QGC606, a best-in-class orally active centrally acting aminopeptidase A inhibitor prodrug, for treating heart failure following myocardial infarction

Solène E. Boitard, PhD, Mathilde Keck, PhD, Robin Deloux, PhD, Pierre-Emmanuel Girault-Sotias, Yannick Marc, PhD, Nadia De Mota, Delphine Compere, PhD, Onnik Agbulut, PhD, Fabrice Balavoine, PhD, Catherine Llorens-Cortes, PhD

PII: S0828-282X(22)00069-1
DOI: https://doi.org/10.1016/j.cjca.2022.01.019
Reference: CJCA 4246

To appear in: Canadian Journal of Cardiology

Received Date: 24 June 2021
Revised Date: 17 January 2022
Accepted Date: 18 January 2022

Please cite this article as: Boitard SE, Keck M, Deloux R, Girault-Sotias P-E, Marc Y, De Mota N, Compere D, Agbulut O, Balavoine F, Llorens-Cortes C, QGC606, a best-in-class orally active centrally acting aminopeptidase A inhibitor prodrug, for treating heart failure following myocardial infarction, Canadian Journal of Cardiology (2022), doi: https://doi.org/10.1016/j.cjca.2022.01.019.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 Published by Elsevier Inc. on behalf of the Canadian Cardiovascular Society.
Graphical abstract: QCM is an orally active co-regulating drug of the JAK2 inhibition/HSP90.
QGC606, a best-in-class orally active centrally acting aminopeptidase A inhibitor prodrug, for treating heart failure following myocardial infarction

Boitard et al. – QGC606, a novel drug for treating heart failure

Solène E Boitard, PhD 1,2, Mathilde Keck, PhD 1,2, Robin Deloux, PhD 3, Pierre-Emmanuel Girault-Sotias 1, Yannick Marc, PhD 1,2, Nadia De Mota 1, Delphine Compere, PhD 2, Onnik Agbulut, PhD 3, Fabrice Balavoine, PhD 2 and Catherine Llorens-Cortes, PhD 1,4.

1 Laboratory of Central Neuropeptides in the Regulation of Water Balance and Cardiovascular Functions, Collège de France, CIRB, INSERM U1050/CNRS UMR 7241, 75005 Paris, France
2 Quantum Genomics, Paris, France
3 Sorbonne Université, Institut de Biologie Paris-Seine, CNRS UMR 8256/INSERM ERL U1164, F-75005, Paris, France.
4 Département Médicaments et Technologies pour la Santé, CEA, SIMoS, CNRS ERL9004 91191 Gif-sur-Yvette, France.

Address of the corresponding author:
Catherine Llorens-Cortes,
Collège de France, INSERM U1050, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France.
Tel: +33 144271663;
E-mail: c.llorens-cortes@college-de-france.fr

Total words: 6479 = Introduction+methods+ results+discussion +references+figures legends
ABSTRACT

BACKGROUND: Blockade of brain renin-angiotensin system (RAS) overactivity by firibastat, the first centrally acting aminopeptidase A (APA) inhibitor prodrug, has already demonstrated its effectiveness in improving cardiac function after myocardial infarction (MI). We developed QGC606, a more potent and more selective APA inhibitor prodrug and studied its effects after chronic oral administration in mice post-MI.

METHODS: Two days after MI induced by the left anterior descending artery ligation, adult male mice were randomized into four groups to receive during four weeks oral treatment with vehicle, QGC606, firibastat, or the angiotensin-I converting enzyme inhibitor ramipril, used as positive control.

RESULTS: Four weeks post-MI, brain APA was overactivated in vehicle-treated MI mice. QGC606 treatment normalized brain APA hyperactivity to control values measured in sham-operated mice. Four weeks post-MI, QGC606-treated mice had a higher left ventricular (LV) ejection fraction, significantly smaller LV end-systolic diameter and volume, significantly lower HF biomarkers mRNA expression (Myh7 and Anf) and plasma NT-pro-BNP and noradrenaline levels than saline-treated mice. QGC606 treatment significantly improved the dP/dt max and min, LV end-diastolic pressure without affecting blood pressure (BP), whereas we observed a decrease in BP in ramipril-treated mice. We observed also a reduction of cardiac fibrosis, highlighted by lower Ctgf mRNA levels and a reduction of both the fibrotic area and MI size in QGC606-treated mice.

CONCLUSIONS: Chronic oral QGC606 administration in post-MI mice showed beneficial effects in improving cardiac function and reducing cardiac remodeling and fibrosis but, unlike ramipril, without lowering BP.
Key Words: aminopeptidase A inhibitor, brain renin-angiotensin system, myocardial infarction, heart failure.

Brief summary: Brain renin-angiotensin system (RAS) hyperactivity has been involved in the development of heart failure post-myocardial infarction (post-MI). Aminopeptidase A (APA) generates brain angiotensin-III, one of the brain RAS effector peptides, which plays a pivotal role in sympathetic hyperactivity and LV dysfunction in rats post-MI. We have investigated here the effects of chronic oral administration of QGC606, a best-in-class orally active centrally-acting APA inhibitor prodrug, to prevent cardiac dysfunction in comparison with ramipril in mice post-MI.
INTRODUCTION

Myocardial infarction (MI) is the most common cause of heart failure (HF) with reduced ejection fraction (EF). Activation of the systemic renin-angiotensin system (RAS) after MI is considered to play an important role in cardiac remodeling, as inhibition of angiotensin-I converting enzyme (ACE) activity and blockade of type I angiotensin-II receptor (AT1R) have been demonstrated to improve cardiac function, remodeling, and long-term clinical outcomes, in particular, the occurrence of cardiovascular events and death.1-5 However, the use of ACE inhibitors is often associated with hypotension6, limiting the ability to administer the most effective dose for full benefit on left ventricular (LV) size and function, even after progressive and careful dose titration. Thus, it appears important to find new drugs with the same efficacy as ACE inhibitors but with fewer and milder side-effects.

Recent studies have shown that brain RAS overactivity is involved in the development of HF after MI suggesting that its blockade could be a potential new therapeutic strategy for the prevention and/or treatment of HF.7 Within the brain RAS, aminopeptidase A (APA; EC 3.4.11.7), a membrane-bound zinc metalloprotease, produces angiotensin-III (AngIII) from angiotensin-II (AngII), while aminopeptidase N (APN; EC 3.4.11.2), another membrane-bound zinc metalloprotease, metabolizes AngIII into angiotensin-IV.8

By using EC33 and PC18, two specific and selective APA and APN inhibitors respectively,9,10 we previously showed that brain AngIII is one of the main effector peptides of the brain RAS in the control of BP and arginine-vasopressin (AVP) release in hypertensive rats.8,11 Brain AngIII plays also a pivotal role in sympathetic hyperactivity and LV dysfunction in rats post-MI.12

EC33 does not cross the blood-brain barrier. Thus, for the clinical use of APA inhibitors, we developed a first-in-class orally active prodrug of EC33, RB150 (4,4′-dithio{bis[(3S)-3-
aminobutyl sulfonic acid], obtained by dimerizing two molecules of EC33 through a disulfide bond,13 which was renamed firibastat by the WHO. (Fig.1).

In the brain, the disulfide bridge of firibastat is immediately cleaved by brain reductases, generating two active molecules of EC33.13–15 Oral firibastat treatment was found to lower blood pressure (BP) in several experimental models of hypertension14–17 and to improve the left ventricular ejection fraction (LVEF) after MI in rodents.17–19 However, the oral dose of firibastat to prevent cardiac dysfunction remains high, 150 mg/kg/day, underlining the interest to develop a more potent brain APA inhibitor prodrug.

Following molecular investigations of the APA active site,20 NI929 a more potent and more selective APA inhibitor was designed by incorporating an additional hydrophobic side chain on the EC33 scaffold21–23 (Fig. 1). This increases the potency >10 fold compared to EC33. Here, we designed QGC606, a prodrug of NI929, resulting from the coupling of NI929 to L-cysteine through a disulfide bridge. Then, we investigated whether QGC606, could be a potential orally active best-in-class drug-candidate for the treatment of HF post-MI. We evaluated the effects of inhibiting brain APA following chronic oral treatment with QGC606 for four weeks post-MI and compared the effects on LV systolic and diastolic function, cardiac hypertrophy and fibrosis with those of firibastat and ramipril, used as a positive control.
METHODS

Drugs

The synthesis of QGC606 was described in Supplementary Appendix S1. Ramipril was purchased from Clearsynth Labs Ltd (India).

Animals protocols

All procedures conformed to the guidelines from Directive 2010/63/EU of the European Parliament on the protection of animals used for scientific purposes or current NIH guidelines. The project was accepted by the French Committee on Ethics in Animal Experimentation (CEEA no. 59; Ref. 2017-01#7844). We used 88 male two-month-old Swiss mice (Janvier, France). MI was obtained by the permanent surgical ligation of the descending left coronary artery (LAD). Taking into account the difficulties due to anesthesia after surgery and MI not yet established, it was not possible to reliably assess the MI size and cardiac function and thus, all the operated mice received the treatment 2 days after MI surgery. Two days after surgery, mice were randomized into five groups: 1) sham-operated mice receiving vehicle (n=19), MI mice receiving: 2) vehicle (n=15); 3) QGC606 at a dose of 25 mg/kg once daily (n=20); 4) firibastat at a dose of 150 mg/kg once daily (n=20) and 5) ramipril at a dose of 1.25 mg/kg once daily (n=14). The exact number of animals per group for each measurement is detailed in Supplementary Appendix S1 and Supplementary Table S1.

The dose of ramipril (1.25 mg/kg and 2.5 mg/kg) were chosen according to Cavasin et al.4 and Xu et al.24. However, since we observed after treatment with ramipril at the dose of 2.5 mg/kg/day, a deleterious effect on cardiac function and animal survival (80% of mice death after 28 days of treatment), we selected for this work the dose of 1.25 mg/kg.

Surgical procedures and pain management before, during, and after surgery and treatment
procedures are detailed in Supplementary Appendix S1.

Echocardiographic measurements
Cardiac function was evaluated two and four weeks post-MI by transthoracic echocardiography with a Vevo 2100 (FUJIFILM Visualsonics Inc., Toronto, Canada) equipped with a linear array 22–55 MHz MicroScan mouse cardiovascular transducer (MS550D), as detailed in Supplementary Appendix S1. LVEF, cardiac diameters [LV end-systolic diameter (LVESD) and LV end-diastolic diameter (LVEDD)] and volumes [LV end-systolic volume (LVESV) and LV end-diastolic volume (LVEDV)], and heart rate (HR) were measured.

Assessment of left ventricular hemodynamics
Mice were anesthetized four weeks post-MI and a Millar catheter was inserted into the heart by the carotid artery for measuring various hemodynamic parameters, such as systolic arterial BP (SABP) and diastolic arterial BP (DABP), dP/dt max and min, and LV peak systolic pressure (LVPSP) and end-diastolic pressure (LVEDP) as detailed in Supplementary Appendix S1.
Upon completion of the measurements, the catheter was removed from the carotid artery and the animal euthanized by cervical dislocation under general anesthesia. The heart, apex, and blood were collected. The entire surgical process is detailed in Supplementary Appendix S1.

APA, APN and ACE enzymatic activity measurements
In vitro: The enzymatic activities of recombinant mouse APA produced in our laboratory25 and purified human APN were determined using α-L-glutamyl-β-naphthylamide (GluβNA) and L-Alanine-β-naphthylamide (AlaβNa) as APA and APN synthetic substrates respectively, in initial velocity conditions, as previously described9,22 and detailed in Supplementary Appendix S1. The enzymatic activities of recombinant human ACE and recombinant mouse ACE2 were
determined using the Fluorescence Resonance Energy Transfer (FRET) peptides substrates Abz-FRK(Dnp)P-OH and (7-methoxycoumarin-4-yl)acetyl-Mca-Ala-Pro-Lys (2,4-dinitrophenyl)(Dnp)-OH (Mca-APK(Dnp)-OH, respectively as previously described26,27 and detailed in Supplementary Appendix S1.

Ex vivo: Brain APA enzymatic activity was assessed on fresh brain homogenates four weeks after MI, as previously described18 and detailed in Supplementary Appendix S1. Procedures for the quantification of cardiac APA and ACE activities are detailed also in Supplementary Appendix S1.

Percentage of fibrotic area and MI size by histological staining

After animal euthanasia, the heart was explanted and the LV and right ventricle (RV) dissected out for histological analysis as the apex/non-infarct area for real-time PCR quantification. LV and RV were frozen in protective medium Tissue-Tek (Sakura Finetek, Villeneuve d’Ascq, France) and apex/non-infarct area immediately in liquid nitrogen. Cardiac cryosections (10 µm) were stained with Picrosirius Red solution (VWR, Fontenay-sous-Bois, France). Percentage of fibrosis and MI size were determined as detailed in Supplementary Appendix S1.

Real-time quantification of gene expression

Real-time quantification of gene expression is detailed in Supplementary Appendix S1.

Plasma N-terminal pro–brain natriuretic peptide (NT-pro-BNP) and noradrenaline levels

NT-pro-BNP and noradrenaline levels were determined in plasma samples four weeks post-MI after the different treatments as detailed in Supplementary Appendix S1.
Statistical analysis

The results are presented as the means ± standard error of the mean (SEM), with individual values for each condition. Statistical analysis was performed using GraphPad Prism 8.0.1 software (GraphPad Software, RITME, France). The significance of the differences between groups was first tested after verifying distribution normality by a Shapiro-Wilk normality test and then by one-way analysis of variance (ANOVA), followed by Dunn’s multiple comparison test (Kruskal-Wallis tests). P values ≤0.05 were considered statistically significant.
RESULTS

Experimental design
The mouse model of HF was induced at day 0 by MI obtained by ligation of the left anterior descending (LAD) artery (Fig. 2). Since we want to prevent HF development post-MI, we started chronic oral treatment of the animals with vehicle (peanut butter), QGC606, firibastat, or ramipril, once daily for four consecutive weeks, two days after surgery. At four weeks post-MI, two protocols were used to avoid any pharmacological interactions of the anesthetic agent with the \textit{ex vivo} assessment of enzymatic activities. \textbf{In study design 1}, tissues and plasma were collected and the enzymatic activities of brain APA, cardiac APA, and cardiac ACE were evaluated. \textbf{In study design 2}, hemodynamic parameters were measured using a Millar catheter, followed by tissue dissection and plasma NT-pro-BNP and noradrenaline assays after 29 days of treatment.

\textbf{Ability of QGC606 and firibastat to inhibit on recombinant APA, APN, ACE and ACE2.}
The inhibitory potency \((K_i)\) of the reduced form of QGC606, obtained under reductive conditions in the presence of DTT, a reagent that cleaves the disulfide bridge, on recombinant mouse APA (\textit{Supplementary Fig. S1}) was \(2.7 \pm 0.2 \times 10^{-8} \text{ mol/L}\) and was 7.4 to 10 times greater than the value for EC33 \((K_i = 2.9 \pm 0.6 \times 10^{-7} \text{ mol/L})\)\(^9\) and that obtained in the head to head comparisons with firibastat obtained in the presence of DTT \((K_i = 2.0 \pm 0.1 \times 10^{-7} \text{ mol/L})\) (\textit{Supplementary Tables S3 and S4, Fig. S1}). In the absence of DTT, the disulfide bridge remained intact and QGC606, as well as firibastat, had no effect on mouse APA activity \((K_i > 10^{-5} \text{ mol/L})\). Moreover, in the presence of DTT, QGC606 is 5926-fold more active on APA than on APN \((K_i = 1.6 \pm 0.4 \times 10^{-4} \text{ mol/L})\) and more selective than firibastat (60-fold) (\textit{Supplementary Tables S3 and S4, Fig. S2}) and EC33 (86-fold).\(^9\)
Moreover, no significant inhibition of recombinant human ACE or mouse ACE2 activity was observed with QGC606 or firibastat at concentrations up to 10^{-5} mol/L, in the absence or presence of DTT (Supplementary Table S3).

Effects of oral QGC606 on mouse brain and cardiac APA activities

Brain APA activity in MI+vehicle mice was significantly higher (+43%) 29 days post-MI (122 ± 8.9 nmol GluβNA hydrolyzed/mg protein/h, $P=0.03$) than that of sham-operated mice (85 ± 4 nmol GluβNA hydrolyzed/mg protein/h) (Fig. 3, Supplementary Table S2). Daily oral administration of QGC606 (25 mg/kg/day) or firibastat (150 mg/kg/day) for four weeks post-MI significantly decreased brain APA activity by 45% and 39% respectively (67 ± 8.9 nmol GluβNA hydrolyzed/mg protein/h, $P=0.001$ and 74 ± 11 nmol GluβNA hydrolyzed/mg protein/h, $P=0.01$; respectively) relative to that measured in the MI+vehicle (Supplementary Table S2). In contrast, no difference in cardiac APA activity was observed between sham-operated mice and mice post-MI from all groups after four weeks of treatment (Supplementary Fig. S3).

Effects of oral treatment with ramipril, QGC606, and firibastat on cardiac ACE activity

Cardiac ACE activity was also determined after chronic oral treatment with ramipril, QGC606 and firibastat for four weeks in mice post-MI. Cardiac ACE activity in MI+vehicle mice (46112 ± 3762 RFU) was significantly higher (+64%, $P<0.05$) than that measured in sham-operated mice (28140 ± 2060 RFU) (Supplementary Fig. S4). No difference in cardiac ACE activity was observed between sham-operated mice and MI+QGC006, or MI+firibastat groups. In contrast, chronic oral treatment with ramipril significantly reduced cardiac ACE activity in MI+Ramipril mice (29649 ± 2399 RFU, $P<0.05$) compared to MI+vehicle mice (46112 ± 3762 RFU) (Supplementary Fig. S4).
Effects of oral QGC606 treatment on cardiac function post-MI in mice

Permanent LAD artery ligation induced a significant reduction of LVEF at four weeks post-MI (58.4 ± 1.0% for sham-operated mice vs 41.7 ± 1.5% for MI+vehicle) reflecting the deterioration of cardiac contractility after MI. Oral treatment with QGC606 or firibastat significantly increased LVEF (50.2 ± 0.9% for MI+QGC606 and 49.8 ± 0.9% for MI+firibastat, \(P=0.004 \)) when compared to MI+vehicle mice (41.7 ± 1.5%) (Fig. 4, Supplementary Table S2). Oral ramipril treatment also improved LVEF (50.0 ± 1.3% for MI+ramipril vs 41.7 ± 1.5% for MI+vehicle, \(P=0.03 \)).

Effects of oral QGC606 treatment on cardiac remodeling post-MI in mice

Permanent LAD artery ligation induced cardiac remodeling four weeks post-MI, with significantly greater diameters (LVEDD - Fig. 5A, \(P <0.0001 \); LVESD - Fig. 5B, \(P <0.0001 \)) and higher volumes (LVEDV - Fig. 5C, \(P <0.0001 \); LVESV - Fig. 5D, \(P <0.0001 \)) in MI+vehicle mice compared to sham-operated mice (Supplementary Table S2).

Oral treatment with QGC606 or firibastat for four weeks post-MI did not significantly reduce the LVED diameter and volume but significantly decreased the LVES diameter and volume. Notably, the LVES diameter (\(P=0.03 \)) and LVES volume (\(P=0.002 \)) of MI+firibastat mice were significantly lower than those of MI+vehicle mice (Fig. 5B and 5D). The LVES diameter (\(P=0.01 \)) and LVES volume (\(P=0.01 \)) of MI+QGC606 mice were also significantly lower (Fig. 5B and 5D). Instead, ramipril trended to moderately limit the MI-induced increase in LVED and LVES diameters and volumes (Fig. 5A-D).

Effects of oral QGC606 treatment on heart failure biomarkers
Significantly higher mRNA levels of HF biomarkers ([Supplementary Table S2](#)), myosin heavy chain 7 (Myh7) ($P < 0.0001$) ([Fig. 6A](#)), and atrial natriuretic factor (Anf) ($P < 0.0001$) ([Fig. 6B](#)), quantified by RT-qPCR, were found in MI+vehicle mice when compared to those in sham-operated mice. Plasma NT-pro-BNP levels were also significantly elevated ($P=0.007$) ([Fig. 6C](#)).

Oral QGC606, firibastat or ramipril treatment for four weeks post-MI markedly and significantly reduced the mRNA levels of the HF biomarkers in the cardiac apex relative to those of MI+vehicle mice: Myh7 ($P=0.001$) and Anf ($P=0.007$) in MI+QGC606 mice; Myh7 ($P=0.003$) and Anf ($P=0.02$) in MI+firibastat mice; Myh7 ($P=0.02$), Anf ($P=0.008$) in MI+ramipril mice ([Fig. 6A-C](#)). The plasma levels of NT-pro-BNP were also significantly lower in MI+QGC606 ($P=0.007$), MI+firibastat ($P=0.02$) and MI+ramipril ($P=0.02$) mice than MI+vehicle mice. ([Fig. 6C](#)).

Effects of oral QGC606 treatment on hemodynamic parameters

We measured four weeks after MI, various hemodynamic parameters in anesthetized mice, such as SABP, DABP, cardiac contractility by the $dP/dt \max$ and $dP/dt \min$, and intracardiac pressure by the LVPSP and LVEDP ([Supplementary Table S2](#)).

As compared to sham-operated mice, MI+vehicle mice showed a significantly lower SABP ($P=0.03$) ([Fig. 7A](#)), a reduced cardiac contractility with significant differences in $dP/dt \max$ ($P=0.03$) ([Fig. 7C](#)) and $dP/dt \min$ ($P=0.005$) ([Fig. 7D](#)), and a significant worsening of intracardiac pressure, highlighted by lower LVPSP ($P=0.005$) ([Fig. 7E](#)) and higher LVEDP ($P=0.04$) values ([Fig. 7F](#)). Chronic oral treatment with QGC606 or firibastat had no impact on SABP or DABP relative to vehicle ([Fig. 7A-B](#)). However, oral QGC606 or firibastat treatment for four weeks significantly improved $dP/dt \max$ ($P=0.03$ and $P=0.02$, respectively) ([Fig. 7C](#)) and $dP/dt \min$ ($P=0.03$ and $P=0.04$, respectively) ([Fig. 7D](#)), as well as LVEDP ($P=0.04$ and
P=0.046 respectively) (Fig. 7F), without altering LVPSP (Fig. 7E). In contrast, ramipril significantly decreased SABP (P=0.046) and DABP (P=0.02) relative to that of the sham-operated group (Fig. 7A-B), as well as relative to those of MI+vehicle mice (P=0.04) (Fig. 7B). Moreover, there was no significant difference in the dP/dt max or dP/dt min between MI+ramipril and MI+vehicle mice (Fig. 7C-D). Ramipril treatment induced a significant decrease in LVPSP (P=0.004) (Fig. 7E) while improving LVEDP with the same efficacy as firibastat and QGC606 (P=0.02) (Fig. 7F).

Effects of oral QGC606 treatment on cardiac fibrosis

We analyzed cardiac fibrosis, which was completely established four weeks after MI, on heart sections after Sirius Red staining (Fig. 8A) and quantified the percentage of fibrotic tissue (Supplementary Table S2).

The surface of ischemic tissue (MI size) and relative mRNA expression for profibrotic genes, such as connective tissue growth factor (Ctgf), were also studied in the different groups after four weeks of treatment. There was no significant difference in infarct size between the various treatment groups. The MI scar was approximately 15% of the total heart area for all treated groups: 16 ± 8.5% for vehicle-, 10 ± 7% for QGC606-, 13.5 ± 9% for firibastat-, and 10 ± 5% for ramipril-treated mice (Fig. 8B). The percentage of cardiac fibrosis was quantified over the entire surface of the cryosection. The percentage of fibrotic area was significantly higher in the MI+vehicle (P <0.0001) than sham-operated mice and this increase tended to be attenuated after repeated oral administrations of QGC606, firibastat, or ramipril (Fig. 8C). These observations were further confirmed by the significantly higher levels of Ctgf mRNA observed in the MI+vehicle group as compared to sham-operated mice (P=0.007), whereas significantly lower whereas significantly lower levels were found in MI+QGC606 (P=0.02), MI+firibastat (P=0.03), and MI+ramipril (P=0.01) mice as compared to MI+vehicle mice (Fig. 8D).
Effects of oral QGC606, firibastat or ramipril treatment on plasma noradrenaline levels

Plasma noradrenaline levels were evaluated after four weeks of treatment. An increase of plasma noradrenaline levels was observed in MI+vehicle mice (43.1 ± 4.2 mmol/L, \(P < 0.01 \)) as compared to the sham-operated mice (33.9 ± 1.4 mmol/L) (Supplementary Fig. S5). A significant reduction of plasma noradrenaline levels was found in MI+QGC006 (37.2 ± 1.7 mmol/L, \(P < 0.05 \)), MI+firibastat (31.1 ± 3.5 mmol/L, \(P < 0.05 \)), and MI+ramipril (31.2 ± 4.3 mmol/L, \(P < 0.05 \)) as compared to MI+vehicle mice (Supplementary Fig. S5).
DISCUSSION

We describe here a new brain-penetrating APA inhibitor prodrug, QGC606, which appears more potent and more selective than the first-in-class drug, firibastat. We show that chronic oral treatment of post-MI mice with QGC606 for four weeks normalizes brain APA hyperactivity, improves cardiac function, limits cardiac remodeling, and reduces HF biomarkers expression, plasma noradrenaline levels and fibrosis, without altering BP.

MI is known to increase circulating AngII levels, enabling to reach and penetrate circumventricular organs, to stimulate AT1Rs located in these organs and finally induce brain RAS hyperactivity. Brain RAS hyperactivity observed after MI, contributes to sympathetic hyperactivity and increased AVP release which participates to the development of HF. Transgenic rats deficient for brain angiotensinogen demonstrate normal sympathetic activity and less LV dysfunction post-MI, strengthening the crucial role of the brain RAS in the regulation of cardiac function. We previously showed in different experimental models of hypertension or HF that brain APA hyperactivity is involved in brain RAS hyperactivity. Thus, blocking brain RAS hyperactivity by inhibiting brain APA activity with a centrally-acting APA inhibitor appears to be an attractive strategy to limit HF development after MI.

Firibastat is an orally active centrally acting APA inhibitor prodrug of EC33, exhibiting a inhibitory potency of 290 nmol/L on APA and known to only interact with the S1 subsite of the APA active site. To increase the potency and selectivity of EC33, an additional hydrophobic side chain was incorporated onto the EC33 scaffold, to interact with the APA S1’ subsite, generating the nonpeptide APA inhibitor, NI929, which exhibited an inhibitory potency of 30 nmol/L on APA. As central nervous system bioavailability of thiol inhibitors of zinc metallopeptidases, such as neutral endopeptidase 24.11 and APN, can be enhanced when the
sulfhydryl moiety is engaged in a disulfide bridge10, we used a similar strategy to increase the bioavailability of NI929. We generate QGC606 by coupling NI929 to L-cysteine through a disulfide bridge, allowing it to cross the blood-brain barrier. Interestingly, the presence of the L-cysteine may contribute to enhance furthermore brain penetration thanks to potential interactions with the cerebrovascular large neutral amino acid transporter (LAT1) present at the blood-brain barrier.31 As the thiol group of NI929 is engaged in the disulfide bridge in QGC606, it is unable to interact with the zinc atom present in the APA active site, essential for its catalytic activity.20 However, under reductive conditions, our results showed that the disulfide bridge of QGC606 is cleaved \textit{in vitro}, whereas \textit{in vivo} this cleavage occurs through the action of brain reductases, generating NI929 in the brain. We showed that QGC606 inhibits \textit{in vitro}, under reductive conditions, recombinant mouse APA activity with a K_i value of 27 nmol/L and therefore is 7.4 to 10 times more potent than firibastat (200 nmol/L) or EC33 (290 nmol/L)9. QGC606 is also more selective than EC33 and firibastat for APA, with a selectivity for APA versus APN that is 73 times higher than that of EC339/firibastat. The selectivity of QGC606 toward APA was also shown by its lack of affinity for other zinc metalloproteases involved in the production or metabolism of vasoactive peptides, such as ACE and ACE-2.

To demonstrate the mode of action of QGC606, we evaluated \textit{ex vivo} brain APA activity after chronic oral treatment with QGC606 in a mouse model of HF post-MI. Four weeks post-MI, brain APA activity was significantly higher than that measured in sham-operated mice, as previously shown.18 Four weeks of oral QGC606 treatment (25 mg/kg/day) in mice post-MI, normalized brain APA hyperactivity to control values, like firibastat (150 mg/kg/day). Moreover, we previously showed12 that chronic firibastat treatment for 4 weeks post-MI has no significant effect on the brain APA protein amount as compared to MI rats treated with saline using SDS–PAGE Western blot analysis. Consequently, the reduction in brain APA activity in firibastat-treated animals is due to the presence of firibastat in these samples and not to a
decrease in APA protein expression. This shows that there is no tolerance to the inhibitory action of firibastat on APA activity after chronic treatment. A similar conclusion may be proposed after QGC606 treatment.

The normalization of brain APA hyperactivity by QGC606, decreasing brain RAS hyperactivity observed after MI, should attenuate sympathetic hyperactivity as previously shown after treatment with firibastat. This conclusion is supported by the significant decrease in plasma noradrenaline levels, observed after chronic oral treatment with QGC606 or firibastat for four weeks post-MI, reflecting a reduction of sympathetic tone. This effect was also observed after chronic ramipril treatment (1.25 mg/kg) the efficacy of which being demonstrated by inhibition of cardiac ACE activity (-55%) similar to that measured after enalapril treatment (1mg/kg) given under the same experimental conditions. No change in cardiac ACE activity was observed with QGC606, highlighting furthermore its high selectivity towards APA. Also, in agreement with its central mode of action, no cardiac APA activity reduction was observed.

Echocardiographic analysis showed a significant reduction of LVEF in MI+vehicle mice four weeks after MI. In contrast, MI mice treated with QGC606, firibastat or ramipril, showed a significant increase in LVEF relative to MI+vehicle mice. Previous kinetic studies performed on brain APA activity following firibastat treatment in mice post-MI, and the present data obtained on LVEF after firibastat or QGC606 treatment, suggest that two weeks of QGC606 treatment, similarly to firibastat, are required to normalize brain APA hyperactivity and recovery of LVEF to values close to those observed in sham-operated animals. Improvement of cardiac function after QGC606 or firibastat treatment was also supported by the significantly lower expression of HF biomarkers, Myh7, Anf, and plasma NT-pro-BNP levels, all similar to those found in MI+ramipril mice and all significantly lower than those found in MI+vehicle mice.
Interestingly, several other beneficial effects of chronic brain APA inhibition after MI were observed in our study. First, while cardiac hypertrophy observed in MI+vehicle mice was reduced with all drug treatments, only firibastat and QGC606 induced a significant decrease in both systolic diameter and systolic volume. These changes induced by QGC606 and firibastat treatment reflect a reduction of global cardiac hypertrophy.

Secondly, measurement of hemodynamic parameters in anaesthetized mice four weeks post-MI showed that the SABP and DABP were not modified after chronic oral administration of QGC606 or firibastat but significantly decreased after ramipril treatment.

Thirdly, QGC606 and firibastat treatments significantly improved the dP/dt max and dP/dt min as compared to MI+vehicle group. Finally, when compared to sham-operated group, QGC606 and firibastat tend to normalize LVPSP while ramipril significantly altered it, consistent with the decrease in SABP that it induces.

After four weeks post-MI, QGC606, firibastat, and ramipril treatments tended to decrease cardiac fibrosis as shown by the reduced percentage of fibrotic tissue in the total heart area and a significant decrease in Ctgf mRNA levels relative to those found in MI+vehicle group. Ischemia induced by MI generates cardiomyocytes death and fibroblast recruitment to the ischemic zone to colonize the collagen, resulting in scarring. With time, the propagation of fibrotic tissue is observed. Although the cardiac antifibrotic effect of ACE inhibition is well-known, we report here that QGC606 and firibastat treatments also tended to similarly limit the propagation of fibrosis post-MI in remote regions of myocardium where reactive fibrosis is responsible of LV systolic and diastolic function alteration. Similar observations have been reported for losartan, an AT1R antagonist, after chronic oral administration in rats post-MI. The lower effects of QGC606 and also of firibastat on cardiac fibrosis compared to cardiac function could be explained by the central mode of action of these APA inhibitors which improved cardiac function by three different mechanisms: a decrease in AVP release, a
reduction in sympathetic neurons activity and an improvement of the baroreflex function. The mechanism of action of APA inhibitors on fibrosis could only be secondary to the beneficial effect of these compounds on cardiac remodeling but this remained to be demonstrated.

Hypotension is a well-known adverse effect of ACE inhibitors and careful dose-titration is strongly recommended when initiating ACE inhibitor treatment in patients with acute MI. This hypotensive effect is due not only to the decrease in circulating AngII formation, but also to a reduction in bradykinin degradation, resulting in over-activation of the bradykinin B2 receptor.34 Acute B2 receptor blockade was shown to significantly attenuate the deleterious hemodynamic effects of the ACE inhibitor treatment in mice,34 although there are data supporting the opposite.24,35 In contrast, APA inhibitors have the advantage of improving cardiac function without lowering systolic BP and LVPSP. This is due to the fact that centrally-acting APA inhibitors are antihypertensive and not hypotensive agents, decreasing BP only in hypertensive but not in normotensive animals, nor in human volunteers.14,36,37

On the other hand, we recently described an additional mechanism of action of firibastat in the control of BP, involving ACE2 and angiotensin 1-7 (Ang1-7)38. Our findings suggest that in the brain, the increase in ACE2 activity resulting from APA inhibition by firibastat treatment, subsequently increasing conversion of brain AngII into Ang1-7 and activating the Mas receptor while blocking brain AngIII formation, contributes to the antihypertensive effect and the decrease in AVP release induced by firibastat. Firibastat treatment thus constitutes an interesting therapeutic approach to improve BP control in hypertensive patients by inducing in the brain RAS, hyperactivity of the beneficial ACE2/Ang1-7/MasR axis while inhibiting that of the deleterious APA/AngII/AngIII/ATI receptor axis. This mechanism could be also involved in the effect of QGC606 or firibastat on cardiac functions since an increase in Ang1-7 in the nucleus of the tractus solitarius was shown to facilitate arterial baroreflex function in rats with impaired baroreflex sensitivity39. Moreover, higher brain Ang1-7 levels in the PVN
may further inhibit sympathetic hyperactivity and thereby attenuate LV dysfunction and remodeling post-MI.40

Conclusions and perspectives

Our study shows that chronic oral QGC606 treatment after MI, at a dose 7 times lower than that of firibastat and with higher selectivity, normalizes brain APA hyperactivity, prevents cardiac dysfunction by improving EF, cardiac contractility and intracardiac pressure and attenuating cardiac hypertrophy and fibrosis. In contrast to ramipril, no hypotension was associated with QGC606 treatment. Therefore, QGC606 could represent a best-in-class drug-candidate worth exploring its safety and efficacy in patients after acute MI.

Acknowledgements

We thank all the personnel of the Animal Facility and microscopy platform of the Center for Interdisciplinary Research in Biology at the Collège de France, especially Lucie Collet for her help, support, and advice. We also thank Edelris (Lyon France) for their support in the synthesis of QGC606.

Sources of Funding

This work was supported by the Institut National de la Santé et de la Recherche Médicale (INSERM), the Collège de France, the Agence Nationale de la Recherche ANR LabCom CARDIOBAPAI (ANR-14-LAB6-0001), and Quantum Genomics. PEGS was supported by a fellowship from the Fondation pour la Recherche Médicale, grant number “PBR201810007643”.
Disclosures

SB, MK, YM, and FB are full-time employees and shareholders of Quantum Genomics SA.

C.L-C. is the inventor on patent WO/2004/007441 held by Quantum Genomics, which includes RB150 renamed firibastat by WHO. The remaining co-authors have no conflict of interest, financial or otherwise, to declare.
REFERENCES

15. Marc Y, Gao J, Balavoine F, Michaud A, Roques BP, Llorens-Cortes C. Central antihypertensive effects of orally active aminopeptidase A inhibitors in spontaneously...

FIGURE LEGENDS

Graphical abstract. QGC606, an orally active centrally acting prodrug of the APA inhibitor NI929.

Conversion of brain angiotensin II into angiotensin III by aminopeptidase A (APA). Structures of the APA inhibitor NI929 and its prodrug QGC606 used for chronic oral treatment in mice after myocardial infarction for 28 days, resulting in improved cardiac function and reduced cardiac fibrosis and hypertrophy.

Fig. 1. Pharmacological and structural properties of the APA inhibitors, EC33 and NI929 and their prodrugs, RB150/firibastat and QGC606.

The K_i values of EC33 and NI929 were obtained from9,21,22. The S1 subsite visualized in the 3D-model of human APA after molecular docking of EC33 (orange) from23. Molecular docking of NI929 (blue) in the 3D-model of human APA from22.

Fig. 2. Schematic experimental design of the studies.

Chronic oral treatment of mice post-MI (4 weeks) with QGC606 (25 mg/kg) once daily was compared to treatment with firibastat (150 mg/kg) or ramipril (1.25 mg/kg), starting two days post-MI. Cardiac function was assessed by echocardiography at two-weeks intervals. At 4 weeks post-MI, brain and cardiac APA and cardiac ACE activities were measured in study design 1 and hemodynamic parameters were evaluated using a Millar catheter in study design 2. Size of the groups (studies 1+2): Sham: $n=19$, MI+vehicle: $n=15$, MI+QGC606: $n=20$, MI+firibastat: $n=20$, MI+ramipril: $n=14$.
Fig. 3. Effects of chronic oral QGC606 administration on brain APA activity in mice post-MI.

The inhibition of brain APA activity post-MI in mice was determined 1 h after oral QGC606 (25mg/kg) or firibastat (150 mg/kg) treatment for 29 days and the results compared to those of mice receiving saline or Sham. Mean ± SEM of 5 to 7 animals for each set of conditions. Kruskal-Wallis followed by Dunn’s tests, \#P <0.05 and NS: non-significant vs Sham, **P <0.01 and ***P <0.001 vs MI+vehicle group.

Fig. 4. Effects of the chronic oral administration of QGC606, firibastat, or ramipril on left ventricular ejection fraction (LVEF) in mice post-MI.

LVEF was measured by transthoracic echocardiography for Sham, MI+vehicle, MI+QGC606 (25 mg/kg), MI+firibastat (150 mg/kg), and MI+ramipril (1.25 mg/kg) mice at four weeks post-MI. Mean ± SEM of 14 to 20 animals for each set of conditions. Kruskal-Wallis followed by Dunn’s tests, ###P <0.001 vs Sham, NS, non-significant, **P <0.01 vs MI+vehicle group.

Fig. 5. Effects of chronic oral QGC606, firibastat, or ramipril treatment for four weeks on cardiac hypertrophy in mice post-MI.

(A) Diastolic diameter (LVEDD), (B) systolic diameter (LVESD), (C) diastolic volume (LVEDV), (D) systolic volume (LVESV) in mice post-MI. At four weeks post-MI, cardiac diameters and volumes in mice were measured by transthoracic echocardiography and compared to those of mice receiving saline post-MI or Sham. Mean ± SEM of 14 to 20 animals for each set of conditions. Kruskal-Wallis followed by Dunn’s tests, ###P <0.001 vs Sham; NS, non-significant, **P <0.01 vs MI+vehicle group.

Fig. 6. Effects of chronic oral QGC606, firibastat, or ramipril treatment on the mRNA levels of two heart failure biomarkers and on plasma NT-pro-BNP levels in mice post-MI.
Relative mRNA levels of (A) myosin heavy chain 7 (Myh7) and (B) atrial natriuretic factor (Anf) in the cardiac apex (non-infarcted area) four weeks post-MI, normalized against the sham-operated group (Sham), with one housekeeping gene (HPRT) used as a reference. (C) Plasma brain natriuretic peptide (NT-Pro BNP) levels by ELISA in mice post-MI. Mean ± SEM of 5 to 8 animals for each set of conditions. Kruskal-Wallis followed by Dunn’s tests, ##P < 0.01 and ###P < 0.001 vs Sham; *P < 0.05 and, **P < 0.01 vs MI+vehicle group.

Fig. 7. Effects of chronic oral administration of QGC606, firibastat, or ramipril on (A) systolic arterial blood pressure (SABP), (B) diastolic arterial blood pressure (DABP), (C) dP/dt max, (D) dP/dt min, (E) left ventricular end-diastolic pressure (LVEDP), and (F) left ventricular peak systolic pressure (LVPSP).

Hemodynamic parameters measured in anaesthetized mice using a Millar catheter for Sham, MI+vehicle, MI+QGC606 (25 mg/kg), MI+firibastat (150 mg/kg), and MI+ramipril (1.25 mg/kg) mice at four weeks post-MI. Mean ± SEM of 5 to 9 animals for each set of conditions. Kruskal-Wallis followed by Dunn’s tests NS non-significant, #P < 0.5, and ##P < 0.01 vs Sham; *P < 0.5 vs MI+vehicle.

Fig. 8. Analysis of fibrosis in mice at four weeks post-MI after chronic oral administration of QGC606, firibastat, or ramipril.

(A) Fibrosis observed in cardiac tissue with Sirius Red staining of the peri-infarct area. (B) Evaluation of MI size. (C) Quantification of the percentage of fibrotic area in total heart. (D) Relative mRNA levels for the fibrosis biomarker connective tissue growth factor (Ctgf) four weeks post-MI in the cardiac apex, normalized against those of Sham, with one housekeeping gene (HPRT) as a reference. Mean ± SEM of 5 to 13 animals for each set of conditions. Kruskal-Wallis followed by Dunn’s tests, ###P < 0.001 vs Sham, *P < 0.05 vs MI+vehicle.
Fig 1. Pharmacological and structural properties of the A1P inhibitors, SC57 and N3P9, and their products.
DHP/Probenecid and QCC 306.
Fig. 2. Schematic experimental design of the studies.

- Oral vehicle, GC50R, furosemide or combined treatment once daily
- Study design 1
 - Time-point BB injection
 - Study design 2
 - Time-point BB injection

Legend:
- Study design 1
 - Time-point BB injection
 - Study design 2
 - Time-point BB injection

- Treatment group
- GC50R group
- furosemide group
- Combined treatment group
Fig. 5. Effects of the chronic oral Q210 administration on bone ALP activity in mice post-VH.
Fig. 8: Effects of chronic oral administration of QOC/MS, silibinin or combination on left ventricular ejection fraction (LVEF) in mice post MI.
Fig A. Effects of the chronic oral QOC treatment on cardiac hypertrophy in mice.
Fig. 6. Effects of chronic oral QOC006, β-tocopherol, or combined treatment on the mRNA levels of two heart failure biomarkers and on plasma sST2 and hsTnI levels in rats post MI.
Fig. 1: Effect of the chronic oral administration of GCS1806, enalapril, or esmolol on (A) systolic arterial blood pressure (SAP), (B) diastolic arterial blood pressure (DAP), (C) heart rate (HR), (D) left ventricular end-diastolic pressure (LVEDP), and (E) left ventricular peak systolic pressure (LVSP).
Fig. A. Analysis of fibrosis in rats of four weeks post TAA, after chronic renal ablation with Q10.5 (Q10.5 or standard).
Thank you for your order!

Dear Dr. Solène Boitard,

Thank you for placing your order through Copyright Clearance Center's RightsLink® service.

Order Summary

Licensee: Collège de France/Inserm U1050
Order Date: Jan 18, 2022
Order Number: 5231910352037
Publication: Hypertension
Title: NI956/QGC006, a Potent Orally Active, Brain-Penetrating Aminopeptidase A Inhibitor for Treating Hypertension
Type of Use: Journal/Magazine
Order Total: 0.00 EUR

(Original Order Number: 501703151)

View or print complete details of your order and the publisher's terms and conditions.

Sincerely,

Copyright Clearance Center

Tel: +1-855-239-3415 / +1-978-646-2777
customercare@copyright.com
https://myaccount.copyright.com