Advertisement
Canadian Journal of Cardiology

Artificial Intelligence-Powered Blockchains for Cardiovascular Medicine

Published:November 29, 2021DOI:https://doi.org/10.1016/j.cjca.2021.11.011

      Abstract

      Clinical databases, particularly those composed of big data, face growing security challenges. Blockchain, the open, decentralized, distributed public ledger technology powering cryptocurrency, records transactions securely without the need for third-party verification. In the health care setting, decentralized blockchain networks offer a secure interoperable gateway for clinical research and practice data. Here, we discuss recent advances and potential future directions for the application of blockchain and its integration with artificial intelligence (AI) in cardiovascular medicine. We first review the basic underlying concepts of this technology and contextualise it within the spectrum of current, well known applications. We then consider specific applications for cardiovascular medicine and research in areas such as high-throughput gene sequencing, wearable technologies, and clinical trials. We then evaluate current challenges to effective implementation and future directions. We also summarise the health care applications that can be realised by combining decentralized blockchain computing platforms (for data security) and AI computing (for data analytics). By leveraging high-performance computing and AI capable of securely managing large and rapidly expanding medical databases, blockchain incorporation can provide clinically meaningful predictions, help advance research methodology (eg, via robust AI-blockchain decentralized clinical trials), and provide virtual tools in clinical practice (eg, telehealth, sensory-based technologies, wearable medical devices). Integrating AI and blockchain approaches synergistically amplifies the strengths of both technologies to create novel solutions to serve the objective of providing precision cardiovascular medicine.

      Résumé

      Les bases de données cliniques, en particulier celles composées de mégadonnées, font face à des défis croissants en matière de sécurité. La chaîne de blocs, une technologie de grand livre public ouverte, décentralisée et distribuée, qui alimente la cryptomonnaie, permet d’enregistrer les transactions de manière sécuritaire sans nécessiter une vérification par un tiers. Dans le milieu de soins de santé, les réseaux décentralisés de la chaîne de blocs constituent une passerelle interopérable sécurisée pour les données de recherche clinique et celles recueillies dans le cadre de la pratique. Dans cet article, nous discutons des percées récentes et des possibles orientations futures pour l’application de la chaîne de blocs et son intégration dans l’intelligence artificielle (IA) en médecine cardiovasculaire. Nous examinerons en premier lieu les concepts fondamentaux sous-jacents de cette technologie avant de les contextualiser dans le spectre des applications actuelles bien connues. Nous évaluerons ensuite les applications propres à la médecine cardiovasculaire et à la recherche dans des domaines comme le séquençage de gènes à haut débit, les technologies portables et les essais cliniques. Nous ferons ensuite le point sur les obstacles à leur mise en œuvre efficace et les orientations futures. Nous résumerons également les applications pouvant être mises en œuvre dans les soins de santé en combinant les plateformes décentralisées fondées sur la technologie de la chaîne de blocs (pour la sécurité des données) et l’IA (pour l’analyse de données). En s’appuyant sur le calcul haute performance et l’IA capable de gérer en toute sécurité de grandes bases de données médicales en expansion rapide, l’intégration de la chaîne de blocs peut fournir des données prévisionnelles cliniquement significatives, contribuer à l’avancement de la méthodologie de recherche (p. ex. par l’entremise de solides essais cliniques décentralisés fondés sur l’association IA-chaîne de blocs) et fournir des outils virtuels pour la pratique clinique (p. ex. télésanté, technologies sensorielles, dispositifs médicaux portables). L’intégration des approches IA et de la technologie de la chaîne de blocs amplifie de manière synergique les points forts de ces deux technologies pour créer de nouvelles solutions avec l’objectif d’offrir une médecine cardiovasculaire de précision.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Nakamoto S.
        Bitcoin: a peer-to-peer electronic cash system. March 2009.
        (Available at:) (Accessed December 22, 2021)
        • Krittanawong C.
        • Zhang H.
        • Wang Z.
        • Aydar M.
        • Kitai T.
        Artificial intelligence in precision cardiovascular medicine.
        J Am Coll Cardiol. 2017; 69: 2657-2664
        • Krittanawong C.
        • Johnson K.W.
        • Rosenson R.S.
        • et al.
        Deep learning for cardiovascular medicine: a practical primer.
        Eur Heart J. 2019; 40: 2058-2073
        • Krittanawong C.
        • Johnson K.W.
        • Hershman S.G.
        • Tang W.H.W.
        Big data, artificial intelligence, and cardiovascular precision medicine.
        Exp Rev Precis Med Drug Dev. 2018; 3: 305-317
        • Zweck E.
        • Thayer K.L.
        • Helgestad O.K.L.
        • et al.
        Phenotyping cardiogenic shock.
        J Am Heart Assoc. 2021; 10e020085
        • Krittanawong C.
        • Virk H.U.H.
        • Kumar A.
        • et al.
        Machine learning and deep learning to predict mortality in patients with spontaneous coronary artery dissection.
        Sci Rep. 2021; 11: 8992
        • Krittanawong C.
        • Rogers A.J.
        • Aydar M.
        • et al.
        Integrating blockchain technology with artificial intelligence for cardiovascular medicine.
        Nat Rev Cardiol. 2020; 17: 1-3
        • Rivest R.L.
        • Shamir A.
        • Adleman L.
        A method for obtaining digital signatures and public-key cryptosystems.
        Commun ACM. 1978; 21: 120-126
        • Merkle R.C.
        Protocols for public key cryptosystems.
        1980 IEEE Symposium on Security and Privacy, 1980https://doi.org/10.1109/sp.1980.10006
        • Orcutt M.
        Once hailed as unhackable, blockchains are now getting hacked.
        MIT Technology Review, February 19, 2019 (Available at:) (Accessed December 22, 2021)
        • Koker T.E.
        • Koutmos D.
        Cryptocurrency trading using machine learning.
        J Risk Financ Manage. 2020; 13: 178
        • Wang T.
        • Liew S.C.
        • Zhang S.
        When blockchain meets AI: optimal mining strategy achieved by machine learning.
        Int J Intell Syst. 2021; 36: 2183-2207
        • Shahbazi Z.
        • Byun Y.-C.
        Improving transactional data system based on an edge computing–blockchain–machine learning integrated framework.
        Processes. 2021; 9: 92
        • Khan P.W.
        • Byun Y.-C.
        • Park N.
        IoT-blockchain enabled optimized provenance system for food industry 4.0 using advanced deep learning.
        Sensors. 2020; 20: 2990
        • Shah D.
        • Patel D.
        • Adesara J.
        • Hingu P.
        • Shah M.
        Integrating machine learning and blockchain to develop a system to veto the forgeries and provide efficient results in education sector.
        Vis Comput Ind Biomed Art. 2021; 4: 18
        • Alruwaili F.F.
        Artificial intelligence and multi agent based distributed ledger system for better privacy and security of electronic healthcare records.
        PeerJ Comput Sci. 2020; 6: e323
        • Kumar R.
        • Khan A.A.
        • Kumar J.
        • et al.
        Blockchain-federated-learning and deep learning models for covid-19 detection using CT imaging. 2020.
        arXiv. 2007; 06537
        • Kumar R.
        • Wang W.
        • Kumar J.
        • et al.
        An integration of blockchain and AI for secure data sharing and detection of CT images for the hospitals.
        Comput Med Imaging Graph. 2021; 87: 101812
        • Tan T.E.
        • Anees A.
        • Chen C.
        • et al.
        Retinal photograph–based deep learning algorithms for myopia and a blockchain platform to facilitate artificial intelligence medical research: a retrospective multicohort study.
        Lancet Digit Health. 2021; 3: e317-e329
        • Kuo T.T.
        • Gabriel R.A.
        • Cidambi K.R.
        • Ohno-Machado L.
        Expectation propagation logistic regression on permissioned blockchain (ExplorerChain): decentralized online healthcare/genomics predictive model learning.
        J Am Med Inform Assoc. 2020; 27: 747-756
        • Warnat-Herresthal S.
        • Schultze H.
        • Shastry K.L.
        • et al.
        Swarm learning for decentralized and confidential clinical machine learning.
        Nature. 2021; 594: 265-270
        • Kaissis G.
        • Ziller A.
        • Passerat-Palmbach J.
        • et al.
        End-to-end privacy preserving deep learning on multi-institutional medical imaging.
        Nat Mach Intell. 2021; 3: 473-484
        • McGuire A.L.
        • Gibbs R.A.
        Genetics. No longer de-identified.
        Science. 2006; 312: 370-371
        • Homer N.
        • Szelinger S.
        • Redman M.
        • et al.
        Resolving individuals contributing trace amounts of DNA to highly complex mixtures using high-density SNP genotyping microarrays.
        PLoS Genet. 2008; 4e1000167
        • Thiebes S.
        • Schlesner M.
        • Brors B.
        • Sunyaev A.
        Distributed ledger technology in genomics: a call for Europe.
        Eur J Hum Genet. 2020; 28: 139-140
        • Carlini F.
        • Carlini R.
        • Dalla Palma S.
        • Pareschi R.
        • Zappone F.
        The Genesy model for a blockchain-based fair ecosystem of genomic data.
        Front Blockchain. 2020; 3
        • Aragam K.G.
        • Dobbyn A.
        • Judy R.
        • et al.
        Limitations of contemporary guidelines for managing patients at high genetic risk of coronary artery disease.
        J Am Coll Cardiol. 2020; 75: 2769-2780
        • Grundy S.M.
        • Stone N.J.
        • Bailey A.L.
        • et al.
        2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APHA/ASPC/NLA/PCNA guideline on the management of blood cholesterol. executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines.
        J Am Coll Cardiol. 2019; 73: 3168-3209
        • Blum K.
        • Chen A.
        • Chen T.
        • et al.
        Genes and happiness.
        Gene Ther Mol Biol. 2009; 13: 91-129
        • Kulemin N.
        • Popov S.
        • Gorbachev A.
        The Zenome Project: whitepaper. Blockchain-based genomic ecosystem.
        (Available at:) (Accessed December 22, 2021)
        • Jin X.-L.
        • Zhang M.
        • Zhou Z.
        • Yu X.
        Application of a blockchain platform to manage and secure personal genomic data: a case study of LifeCODE.ai in China.
        J Med Internet Res. 2019; 21e13587
        • Marnell C.S.
        • Bick A.
        • Natarajan P.
        Clonal hematopoiesis of indeterminate potential (CHIP): linking somatic mutations, hematopoiesis, chronic inflammation and cardiovascular disease.
        J Mol Cell Cardiol. 2021; 161: 98-105
        • Scipione C.A.
        • Koschinsky M.L.
        • Boffa M.B.
        Lipoprotein(a) in clinical practice: new perspectives from basic and translational science.
        Crit Rev Clin Lab Sci. 2018; 55: 33-54
        • Krittanawong C.
        • Rogers A.J.
        • Johnson K.W.
        • et al.
        Integration of novel monitoring devices with machine learning technology for scalable cardiovascular management.
        Nat Rev Cardiol. 2021; 18: 75-91
        • Ul Hassan M.
        • Rehmani M.H.
        • Chen J.
        Differential privacy in blockchain technology: a futuristic approach.
        J Parallel Distrib Comput. 2020; 145: 50-74
        • Stehlik J.
        • Schmalfuss C.
        • Bozkurt B.
        • et al.
        Continuous wearable monitoring analytics predict heart failure hospitalization.
        Circ Heart Fail. 2020; 13e006513
        • Murdock D.R.
        • Venner E.
        • Muzny D.M.
        • et al.
        Genetic testing in ambulatory cardiology clinics reveals high rate of findings with clinical management implications.
        Genet Med. 2021; 23: 2404-2414
        • Ommen S.R.
        • Mital S.
        • Burke M.A.
        • et al.
        2020 AHA/ACC guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: a report of the American College Of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines.
        Circulation. 2020; 142: e558-e631
        • Landstrom A.P.
        • Kim J.J.
        • Gelb B.D.
        • et al.
        Genetic testing for heritable cardiovascular diseases in pediatric patients: a scientific statement from the American Heart Association.
        Circ Genom Precis Med. 2021; 14e000086
        • Chan A.W.
        • Tetzlaff J.M.
        • Altman D.G.
        • Dickersin K.
        • Moher D.
        SPIRIT 2013: new guidance for content of clinical trial protocols.
        Lancet. 2013; 381: 91-92
        • World Health Organization
        International Clinical Trials Registry Platform (ICTRP).
        (Available at:) (Accessed December 22, 2021)
        • Clinical Trial Transformation Initiative
        CTTI recommendations: decentralized clinical trials. September 2018.
        (Available at:) (Accessed December 22, 2021)
        • Maslove D.M.
        • Klein J.
        Using blockchain technology to manage clinical trials data: a proof-of-concept.
        study. 2018; 6e11949
        • US Food and Drug Administration
        FDA guidance on conduct of clinical trials of medical products during the COVID-19 public health emergency: guidance for industry, investigators, and institutional review boards. August 2021.
        (Available at:) (Accessed December 22, 2021)
        • Khac Hai N.
        • Lawpoolsri S.
        • Jittamala P.
        • Thi Thu Huong P.
        • Kaewkungwal J.
        Practices in security and confidentiality of HIV/AIDS patients’ information: a national survey among staff at HIV outpatient clinics in Vietnam.
        PLoS One. 2017; 12e0188160
        • Shi S.
        • He D.
        • Li L.
        • et al.
        Applications of blockchain in ensuring the security and privacy of electronic health record systems: a survey.
        Comput Secur. 2020; 97: 101966
        • Suleyman M.
        • Laurie B.
        Trust, confidence and verifiable data audit. DeepMind, March 9, 2017.
        (Available at:) (Accessed December 22, 2021)
        • Patientory
        Patientory app.
        (Available at:) (Accessed December 22, 2021)
        • Gaskell A.
        Is blockchain coming of age? Forbes, September 13, 2017.
        (Available at:) (Accessed December 22, 2021)