Advertisement
Canadian Journal of Cardiology

Predicting Sudden Cardiac Death in Genetic Heart Disease

  • Author Footnotes
    ‡ Both authors contributed equally to this work.
    Julia Cadrin-Tourigny
    Correspondence
    Corresponding author: Dr Julia Cadrin-Tourigny, Montréal Heart Institute, 5000 Bélanger, Montréal, Québec H1T 1C8, Canada. Tel.: +1-514-376-3330.
    Footnotes
    ‡ Both authors contributed equally to this work.
    Affiliations
    Electrophysiology Service and Cardiovascular Genetics Centre, Montréal Heart Institute and Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
    Search for articles by this author
  • Author Footnotes
    ‡ Both authors contributed equally to this work.
    Rafik Tadros
    Footnotes
    ‡ Both authors contributed equally to this work.
    Affiliations
    Electrophysiology Service and Cardiovascular Genetics Centre, Montréal Heart Institute and Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
    Search for articles by this author
  • Author Footnotes
    ‡ Both authors contributed equally to this work.
Published:January 29, 2022DOI:https://doi.org/10.1016/j.cjca.2022.01.025

      Abstract

      Genetic heart diseases are common causes of sudden cardiac death (SCD) in the young and are typically divided into inherited cardiomyopathies and primary electrical heart diseases. Cardiomyopathies associated with risk of SCD include hypertrophic cardiomyopathy (HCM) and arrhythmogenic cardiomyopathy (ACM). The latter includes arrhythmogenic right ventricular cardiomyopathy (ARVC) as well as ACM primarily affecting the left ventricle, such as lamin cardiomyopathy. Primary electrical diseases more commonly seen in clinical practice include Brugada syndrome (BrS) and long QT syndrome (LQTS). Risk stratification of SCD is a central component of the management of patients with these genetic heart diseases. Numerous risk factors have been identified with variable degrees of scientific evidence. More recently, risk prediction models have been developed to estimate the absolute risk of sustained arrhythmias and SCD, to support clinicians and patients in decision making regarding prophylactic implantable cardioverter-defibrillators (ICDs). This paper provides a practical review of the current literature on risk stratification in ARVC and other ACMs, HCM, BrS, and LQTS, and summarises current recommendations for ICD use.

      Résumé

      Les cardiopathies génétiques constituent une cause courante de mort cardiaque subite (MCS) chez les jeunes. Elles se divisent généralement en deux types : les cardiomyopathies héréditaires et les troubles de conduction primaires. Les cardiomyopathies associées au risque de MCS comprennent la cardiomyopathie hypertrophique (CMH) et la cardiomyopathie arythmogène (CMA). Cette dernière comprend la cardiomyopathie ventriculaire droite arythmogène (CVDA) ainsi que la CMA affectant principalement le ventricule gauche, comme la cardiomyopathie due à la lamine de type A mutée. Les troubles de conduction primaires les plus courants en pratique clinique comprennent le syndrome de Brugada (SB) et le syndrome du QT long (SQTL). La stratification du risque de MCS est un élément essentiel de la prise en charge des patients atteints de ces cardiopathies génétiques. De nombreux facteurs de risque ont été mis au jour avec un degré de certitude scientifique variable. Plus récemment, des modèles de prédiction du risque ont été mis au point pour estimer le risque absolu d’arythmie soutenue et de MCS afin d’aider les cliniciens et les patients à prendre des décisions touchant le recours prophylactique aux défibrillateurs cardioverteurs implantables (DCI). Dans le présent article de synthèse, nous abordons d’un point de vue pratique la littérature actuelle sur la stratification du risque dans les cas de CVDA ou d’autres CMA, de CMH, de SB et de SQTL. Nous résumons aussi les recommandations actuelles visant le recours aux DCI.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • de Vreede-Swagemakers J.J.
        • Gorgels A.P.
        • Dubois-Arbouw W.I.
        • et al.
        Out-of-hospital cardiac arrest in the 1990’s: a population-based study in the Maastricht area on incidence, characteristics and survival.
        J Am Coll Cardiol. 1997; 30: 1500-1505
        • Kadish A.
        • Dyer A.
        • Daubert J.P.
        • et al.
        Prophylactic defibrillator implantation in patients with nonischemic dilated cardiomyopathy.
        N Engl J Med. 2004; 350: 2151-2158
        • Marcus F.I.
        • Fontaine G.H.
        • Guiraudon G.
        • et al.
        Right ventricular dysplasia: a report of 24 adult cases.
        Circulation. 1982; 65: 384-398
        • James C.A.
        • Jongbloed J.D.H.
        • Hershberger R.E.
        • et al.
        An international evidence based reappraisal of genes associated with arrhythmogenic right ventricular cardiomyopathy (ARVC) using the ClinGen framework.
        Circ Genom Precis Med. 2021; 14e003273
        • Towbin J.A.
        • McKenna W.J.
        • Abrams D.J.
        • et al.
        2019 HRS expert consensus statement on evaluation, risk stratification, and management of arrhythmogenic cardiomyopathy.
        Heart Rhythm. 2019; 16: e301-e372
        • Finocchiaro G.
        • Papadakis M.
        • Robertus J.L.
        • et al.
        Etiology of sudden death in sports: insights from a United Kingdom regional registry.
        J Am Coll Cardiol. 2016; 67: 2108-2115
        • Marcus F.I.
        • McKenna W.J.
        • Sherrill D.
        • et al.
        Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the Task Force Criteria.
        Eur Heart J. 2010; 31: 806-814
        • Cadrin-Tourigny J.
        • Bosman L.P.
        • Nozza A.
        • et al.
        A new prediction model for ventricular arrhythmias in arrhythmogenic right ventricular cardiomyopathy.
        Eur Heart J. 2019; 40: 1850-1858
        • Bosman L.P.
        • Sammani A.
        • James C.A.
        • et al.
        Predicting arrhythmic risk in arrhythmogenic right ventricular cardiomyopathy: a systematic review and meta-analysis.
        Heart Rhythm. 2018; 15: 1097-1107
        • Corrado D.
        • Wichter T.
        • Link M.S.
        • et al.
        Treatment of arrhythmogenic right ventricular cardiomyopathy/dysplasia: an International Task Force consensus statement.
        Circulation. 2015; 132: 441-453
        • Al-Khatib S.M.
        • Stevenson W.G.
        • Ackerman M.J.
        • et al.
        2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society.
        J Am Coll Cardiol. 2018; 72: e91-e220
        • Cadrin-Tourigny J.
        • Bosman L.P.
        • Wang W.
        • et al.
        Sudden cardiac death prediction in arrhythmogenic right ventricular cardiomyopathy: a multinational collaboration.
        Circ Arrhythm Electrophysiol. 2021; 14e008509
        • Aquaro G.D.
        • De Luca A.
        • Cappelletto C.
        • et al.
        Comparison of different prediction models for the indication of implanted cardioverter defibrillator in patients with arrhythmogenic right ventricular cardiomyopathy.
        ESC Heart Fail. 2020; 7: 4080-4088
        • Casella M.
        • Gasperetti A.
        • Gaetano F.
        • et al.
        Long-term follow-up analysis of a highly characterized arrhythmogenic cardiomyopathy cohort with classical and nonclassical phenotypes-a real-world assessment of a novel prediction model: does the subtype really matter.
        Europace. 2020; 22: 797-805
        • Gasperetti A.
        • Dello Russo A.
        • Busana M.
        • et al.
        Novel risk calculator performance in athletes with arrhythmogenic right ventricular cardiomyopathy.
        Heart Rhythm. 2020; 17: 1251-1259
        • Baudinaud P.
        • Laredo M.
        • Badenco N.
        • et al.
        External validation of a risk prediction model for ventricular arrhythmias in arrhythmogenic right ventricular cardiomyopathy.
        Can J Cardiol. 2021; 37: 1263-1266
        • Aquaro G.D.
        • De Luca A.
        • Cappelletto C.
        • et al.
        Prognostic value of magnetic resonance phenotype in patients with arrhythmogenic right ventricular cardiomyopathy.
        J Am Coll Cardiol. 2020; 75: 2753-2765
        • McKenna W.J.
        • Asaad N.A.
        • Jacoby D.L.
        Prediction of ventricular arrhythmia and sudden death in arrhythmogenic right ventricular cardiomyopathy.
        Eur Heart J. 2019; 40: 1859-1861
        • Cerrone M.
        • Noorman M.
        • Lin X.
        • et al.
        Sodium current deficit and arrhythmogenesis in a murine model of plakophilin-2 haploinsufficiency.
        Cardiovasc Res. 2012; 95: 460-468
        • van Rijsingen I.A.
        • Arbustini E.
        • Elliott P.M.
        • et al.
        Risk factors for malignant ventricular arrhythmias in lamin a/c mutation carriers a European cohort study.
        J Am Coll Cardiol. 2012; 59: 493-500
        • Hasselberg N.E.
        • Haland T.F.
        • Saberniak J.
        • et al.
        Lamin A/C cardiomyopathy: young onset, high penetrance, and frequent need for heart transplantation.
        Eur Heart J. 2018; 39: 853-860
        • Priori S.G.
        • Blomstrom-Lundqvist C.
        2015 European Society of Cardiology guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death summarized by co-chairs.
        Eur Heart J. 2015; 36: 2757-2759
        • Wahbi K.
        • Ben Yaou R.
        • Gandjbakhch E.
        • et al.
        Development and validation of a new risk prediction score for life-threatening ventricular tachyarrhythmias in laminopathies.
        Circulation. 2019; 140: 293-302
        • Smith E.D.
        • Lakdawala N.K.
        • Papoutsidakis N.
        • et al.
        Desmoplakin cardiomyopathy, a fibrotic and inflammatory form of cardiomyopathy distinct from typical dilated or arrhythmogenic right ventricular cardiomyopathy.
        Circulation. 2020; 141: 1872-1884
        • Augusto J.B.
        • Eiros R.
        • Nakou E.
        • et al.
        Dilated cardiomyopathy and arrhythmogenic left ventricular cardiomyopathy: a comprehensive genotype-imaging phenotype study.
        Eur Heart J Cardiovasc Imaging. 2020; 21: 326-336
        • Wang W.
        • Murray B.
        • Tichnell C.
        • et al.
        Clinical characteristics and risk stratification of desmoplakin cardiomyopathy.
        Europace. 2022; 24: 268-277
        • Gigli M.
        • Stolfo D.
        • Graw S.L.
        • et al.
        Phenotypic expression, natural history, and risk stratification of cardiomyopathy caused by filamin C truncating variants.
        Circulation. 2021; 144: 1600-1611
        • Ortiz-Genga M.F.
        • Cuenca S.
        • Dal Ferro M.
        • et al.
        Truncating FLNC mutations are associated with high-risk dilated and arrhythmogenic cardiomyopathies.
        J Am Coll Cardiol. 2016; 68: 2440-2451
        • Verstraelen T.E.
        • van Lint F.H.M.
        • Bosman L.P.
        • et al.
        Prediction of ventricular arrhythmia in phospholamban p.Arg14del mutation carriers—reaching the frontiers of individual risk prediction.
        Eur Heart J. 2021; 42: 2842-2850
        • Hodgkinson K.A.
        • Howes A.J.
        • Boland P.
        • et al.
        Long-term clinical outcome of arrhythmogenic right ventricular cardiomyopathy in individuals with a p.S358L mutation in TMEM43 following implantable cardioverter defibrillator therapy.
        Circ Arrhythm Electrophysiol. 2016; 9e003589
        • van Tintelen J.P.
        • Van Gelder I.C.
        • Asimaki A.
        • et al.
        Severe cardiac phenotype with right ventricular predominance in a large cohort of patients with a single missense mutation in the DES gene.
        Heart Rhythm. 2009; 6: 1574-1583
        • McNair W.P.
        • Ku L.
        • Taylor M.R.
        • et al.
        SCN5A mutation associated with dilated cardiomyopathy, conduction disorder, and arrhythmia.
        Circulation. 2004; 110: 2163-2167
        • Mann S.A.
        • Castro M.L.
        • Ohanian M.
        • et al.
        R222Q SCN5A mutation is associated with reversible ventricular ectopy and dilated cardiomyopathy.
        J Am Coll Cardiol. 2012; 60: 1566-1573
        • Hey T.M.
        • Rasmussen T.B.
        • Madsen T.
        • et al.
        Pathogenic RBM20-variants are associated with a severe disease expression in male patients with dilated cardiomyopathy.
        Circ Heart Fail. 2019; 12e005700
        • Semsarian C.
        • Ingles J.
        • Maron M.S.
        • Maron B.J.
        New perspectives on the prevalence of hypertrophic cardiomyopathy.
        J Am Coll Cardiol. 2015; 65: 1249-1254
        • Ackerman M.
        • Atkins D.L.
        • Triedman J.K.
        Sudden cardiac death in the young.
        Circulation. 2016; 133: 1006-1026
        • Tadros R.
        • Francis C.
        • Xu X.
        • et al.
        Shared genetic pathways contribute to risk of hypertrophic and dilated cardiomyopathies with opposite directions of effect.
        Nat Genet. 2021; 53: 128-134
        • Green E.M.
        • Wakimoto H.
        • Anderson R.L.
        • et al.
        A small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice.
        Science. 2016; 351: 617-621
        • Ingles J.
        • Goldstein J.
        • Thaxton C.
        • et al.
        Evaluating the clinical validity of hypertrophic cardiomyopathy genes.
        Circ Genom Precis Med. 2019; 12e002460
        • Harper A.R.
        • Goel A.
        • Grace C.
        • et al.
        Common genetic variants and modifiable risk factors underpin hypertrophic cardiomyopathy susceptibility and expressivity.
        Nat Genet. 2021; 53: 135-142
        • Ommen S.R.
        • Mital S.
        • Burke M.A.
        • et al.
        2020 AHA/ACC guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines.
        Circulation. 2020; 142: e558-e631
        • Elliott P.M.
        • Sharma S.
        • Varnava A.
        • et al.
        Survival after cardiac arrest or sustained ventricular tachycardia in patients with hypertrophic cardiomyopathy.
        J Am Coll Cardiol. 1999; 33: 1596-1601
        • Elliott P.M.
        • Anastasakis A.
        • et al.
        • Authors/Task Force m
        2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC).
        Eur Heart J. 2014; 35: 2733-2779
        • O’Mahony C.
        • Jichi F.
        • Pavlou M.
        • et al.
        A novel clinical risk prediction model for sudden cardiac death in hypertrophic cardiomyopathy (HCM Risk-SCD).
        Eur Heart J. 2014; 35: 2010-2020
        • Bos J.M.
        • Maron B.J.
        • Ackerman M.J.
        • et al.
        Role of family history of sudden death in risk stratification and prevention of sudden death with implantable defibrillators in hypertrophic cardiomyopathy.
        Am J Cardiol. 2010; 106: 1481-1486
        • Dimitrow P.P.
        • Chojnowska L.
        • Rudzinski T.
        • et al.
        Sudden death in hypertrophic cardiomyopathy: old risk factors re-assessed in a new model of maximalized follow-up.
        Eur Heart J. 2010; 31: 3084-3093
        • Spirito P.
        • Autore C.
        • Rapezzi C.
        • et al.
        Syncope and risk of sudden death in hypertrophic cardiomyopathy.
        Circulation. 2009; 119: 1703-1710
        • Spirito P.
        • Bellone P.
        • Harris K.M.
        • et al.
        Magnitude of left ventricular hypertrophy and risk of sudden death in hypertrophic cardiomyopathy.
        N Engl J Med. 2000; 342: 1778-1785
        • Elliott P.M.
        • Gimeno Blanes J.R.
        • Mahon N.G.
        • Poloniecki J.D.
        • McKenna W.J.
        Relation between severity of left-ventricular hypertrophy and prognosis in patients with hypertrophic cardiomyopathy.
        Lancet. 2001; 357: 420-424
        • Rowin E.J.
        • Maron B.J.
        • Carrick R.T.
        • et al.
        Outcomes in patients with hypertrophic cardiomyopathy and left ventricular systolic dysfunction.
        J Am Coll Cardiol. 2020; 75: 3033-3043
        • Rowin E.J.
        • Maron B.J.
        • Haas T.S.
        • et al.
        Hypertrophic cardiomyopathy with left ventricular apical aneurysm: implications for risk stratification and management.
        J Am Coll Cardiol. 2017; 69: 761-773
        • Weng Z.
        • Yao J.
        • Chan R.H.
        • et al.
        Prognostic value of LGE-CMR in HCM: a meta-analysis.
        JACC Cardiovasc Imaging. 2016; 9: 1392-1402
        • Chan R.H.
        • Maron B.J.
        • Olivotto I.
        • et al.
        Prognostic value of quantitative contrast-enhanced cardiovascular magnetic resonance for the evaluation of sudden death risk in patients with hypertrophic cardiomyopathy.
        Circulation. 2014; 130: 484-495
        • Mentias A.
        • Raeisi-Giglou P.
        • Smedira N.G.
        • et al.
        Late gadolinium enhancement in patients with hypertrophic cardiomyopathy and preserved systolic function.
        J Am Coll Cardiol. 2018; 72: 857-870
        • Monserrat L.
        • Elliott P.M.
        • Gimeno J.R.
        • et al.
        Nonsustained ventricular tachycardia in hypertrophic cardiomyopathy: an independent marker of sudden death risk in young patients.
        J Am Coll Cardiol. 2003; 42: 873-879
        • Wang W.
        • Lian Z.
        • Rowin E.J.
        • et al.
        Prognostic implications of nonsustained ventricular tachycardia in high-risk patients with hypertrophic cardiomyopathy.
        Circ Arrhythm Electrophysiol. 2017; 10
        • Maron B.J.
        • Rowin E.J.
        • Casey S.A.
        • et al.
        Risk stratification and outcome of patients with hypertrophic cardiomyopathy ≥60 years of age.
        Circulation. 2013; 127: 585-593
        • Wang J.
        • Zhang Z.
        • Li Y.
        • et al.
        Variable and limited predictive value of the european society of cardiology hypertrophic cardiomyopathy sudden-death risk model: a meta-analysis.
        Can J Cardiol. 2019; 35: 1791-1799
        • Miron A.
        • Lafreniere-Roula M.
        • Steve Fan C.P.
        • et al.
        A validated model for sudden cardiac death risk prediction in pediatric hypertrophic cardiomyopathy.
        Circulation. 2020; 142: 217-229
        • Norrish G.
        • Ding T.
        • Field E.
        • et al.
        Development of a novel risk prediction model for sudden cardiac death in childhood hypertrophic cardiomyopathy (HCM Risk-Kids).
        JAMA Cardiol. 2019; 4: 918-927
      1. Norrish G, Qu C, Field E, et al. External validation of the HCM Risk-Kids model for predicting sudden cardiac death in childhood hypertrophic cardiomyopathy [e-pub ahead of print]. Eur J Prev Cardiol 2021 Oct 31. https://doi.org/10.1093/eurjpc/zwab181

        • Lahrouchi N.
        • Talajic M.
        • Tadros R.
        Risk of arrhythmic events in drug-induced Brugada syndrome.
        Heart Rhythm. 2017; 14: 1434-1435
        • Behr E.R.
        • Ben-Haim Y.
        • Ackerman M.J.
        • Krahn A.D.
        • Wilde A.A.M.
        Brugada syndrome and reduced right ventricular outflow tract conduction reserve: a final common pathway?.
        Eur Heart J. 2021; 42: 1073-1081
        • Walsh R.
        • Lahrouchi N.
        • Tadros R.
        • et al.
        Enhancing rare variant interpretation in inherited arrhythmias through quantitative analysis of consortium disease cohorts and population controls.
        Genet Med. 2021; 23: 47-58
        • Veerman C.C.
        • Podliesna S.
        • Tadros R.
        • et al.
        The Brugada syndrome susceptibility gene HEY2 modulates cardiac transmural ion channel patterning and electrical heterogeneity.
        Circ Res. 2017; 121: 537-548
        • Bezzina C.R.
        • Barc J.
        • Mizusawa Y.
        • et al.
        Common variants at SCN5A-SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death.
        Nat Genet. 2013; 45: 1044-1049
        • Miles C.
        • Asimaki A.
        • Ster I.C.
        • et al.
        Biventricular myocardial fibrosis and sudden death in patients with Brugada syndrome.
        J Am Coll Cardiol. 2021; 78: 1511-1521
        • Hasdemir C.
        • Payzin S.
        • Kocabas U.
        • et al.
        High prevalence of concealed Brugada syndrome in patients with atrioventricular nodal reentrant tachycardia.
        Heart Rhythm. 2015; 12: 1584-1594
        • Antzelevitch C.
        • Yan G.X.
        • Ackerman M.J.
        • et al.
        J-Wave syndromes expert consensus conference report: emerging concepts and gaps in knowledge.
        J Arrhythm. 2016; 32: 315-339
        • Adler A.
        • Rosso R.
        • Chorin E.
        • et al.
        Risk stratification in Brugada syndrome: clinical characteristics, electrocardiographic parameters, and auxiliary testing.
        Heart Rhythm. 2016; 13: 299-310
        • Probst V.
        • Veltmann C.
        • Eckardt L.
        • et al.
        Long-term prognosis of patients diagnosed with Brugada syndrome: results from the FINGER Brugada Syndrome Registry.
        Circulation. 2010; 121: 635-643
        • Mascia G.
        • Bona R.D.
        • Ameri P.
        • et al.
        Brugada syndrome and syncope: a practical approach for diagnosis and treatment.
        Europace. 2021; 23: 996-1002
        • Scrocco C.
        • Ben-Haim Y.
        • Devine B.
        • et al.
        Role of subcutaneous implantable loop recorder for the diagnosis of arrhythmias in Brugada syndrome: a United Kingdom single-center experience.
        Heart Rhythm. 2021;
        • Priori S.G.
        • Wilde A.A.
        • Horie M.
        • et al.
        HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes: document endorsed by HRS, EHRA, and APHRS in May 2013 and by ACCF, AHA, PACES, and AEPC in June 2013.
        Heart Rhythm. 2013; 10: 1932-1963
        • Viskin S.
        • Chorin E.
        • Rosso R.
        The top 10 reasons to avoid electrophysiology studies in Brugada syndrome.
        Heart Rhythm. 2021; 18: 672-673
        • Delise P.
        • Allocca G.
        • Marras E.
        • et al.
        Risk stratification in individuals with the Brugada type 1 ECG pattern without previous cardiac arrest: usefulness of a combined clinical and electrophysiologic approach.
        Eur Heart J. 2011; 32: 169-176
        • Priori S.G.
        • Gasparini M.
        • Napolitano C.
        • et al.
        Risk stratification in Brugada syndrome: results of the PRELUDE (Programmed Electrical Stimulation Predictive Value) registry.
        J Am Coll Cardiol. 2012; 59: 37-45
        • Sroubek J.
        • Probst V.
        • Mazzanti A.
        • et al.
        Programmed ventricular stimulation for risk stratification in the Brugada Syndrome: a pooled analysis.
        Circulation. 2016; 133: 622-630
        • Yamagata K.
        • Horie M.
        • Aiba T.
        • et al.
        Genotype-phenotype correlation of SCN5A mutation for the clinical and electrocardiographic characteristics of probands with brugada syndrome: a Japanese multicenter registry.
        Circulation. 2017; 135: 2255-2270
        • Ciconte G.
        • Monasky M.M.
        • Santinelli V.
        • et al.
        Brugada syndrome genetics is associated with phenotype severity.
        Eur Heart J. 2021; 42: 1082-1090
        • Ishikawa T.
        • Kimoto H.
        • Mishima H.
        • et al.
        Functionally validated SCN5A variants allow interpretation of pathogenicity and prediction of lethal events in Brugada syndrome.
        Eur Heart J. 2021; 42: 2854-2863
        • Wilde A.A.M.
        • Wu C.I.
        Does function trump bioinformatics in Brugada syndrome–associated SCN5A mutation calling? Patients, computers, and patches.
        Eur Heart J. 2021; 42: 2864-2865
        • Rattanawong P.
        • Kewcharoen J.
        • Kanitsoraphan C.
        • et al.
        Does the age of sudden cardiac death in family members matter in Brugada syndrome?.
        J Am Heart Assoc. 2021; 10e019788
        • Sieira J.
        • Conte G.
        • Ciconte G.
        • et al.
        A score model to predict risk of events in patients with Brugada syndrome.
        Eur Heart J. 2017; 38: 1756-1763
        • Probst V.
        • Goronflot T.
        • Anys S.
        • et al.
        Robustness and relevance of predictive score in sudden cardiac death for patients with Brugada syndrome.
        Eur Heart J. 2021; 42: 1687-1695
        • Adler A.
        • Novelli V.
        • Amin A.S.
        • et al.
        An international, multicentered, evidence-based reappraisal of genes reported to cause congenital long QT syndrome.
        Circulation. 2020; 141: 418-428
        • Lahrouchi N.
        • Tadros R.
        • Crotti L.
        • et al.
        Transethnic genome-wide association study provides insights in the genetic architecture and heritability of long QT syndrome.
        Circulation. 2020; 142: 324-338
        • Schwartz P.J.
        • Crotti L.
        QTc behavior during exercise and genetic testing for the long-QT syndrome.
        Circulation. 2011; 124: 2181-2184
        • Mazzanti A.
        • Maragna R.
        • Vacanti G.
        • et al.
        Interplay between genetic substrate, QTc duration, and arrhythmia risk in patients with long QT syndrome.
        J Am Coll Cardiol. 2018; 71: 1663-1671
        • Priori S.G.
        • Blomstrom-Lundqvist C.
        • Mazzanti A.
        • et al.
        2015 ESC guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: the Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC).
        Eur Heart J. 2015; 36: 2793-2867
        • Olde Nordkamp L.R.
        • Postema P.G.
        • Knops R.E.
        • et al.
        Implantable cardioverter-defibrillator harm in young patients with inherited arrhythmia syndromes: a systematic review and meta-analysis of inappropriate shocks and complications.
        Heart Rhythm. 2016; 13: 443-454
        • Knops R.E.
        • Olde Nordkamp L.R.A.
        • Delnoy P.H.M.
        • et al.
        Subcutaneous or transvenous defibrillator therapy.
        N Engl J Med. 2020; 383: 526-536
        • Walsh R.
        • Tadros R.
        • Bezzina C.R.
        When genetic burden reaches threshold.
        Eur Heart J. 2020; 41: 3849-3855
        • Tadros R.
        • Tan H.L.
        • Investigators E.-N.
        • et al.
        Predicting cardiac electrical response to sodium-channel blockade and Brugada syndrome using polygenic risk scores.
        Eur Heart J. 2019; 40: 3097-3107