; 9: 303-309
        • Eisenberg E.
        • McElhinney P.A.
        • Commandeur F.
        • et al.
        deep learning–based quantification of epicardial adipose tissue volume and attenuation predicts major adverse cardiovascular events in asymptomatic subjects.
        Circ Cardiovasc Imaging. 2020; 13e009829
        • Oikonomou E.K.
        • Williams M.C.
        • Kotanidis C.P.
        • et al.
        A novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary CT angiography.
        Eur Heart J. 2019; 40: 3529-3543
        • Blanke P.
        • Weir-McCall J.R.
        • Achenbach S.
        • et al.
        Computed tomography imaging in the context of transcatheter aortic valve implantation (TAVI)/transcatheter aortic valve replacement (TAVR): an expert consensus document of the Society of Cardiovascular Computed Tomography.
        J Cardiovasc Comput Tomogr. 2019; 13: 1-20
        • Theriault-Lauzier P.
        • Alsosaimi H.
        • Mousavi N.
        • et al.
        Recursive multiresolution convolutional neural networks for 3D aortic valve annulus planimetry.
        Int J Comput Assist Radiol Surg. 2020; 15: 577-588
        • Astudillo P.
        • Mortier P.
        • Bosmans J.
        • et al.
        Enabling automated device size selection for transcatheter aortic valve implantation.
        J Intervent Cardiol. 2019; 20193591314
      2. Wang ZH, Lahoti G, Wang K, et al. Prediction of paravalvular leak post transcatheter aortic valve replacement using a convolutional neural network. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), 2018:1088-91.

        • Wojnarski C.M.
        • Roselli E.E.
        • Idrees J.J.
        • et al.
        Machine-learning phenotypic classification of bicuspid aortopathy.
        J Thorac Cardiovasc Surg. 2018; 155: 461-469.e4
        • Tao Q.
        • Lelieveldt B.P.F.
        • van der Geest R.J.
        Deep learning for quantitative cardiac MRI.
        AJR Am J Roentgenol. 2020; 214: 529-535
        • Bernard O.
        • Lalande A.
        • Zotti C.
        • et al.
        Deep learning techniques for automatic mri cardiac multi-structures segmentation and diagnosis: is the problem solved?.
        IEEE Trans Med Imaging. 2018; 37: 2514-2525
      3. Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation [preprint]. arXiv1505.04597. Posted online May 18, 2015.

        • Zheng Q.
        • Delingette H.
        • Duchateau N.
        • Ayache N.
        3-D consistent and robust segmentation of cardiac images by deep learning with spatial propagation.
        IEEE Trans Med Imaging. 2018; 37: 2137-2148
        • Yan W.
        • Wang Y.
        • Li Z.
        • van der Geest R.J.
        • Tao Q.
        Left ventricle segmentation via optical-flow-net from short-axis cine MRI: preserving the temporal coherence of cardiac motion.
        in: Frangi A.F. Schnabel J.A. Davatzikos C. Alberola-López C. Fichtinger G. Medical Image Computing and Computer Assisted Intervention—MICCAI 2018. Vol 11073. Lecture Notes in Computer Science. Springer International Publishing, 2018: 613-621
        • Becker M.A.J.
        • Cornel J.H.
        • van de Ven P.M.
        • et al.
        The prognostic value of late gadolinium-enhanced cardiac magnetic resonance imaging in nonischemic dilated cardiomyopathy.
        JACC Cardiovasc Imaging. 2018; 11: 1274-1284
        • Zabihollahy F.
        • White J.A.
        • Ukwatta E.
        Convolutional neural network-based approach for segmentation of left ventricle myocardial scar from 3D late gadolinium enhancement MR images.
        Med Phys. 2019; 46: 1740-1751
        • Fahmy A.S.
        • Rausch J.
        • Neisius U.
        • et al.
        Automated cardiac MR scar quantification in hypertrophic cardiomyopathy using deep convolutional neural networks.
        JACC Cardiovasc Imaging. 2018; 11: 1917-1918
        • Fahmy A.S.
        • El-Rewaidy H.
        • Nezafat M.
        • Nakamori S.
        • Nezafat R.
        Automated analysis of cardiovascular magnetic resonance myocardial native T1 mapping images using fully convolutional neural networks.
        J Cardiovasc Magn Reson. 2019; 21: 7
        • Farrag N.A.
        • Lochbihler A.
        • White J.A.
        • Ukwatta E.
        Evaluation of fully automated myocardial segmentation techniques in native and contrast-enhanced T1-mapping cardiovascular magnetic resonance images using fully convolutional neural networks.
        Med Phys. 2021; 48: 215-226
        • Zhang N.
        • Yang G.
        • Gao Z.
        • et al.
        Deep learning for diagnosis of chronic myocardial infarction on nonenhanced cardiac cine MRI.
        Radiology. 2019; 291: 606-617
        • Kotu L.P.
        • Engan K.
        • Borhani R.
        • et al.
        Cardiac magnetic resonance image-based classification of the risk of arrhythmias in post-myocardial infarction patients.
        Artif Intell Med. 2015; 64: 205-215
        • Peressutti D.
        • Sinclair M.
        • Bai W.
        • et al.
        A framework for combining a motion atlas with nonmotion information to learn clinically useful biomarkers: application to cardiac resynchronisation therapy response prediction.
        Med Image Anal. 2017; 35: 669-684
        • Bello G.A.
        • Dawes T.J.W.
        • Duan J.
        • et al.
        Deep-learning cardiac motion analysis for human survival prediction.
        Nat Mach Intell. 2019; 1: 95-104
        • Suzuki K.
        • Horiba I.
        • Ikegaya K.
        • Nanki M.
        Recognition of coronary arterial stenosis using neural network on DSA system.
        Syst Comput Jpn. 1995; 26: 66-74
      4. Avram R, Olgin JE, Wan A, et al. CathAI: fully automated interpretation of coronary angiograms using neural networks [preprint]. arXiv:2106.07708. Posted online June 14, 2021.

        • Fedewa R.
        • Puri R.
        • Fleischman E.
        • et al.
        Artificial intelligence in intracoronary imaging.
        Curr Cardiol Rep. 2020; 22: 46
        • Weaver C.G.W.
        • McAlister F.A.
        Machine learning, predictive analytics, and the emperor’s new clothes: why artificial intelligence has not yet replaced conventional approaches.
        Can J Cardiol. 2021; 37: 1156-1158
        • Parikh R.B.
        • Teeple S.
        • Navathe A.S.
        Addressing bias in artificial intelligence in health care.
        JAMA. 2019; 322: 2377-2378
        • Zou J.
        • Schiebinger L.
        AI can be sexist and racist—it’s time to make it fair.
        Nat Lond. 2018; 559: 324-326
        • Gerke S.
        • Babic B.
        • Evgeniou T.
        • Cohen I.G.
        The need for a system view to regulate artificial intelligence/machine learning-based software as medical device.
        NPJ Digit Med. 2020; 3: 53
        • Benjamens S.
        • Dhunnoo P.
        • Meskó B.
        The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database.
        NPJ Digit Med. 2020; 3: 118
        • Adams S.J.
        • Haddad H.
        Artificial intelligence to diagnose heart failure based on chest x-rays and potential clinical implications.
        Can J Cardiol. 2021; 37: 1153-1155
        • Yao X.
        • McCoy R.G.
        • Friedman P.A.
        • et al.
        ECG AI–Guided Screening for Low Ejection Fraction (EAGLE): rationale and design of a pragmatic cluster randomized trial.
        Am Heart J. 2020; 219: 31-36