Canadian Journal of Cardiology

Management of Patients With Single-Ventricle Physiology Across the Lifespan: Contributions From Magnetic Resonance and Computed Tomography Imaging

Published:January 17, 2022DOI:


      Cardiovascular magnetic resonance (CMR) and cardiac computed tomography (CCT) are robust cross-sectional imaging modalities that are increasingly being used to guide the diagnosis and management of those born with single-ventricle physiology. The purpose of this review is to acquaint the reader with the wide range of cross-sectional imaging applications that can be applied in this population. Illustrative examples of information provided by CMR and CCT are included, such as delineation of cardiac anatomy, measurement of ventricular volumetry, interrogation of vascular anatomy and flows, evaluation of myocardial viability, and exclusion of thromboembolic disease. Focus is placed on the appropriate selection and timing of advanced cardiac imaging modalities, and differentiations are made between established indications for imaging and emerging applications (such as 4-dimensional [4D] flow assessment and parametric imaging for identification of diffuse fibrosis using CMR). Potential CMR and CCT contributions in the selection of interventional strategies in the child and for surveillance of postoperative complications in the adult are highlighted. Furthermore, the importance of extracardiac cross-sectional imaging in the single-ventricle population is emphasized given the recognition that complications post-Fontan palliation are not limited to the cardiovascular system but will often include extracardiac manifestations of disease (such as hepatic disease or lymphatic abnormalities), While the value of CMR and CCT for contemporary clinical care of individuals born with single-ventricle physiology appears to be well-established, further research will be necessary to explore the impact of risk stratification using imaging biomarkers on clinical outcomes following Fontan palliation.


      La résonance magnétique cardiovasculaire (RMC) et la tomodensitométrie cardiaque (TDMC) sont des techniques d’imagerie transversale (par coupes) fiables de plus en plus employées pour orienter le diagnostic et la prise en charge chez les personnes nées avec un cœur univentriculaire. La présente revue vise à familiariser le lecteur avec les nombreuses applications de l’imagerie par coupes qu’il est possible d’utiliser dans cette population. Des exemples illustrent l’information fournie par la RMC et la TDMC, comme la représentation de l’anatomie cardiaque, la volumétrie ventriculaire, l’analyse de l’anatomie et du flux vasculaires, l’évaluation de la viabilité myocardique ainsi que l’exclusion de la maladie thromboembolique. L’accent est mis sur la sélection et le moment appropriés d’utilisation des techniques avancées d’imagerie cardiaque ainsi que sur les différences entre les indications établies de l’imagerie et les applications émergentes (comme la mesure quadridimensionnelle [4D] des flux et l’imagerie paramétrique pour la détection de fibrose diffuse au moyen de la RMC). Il est également question de l’utilité potentielle de la RMC et de la TDMC pour le choix de la stratégie interventionnelle chez l’enfant et la surveillance des complications postopératoires chez l’adulte. En outre, la revue traite de l’importance de l’imagerie transversale extracardiaque chez la population née avec un cœur univentriculaire, puisqu’il a été prouvé que les complications consécutives à l’intervention de Fontan ne se limitent pas à l’appareil cardiovasculaire, mais qu’elles prennent bien souvent la forme de manifestations extracardiaques (comme une maladie du foie ou une anomalie lymphatique). Bien que l’utilité de la RMC et de la TDMC pour les soins cliniques contemporains prodigués aux personnes nées avec un cœur univentriculaire semble bien établie, il faudra mener d’autres recherches pour explorer les répercussions de la stratification du risque à l’aide de biomarqueurs obtenus par imagerie sur les résultats cliniques à la suite d’une intervention de Fontan.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Stout K.K.
        • Daniels C.J.
        • Aboulhosn J.A.
        • et al.
        2018 AHA/ACC guideline for the management of adults with congenital heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines.
        Circulation. 2019; 139 (800): e698
        • Grosse-Wortmann L.
        • Yun T.J.
        • Al-Radi O.
        • et al.
        Borderline hypoplasia of the left ventricle in neonates: insights for decision-making from functional assessment with magnetic resonance imaging.
        J Thorac Cardiovasc Surg. 2008; 136: 1429-1436
        • Banka P.
        • Schaetzle B.
        • Komarlu R.
        • Emani S.
        • Geva T.
        • Powell A.J.
        Cardiovascular magnetic resonance parameters associated with early transplant-free survival in children with small left hearts following conversion from a univentricular to biventricular circulation.
        J Cardiovasc Magn Reson. 2014; 16: 73
        • Haller C.
        • Honjo O.
        • Caldarone C.A.
        • Van Arsdell G.S.
        Growing the borderline hypoplastic left ventricle: hybrid approach.
        operative techniques in thoracic and cardiovascular surgery. 2016; 21: 124-138
        • Chiu P.
        • Emani S.
        Left ventricular recruitment in patients with hypoplastic left heart syndrome.
        Semin Thorac Cardiovasc Surg. 2021; 24: 30-36
        • Marathe S.P.
        • Piekarski B.
        • Beroukhim R.S.
        • et al.
        Super Glenn for staged biventricular repair: impact on left ventricular growth?.
        Eur J Cardiothorac Surg. 2021; 60: 534-541
        • Emani S.M.
        Staged left ventricular recruitment and biventricular conversion for patients with borderline left heart.
        Op Tech Thorac Cardiovasc Surg. 2016; 21: 112-123
        • Yoo S.J.
        • Hussein N.
        • Peel B.
        • et al.
        3D Modeling and printing in congenital heart surgery: entering the stage of maturation.
        Front Pediatr. 2021; 9: 621672
        • Meza J.M.
        • Hickey E.J.
        • Blackstone E.H.
        • et al.
        The optimal timing of stage 2 palliation for hypoplastic left heart syndrome: an analysis of the pediatric heart network single ventricle reconstruction trial public data set.
        Circulation. 2017; 136: 1737-1748
        • Meza J.M.
        • Hickey E.
        • McCrindle B.
        • et al.
        The optimal timing of stage-2-palliation after the Norwood operation.
        Ann Thorac Surg. 2018; 105: 193-199
        • Nakanishi T.
        Cardiac catheterization is necessary before bidirectional Glenn and Fontan procedures in single ventricle physiology.
        Pediatr Cardiol. 2005; 26: 159-161
        • Kogon B.E.
        • Plattner C.
        • Leong T.
        • Simsic J.
        • Kirshbom P.M.
        • Kanter K.R.
        The bidirectional Glenn operation: a risk factor analysis for morbidity and mortality.
        J Thorac Cardiovasc Surg. 2008; 136: 1237-1242
        • Carlo W.F.
        • Carberry K.E.
        • Heinle J.S.
        • et al.
        Interstage attrition between bidirectional Glenn and Fontan palliation in children with hypoplastic left heart syndrome.
        J Thorac Cardiovasc Surg. 2011; 142: 511-516
        • Friedman K.G.
        • Salvin J.W.
        • Wypij D.
        • et al.
        Risk factors for failed staged palliation after bidirectional Glenn in infants, who have undergone stage one palliation.
        Eur J Cardiothorac Surg. 2011; 40: 1000-1006
        • Hughes M.L.
        • Tsang V.T.
        • Kostolny M.
        • et al.
        Lessons from inter-stage cardiac magnetic resonance imaging in predicting survival for patients with hypoplastic left heart syndrome.
        Cardiol Young. 2011; 21: 646-653
        • Lee T.M.
        • Aiyagari R.
        • Hirsch J.C.
        • Ohye R.G.
        • Bove E.L.
        • Devaney E.J.
        Risk factor analysis for second-stage palliation of single ventricle anatomy.
        Ann Thorac Surg. 2012; 93: 614-619
        • Alsoufi B.
        • Manlhiot C.
        • Awan A.
        • et al.
        Current outcomes of the Glenn bidirectional cavopulmonary connection for single ventricle palliation.
        Eur J Cardiothorac Surg. 2012; 42: 42-49
        • Schwartz S.M.
        • Lu M.
        • Ohye R.G.
        • et al.
        Risk factors for prolonged length of stay after the stage 2 procedure in the single-ventricle reconstruction trial.
        J Thorac Cardiovasc Surg. 2014; 147 (8.e4): 1791
        • Luo S.
        • Haranal M.
        • Deng M.X.
        • et al.
        Low preoperative superior vena cava blood flow predicts bidirectional cavopulmonary shunt failure.
        J Thorac Cardiovasc Surg. 2020; 160 (40.e4): 1529
        • Krupickova S.
        • Quail M.A.
        • Yates R.
        • Gebauer R.
        • Hughes M.
        • Marek J.
        The comparative role of echocardiography and MRI for identifying critical lesions in patients with single-ventricle physiology, before bidirectional cavopulmonary connection.
        Cardiol Young. 2016; 26: 1373-1382
        • Krupickova S.
        • Muthurangu V.
        • Hughes M.
        • et al.
        Echocardiographic arterial measurements in complex congenital diseases before bidirectional Glenn: comparison with cardiovascular magnetic resonance imaging.
        Eur Heart J Cardiovasc Imaging. 2017; 18: 332-341
        • Hart M.R.
        • Whiteside W.
        • Yu S.
        • et al.
        Differences in pulmonary and systemic flow measurements by cardiac magnetic resonance vs cardiac catheterization and relation to collateral flow in single ventricle patients.
        Pediatr Cardiol. 2020; 41: 885-891
        • Muthurangu V.
        • Taylor A.M.
        • Hegde S.R.
        • et al.
        Cardiac magnetic resonance imaging after stage i norwood operation for hypoplastic left heart syndrome.
        Circulation. 2005; 112: 3256-3263
        • Brown D.W.
        • Gauvreau K.
        • Powell A.J.
        • et al.
        Cardiac magnetic resonance versus routine cardiac catheterization before bidirectional Glenn anastomosis in infants with functional single ventricle: a prospective randomized trial.
        Circulation. 2007; 116: 2718-2725
        • Jones B.O.
        • Ditchfield M.R.
        • Cahoon G.D.
        • et al.
        Cardiac magnetic resonance imaging prior to bidirectional cavopulmonary connection in hypoplastic left heart syndrome.
        Heart Lung Circ. 2010; 19: 535-540
        • Brown D.W.
        • Gauvreau K.
        • Powell A.J.
        • et al.
        Cardiac magnetic resonance versus routine cardiac catheterization before bidirectional Glenn anastomosis: long-term follow-up of a prospective randomized trial.
        J Thorac Cardiovasc Surg. 2013; 146: 1172-1178
        • Feinstein J.A.
        • Benson D.W.
        • Dubin A.M.
        • et al.
        Hypoplastic left heart syndrome.
        J Am Coll Cardiol. 2012; 59: 1-42
        • Han B.K.
        • Vezmar M.
        • Lesser J.R.
        • et al.
        Selective use of cardiac computed tomography angiography: an alternative diagnostic modality before second-stage single ventricle palliation.
        J Thorac Cardiovasc Surg. 2014; 148: 1548-1554
        • Krupickova S.
        • Vazquez-Garcia L.
        • Obeidat M.
        • et al.
        Accuracy of computed tomography in detection of great vessel stenosis or hypoplasia before superior bidirectional cavopulmonary connection: comparison with cardiac catheterization and surgical findings.
        Arch Cardiovasc Dis. 2019; 112: 12-21
        • Choussat A.
        • Fontan F.
        • Besse P.
        • Vallot F.
        • Chauve A.
        • Bricaud H.
        Selection criteria for Fontan’s procedure.
        in: Anderson R. Shinebourne E. Pediatric Cardiology. Churchill-Livingstone, 1978: 559-566
        • Nakata S.
        • Imai Y.
        • Takanashi Y.
        • et al.
        A new method for the quantitative standardization of cross-sectional areas of the pulmonary arteries in congenital heart diseases with decreased pulmonary blood flow.
        J Thorac Cardiovasc Surg. 1984; 88: 610-619
        • Lamberti J.J.
        • Mainwaring R.D.
        • Spicer R.L.
        • Uzark K.C.
        • Moore J.W.
        Factors influencing perioperative morbidity during palliation of the univentricular heart.
        Ann Thorac Surg. 1995; 60: S550-S553
        • Hosein R.B.M.
        • Clarke A.J.B.
        • McGuirk S.P.
        • et al.
        Factors influencing early and late outcome following the Fontan procedure in the current era: the "two commandments"?.
        Eur J Cardiothorac Surg. 2007; 31: 344-353
        • Harris M.A.
        • Cosulich M.T.
        • Gillespie M.J.
        • et al.
        Pre-Fontan cardiac magnetic resonance predicts post-Fontan length of stay and avoids ionizing radiation.
        J Thorac Cardiovasc Surg. 2009; 138: 941-947
        • Biko D.M.
        • DeWitt A.G.
        • Pinto E.M.
        • et al.
        MRI evaluation of lymphatic abnormalities in the neck and thorax after fontan surgery: relationship with outcome.
        Radiology. 2019; 291: 774-780
        • Banka P.
        • McElhinney D.B.
        • Bacha E.A.
        • et al.
        What is the clinical utility of routine cardiac catheterization before a Fontan operation?.
        Pediatr Cardiol. 2010; 31: 977-985
        • Grosse-Wortmann L.
        • Drolet C.
        • Dragulescu A.
        • et al.
        Aortopulmonary collateral flow volume affects early postoperative outcome after Fontan completion: a multimodality study.
        J Thorac Cardiovasc Surg. 2012; 144: 1329-1336
        • Glatz A.C.
        • Rome J.J.
        • Small A.J.
        • et al.
        Systemic-to-pulmonary collateral flow, as measured by cardiac magnetic resonance imaging, is associated with acute post-fontan clinical outcomes.
        Circ Cardiovasc Imaging. 2012; 5: 218-225
        • Odenwald T.
        • Quail M.A.
        • Giardini A.
        • et al.
        Systemic to pulmonary collateral blood flow influences early outcomes following the total cavopulmonary connection.
        Heart. 2012; 98: 934-940
        • Ghosh R.M.
        • Griffis H.M.
        • Glatz A.C.
        • et al.
        Prevalence and cause of early Fontan complications: does the lymphatic circulation play a role?.
        J Am Heart Assoc. 2020; 9
        • Fogel M.A.
        • Pawlowski T.W.
        • Whitehead K.K.
        • et al.
        Cardiac magnetic resonance and the need for routine cardiac catheterization in single ventricle patients prior to Fontan: a comparison of 3 groups.
        J Am Coll Cardiol. 2012; 60: 1094-1102
        • Ait-Ali L.
        • De Marchi D.
        • Lombardi M.
        • et al.
        The role of cardiovascular magnetic resonance in candidates for Fontan operation: proposal of a new algorithm.
        J Cardiovasc Magn Reson. 2011; 13: 69
        • Prakash A.
        • Khan M.A.
        • Hardy R.
        • Torres A.J.
        • Chen J.M.
        • Gersony W.M.
        A new diagnostic algorithm for assessment of patients with single ventricle before a Fontan operation.
        J Thorac Cardiovasc Surg. 2009; 138: 917-923
        • Ro P.S.
        • Rychik J.
        • Cohen M.S.
        • Mahle W.T.
        • Rome J.J.
        Diagnostic assessment before Fontan operation in patients with bidirectional cavopulmonary anastomosis.
        J Am Coll Cardiol. 2004; 44: 184-187
        • Pundi K.N.
        • Johnson J.N.
        • Dearani J.A.
        • et al.
        40-year follow-up after the fontan operation: long-term outcomes of 1,052 patients.
        J Am Coll Cardiol. 2015; 66: 1700-1710
        • Downing T.E.
        • Allen K.Y.
        • Glatz A.C.
        • et al.
        Long-term survival after the Fontan operation: twenty years of experience at a single center.
        J Thorac Cardiovasc Surg. 2017; 154 (53.e2): 243
        • Carins T.A.
        • Shi W.Y.
        • Iyengar A.J.
        • et al.
        Long-term outcomes after first-onset arrhythmia in Fontan physiology.
        J Thorac Cardiovasc Surg. 2016; 152: 1355-13563.e1
        • Egbe A.C.
        • Connolly H.M.
        • McLeod C.J.
        • et al.
        Thrombotic and embolic complications associated with atrial arrhythmia after Fontan operation: role of prophylactic therapy.
        J Am Coll Cardiol. 2016; 68: 1312-1319
        • Bulic A.
        • Zimmerman F.J.
        • Ceresnak S.R.
        • et al.
        Ventricular pacing in single ventricles-A bad combination.
        Heart Rhythm. 2017; 14: 853-857
        • Rychik J.
        • Atz A.M.
        • Celermajer D.S.
        • et al.
        Evaluation and management of the child and adult with Fontan circulation: a scientific statement from the American Heart Association.
        Circulation. 2019; : 140
        • Azarine A.
        • Garçon P.
        • Stansal A.
        • et al.
        Four-dimensional flow MRI: principles and cardiovascular applications.
        Radiographics. 2019; 39: 632-648
        • Vasanawala S.S.
        • Hanneman K.
        • Alley M.T.
        • Hsiao A.
        Congenital heart disease assessment with 4D flow MRI.
        J Magn Reson Imaging. 2015; 42: 870-886
        • Lam C.Z.
        • Pagano J.J.
        • Gill N.
        • et al.
        Dual phase infusion with bolus tracking: technical innovation for cardiac and respiratory navigated magnetic resonance angiography using extracellular contrast.
        Pediatr Radiol. 2019; 49: 399-406
        • Aguet J.
        • Gill N.
        • Tassos V.P.
        • Chavhan G.B.
        • Lam C.Z.
        Contrast-enhanced body magnetic resonance angiography: how we do it.
        Pediatr Radiol. 2022; 52: 262-270
        • Greenberg S.B.
        • Bhutta S.T.
        A dual contrast injection technique for multidetector computed tomography angiography of Fontan procedures.
        Int J Cardiovasc Imaging. 2008; 24: 345-348
        • Prabhu S.P.
        • Mahmood S.
        • Sena L.
        • Lee E.Y.
        MDCT evaluation of pulmonary embolism in children and young adults following a lateral tunnel Fontan procedure: optimizing contrast-enhancement techniques.
        Pediatr Radiol. 2009; 39: 938-944
        • Sandler K.L.
        • Markham L.W.
        • Mah M.L.
        • Byrum E.P.
        • Williams J.R.
        Optimizing CT angiography in patients with Fontan physiology: single-center experience of dual-site power injection.
        Clin Radiol. 2014; 69: e562-e567
        • Duerden L.
        • Abdullah H.
        • Lyen S.
        • Manghat N.
        • Hamilton M.
        Contrast circulation in adult Fontan patients using MR time resolved angiography: application for CT pulmonary angiography.
        J Cardiovasc Comput Tomogr. 2020; 14: 330-334
        • Ghadimi Mahani M.
        • Agarwal P.P.
        • Rigsby C.K.
        • et al.
        CT for assessment of thrombosis and pulmonary embolism in multiple stages of single-ventricle palliation: challenges and suggested protocols.
        Radiographics. 2016; 36: 1273-1284
        • Meyer S.L.
        • St. Clair N.
        • Powell A.J.
        • Geva T.
        • Rathod R.H.
        Integrated clinical and magnetic resonance imaging assessments late after Fontan operation.
        J Am Coll Cardiol. 2021; 77: 2480-2489
        • Pisesky A.
        • Reichert M.J.E.
        • de Lange C.
        • et al.
        Adverse fibrosis remodeling and aortopulmonary collateral flow are associated with poor Fontan outcomes.
        J Cardiovasc Magn Reson. 2021; 23: 134
        • van den Bosch E.
        • Bossers S.S.M.
        • Robbers-Visser D.
        • et al.
        Ventricular response to dobutamine stress CMR is a predictor for outcome in Fontan patients.
        JACC: Cardiovasc Imaging. 2019; 12: 368-370
        • Alsaied T.
        • Sleeper L.A.
        • Masci M.
        • et al.
        Maldistribution of pulmonary blood flow in patients after the Fontan operation is associated with worse exercise capacity.
        J Cardiovasc Magn Reson. 2018; 20: 85
        • Ridderbos F.J.S.
        • Bonenkamp B.E.
        • Meyer S.L.
        • et al.
        Pulmonary artery size is associated with functional clinical status in the Fontan circulation.
        Heart. 2020; 106: 233-239
        • Khiabani R.H.
        • Whitehead K.K.
        • Han D.
        • et al.
        Exercise capacity in single-ventricle patients after Fontan correlates with haemodynamic energy loss in TCPC.
        Heart. 2015; 101: 139-143
        • Rathod R.H.
        • Prakash A.
        • Powell A.J.
        • Geva T.
        Myocardial fibrosis identified by cardiac magnetic resonance late gadolinium enhancement is associated with adverse ventricular mechanics and ventricular tachycardia late after Fontan operation.
        J Am Coll Cardiol. 2010; 55: 1721-1728
        • Laflamme E.
        • Roche S.L.
        Fontan circuit thrombus in adults: often silent, rarely innocent.
        Can J Cardiol. 2019; 35: 1631-1634
        • Rodriguez F.H.
        • Book W.M.
        Management of the adult Fontan patient.
        Heart. 2020; 106: 105-110
        • Dillman J.R.
        • Trout A.T.
        • Alsaied T.
        • Gupta A.
        • Lubert A.M.
        Imaging of Fontan-associated liver disease.
        Pediatr Radiol. 2020; 50: 1528-1541
        • DiPaola F.W.
        • Schumacher K.R.
        • Goldberg C.S.
        • Friedland-Little J.
        • Parameswaran A.
        • Dillman J.R.
        Effect of Fontan operation on liver stiffness in children with single ventricle physiology.
        Eur Radiol. 2017; 27: 2434-2442
        • Goldberg D.J.
        • Surrey L.F.
        • Glatz A.C.
        • et al.
        Hepatic fibrosis is universal following Fontan operation, and severity is associated with time from surgery: a liver biopsy and hemodynamic study.
        J Am Heart Assoc. 2017; 6
        • Wu F.M.
        • Kogon B.
        • Earing M.G.
        • et al.
        Liver health in adults with Fontan circulation: a multicenter cross-sectional study.
        J Thorac Cardiovasc Surg. 2017; 153: 656-664
        • Pundi K.
        • Pundi K.N.
        • Kamath P.S.
        • et al.
        Liver disease in patients after the Fontan operation.
        Am J Cardiol. 2016; 117: 456-460
        • Téllez L.
        • Rodríguez de Santiago E.
        • Minguez B.
        • et al.
        Prevalence, features and predictive factors of liver nodules in Fontan surgery patients: the VALDIG Fonliver prospective cohort.
        J Hepatol. 2020; 72: 702-710
        • Egbe A.C.
        • Poterucha J.T.
        • Warnes C.A.
        • et al.
        Hepatocellular carcinoma after Fontan operation: multicenter case series.
        Circulation. 2018; 138: 746-748
        • Possner M.
        • Gordon-Walker T.
        • Egbe A.C.
        • et al.
        Hepatocellular carcinoma and the Fontan circulation: clinical presentation and outcomes.
        Int J Cardiol. 2021; 322: 142-148
        • Daniels C.J.
        • Bradley E.A.
        • Landzberg M.J.
        • et al.
        Fontan-associated liver disease.
        J Am Coll Cardiol. 2017; 70: 3173-3194
        • Zentner D.
        • Celermajer D.S.
        • Gentles T.
        • et al.
        Management of people with a Fontan circulation: a Cardiac Society of Australia and New Zealand position statement.
        Heart Lung Circ. 2020; 29: 5-39
        • Navallas M.
        • Yoo S.J.
        • Chavhan G.B.
        • et al.
        Semiquantitative characterization of dynamic magnetic resonance perfusion of the liver in pediatric Fontan patients.
        Pediatr Radiol. 2022; 29: 483-492
        • Elder R.W.
        • McCabe N.M.
        • Veledar E.
        • et al.
        Risk factors for major adverse events late after Fontan palliation: major AEs late after Fontan palliation.
        Congenit Heart Dis. 2015; 10: 159-168
        • Yang H.K.
        • Jang H.J.
        • Khalili K.
        • Wald R.M.
        • Yoo S.J.
        • Kim T.K.
        CT and MR imaging findings of the livers in adults with Fontan palliation: an observational study.
        Abdom Radiol. 2020; 45: 188-202
        • Horvat N.
        • Rocha M.S.
        • Chagas A.L.
        • et al.
        Multimodality screening of hepatic nodules in patients with congenital heart disease after Fontan procedure: role of ultrasound, ARFI elastography, CT, and MRI.
        Am J Roentgenol. 2018; 211: 1212-1220
        • Wells M.L.
        • Hough D.M.
        • Fidler J.L.
        • Kamath P.S.
        • Poterucha J.T.
        • Venkatesh S.K.
        Benign nodules in post-Fontan livers can show imaging features considered diagnostic for hepatocellular carcinoma.
        Abdom Radiol. 2017; 42: 2623-2631
        • Engelhardt E.M.
        • Trout A.T.
        • Sheridan R.M.
        • Veldtman G.R.
        • Dillman J.R.
        Focal liver lesions following Fontan palliation of single ventricle physiology: a radiology-pathology case series.
        Congenit Heart Dis. 2019; 14: 380-388
        • Brayer S.W.
        • Zafar F.
        • Lubert A.M.
        • et al.
        Relation of magnetic resonance elastography to Fontan circulatory failure in a cohort of pediatric and adult patients.
        Pediatr Cardiol. 2021; 42: 1871-1878
        • de Lange C.
        • Reichert M.J.E.
        • Pagano J.J.
        • et al.
        Increased extracellular volume in the liver of pediatric Fontan patients.
        J Cardiovasc Magn Reson. 2019; 21: 39
        • de Lange C.
        • Thrane K.J.
        • Thomassen K.S.
        • et al.
        Hepatic magnetic resonance T1-mapping and extracellular volume fraction compared to shear-wave elastography in pediatric Fontan-associated liver disease.
        Pediatr Radiol. 2021; 51: 66-76
        • Shiina Y.
        • Inai K.
        • Ohashi R.
        • Nagao M.
        Potential of liver T1 mapping for the detection of Fontan-associated liver disease in adults.
        Magn Reson Med Sci. 2021; 20: 295-302
        • Caro-Dominguez P.
        • Chaturvedi R.
        • Chavhan G.
        • et al.
        Magnetic resonance imaging assessment of blood flow distribution in fenestrated and completed Fontan circulation with special emphasis on abdominal blood flow.
        Korean J Radiol. 2019; 20: 1186
        • Hauser J.A.
        • Jones A.
        • Pandya B.
        • Taylor A.M.
        • Muthurangu V.
        Comprehensive MRI assessment of the cardiovascular responses to food ingestion in Fontan physiology.
        Am J Physiol Heart Circ Physiol. 2020; 319: H808-H813
        • Chavhan G.B.
        • Lam C.Z.
        • Greer M.L.C.
        • Temple M.
        • Amaral J.
        • Grosse-Wortmann L.
        Magnetic resonance lymphangiography.
        Radiol Clin North Am. 2020; 58: 693-706
        • Vaikom House A.
        • David D.R.
        • Aguet J.
        • et al.
        Abstract 16744: MR lymphatic burden in Fontan correlates with outcomes.
        Circulation. 2020; 142
        • Dori Y.
        • Smith C.L.
        • DeWitt A.G.
        • et al.
        Intramesenteric dynamic contrast pediatric MR lymphangiography: initial experience and comparison with intranodal and intrahepatic MR lymphangiography.
        Eur Radiol. 2020; 30: 5777-5784
        • Dori Y.
        • Keller M.S.
        • Rome J.J.
        • et al.
        Percutaneous lymphatic embolization of abnormal pulmonary lymphatic flow as treatment of plastic bronchitis in patients with congenital heart disease.
        Circulation. 2016; 133: 1160-1170
        • Itkin M.
        • Piccoli D.A.
        • Nadolski G.
        • et al.
        Protein-losing enteropathy in patients with congenital heart disease.
        J Am Coll Cardiol. 2017; 69: 2929-2937