Advertisement
Canadian Journal of Cardiology

Inflammation as a Mechanism and Therapeutic Target in Peripheral Artery Disease

Published:January 31, 2022DOI:https://doi.org/10.1016/j.cjca.2022.01.026

      Abstract

      Peripheral artery disease is 1 of 3 major clinical manifestations of atherosclerosis, the other 2 being coronary artery and cerebrovascular disease. Despite progress in surgery, antithrombotic therapy and therapies that modify conventional risk factors (lipid-, blood pressure-, and glucose-lowering interventions), patients with peripheral artery disease have an unacceptably high risk of vascular complications. Additional strategies to reduce this residual risk are needed. The accumulated evidence that inflammation plays an important role in the pathogenesis of atherosclerosis has spurred recent efforts to evaluate anti-inflammatory agents as an additional therapeutic approach for atherothrombosis prevention and treatment. In this review, we examine the evidence supporting the role of inflammation in atherosclerosis, review recent trials of anti-inflammatory approaches to reduce cardiovascular complications, and offer insights into the opportunities for novel anti-inflammatory strategies to reduce the burden of cardiovascular and limb complications in patients with peripheral artery disease.

      Résumé

      La maladie artérielle périphérique est l’une des trois manifestations cliniques majeures de l’athérosclérose, les deux autres étant la coronaropathie et la maladie vasculaire cérébrale. Malgré les avancées de la chirurgie, du traitement antithrombotique et des thérapies visant à modifier les facteurs de risque classiques (interventions pour abaisser la lipidémie, la pression artérielle et la glycémie), le risque de complications vasculaires demeure inacceptable chez les personnes atteintes de maladie artérielle périphérique. Des stratégies additionnelles pour réduire ce risque résiduel sont nécessaires. L’accumulation de données probantes montrant le rôle considérable de l’inflammation dans la pathogenèse de l’athérosclérose a récemment donné un élan à l’étude de l’utilisation d’agents anti-inflammatoires comme approche thérapeutique additionnelle pour la prévention et le traitement de l’athérothrombose. Cette revue se penche sur les données probantes ayant démontré le rôle de l’inflammation dans l’athérosclérose et les récentes études sur des approches anti-inflammatoires de la réduction du risque de complications cardiovasculaires. Elle donne en outre un aperçu des nouvelles stratégies anti-inflammatoires qui pourraient alléger le fardeau des complications cardiovasculaires et des membres chez les personnes atteintes de maladie artérielle périphérique.

      Graphical abstract

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Weitz J.I.
        • Byrne J.
        • Clagett G.P.
        • et al.
        Diagnosis and treatment of chronic arterial insufficiency of the lower extremities: a critical review.
        Circulation. 1996; 94: 3026-3049
        • Gerhard-Herman M.D.
        • Gornik H.L.
        • Barrett C.
        • et al.
        2016 AHA/ACC guideline on the management of patients with lower extremity peripheral artery disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines.
        Circulation. 2017; 135: 686-725
        • Herrington W.
        • Lacey B.
        • Sherliker P.
        • Armitage J.
        • Lewington S.
        Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease.
        Circ Res. 2016; 118: 535-546
        • Kaplovitch E.
        • Eikelboom J.W.
        • Dyal L.
        • et al.
        Rivaroxaban and aspirin in patients with symptomatic lower extremity peripheral artery disease: a subanalysis of the COMPASS randomized clinical trial.
        JAMA Cardiol. 2021; 6: 21-29
        • Hess C.N.
        • Wang T.Y.
        • Weleski Fu J.
        • et al.
        Long-term outcomes and associations with major adverse limb events after peripheral artery revascularization.
        J Am Coll Cardiol. 2020; 75: 498-508
        • Ross R.
        Atherosclerosis — an inflammatory disease.
        N Engl J Med. 1999; 340: 115-126
        • Libby P.
        • Ridker P.M.
        • Maseri A.
        Inflammation and atherosclerosis.
        Circulation. 2002; 105: 1135-1143
        • Ridker P.M.
        • Everett B.M.
        • Thuren T.
        • et al.
        Antiinflammatory therapy with canakinumab for atherosclerotic disease.
        N Engl J Med. 2017; 377: 1119-1131
        • Tardif J.C.
        • Kouz S.
        • Waters D.D.
        • et al.
        Efficacy and safety of low-dose colchicine after myocardial infarction.
        N Engl J Med. 2019; 381: 2497-2505
        • Nidorf S.M.
        • Fiolet A.T.L.
        • Mosterd A.
        • et al.
        Colchicine in patients with chronic coronary disease.
        N Engl J Med. 2020; 383: 1838-1847
        • McGill Jr., H.C.
        • Strong J.P.
        The geographic pathology of atherosclerosis.
        Ann N Y Acad Sci. 1968; 149: 923-927
        • Berenson G.S.
        • Srinivasan S.R.
        • Bao W.
        • Newman W.P.
        • Tracy R.E.
        • Wattigney W.A.
        Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults.
        N Engl J Med. 1998; 338: 1650-1656
        • Strong J.P.
        • Malcom G.T.
        • McMahan C.A.
        • et al.
        Prevalence and extent of atherosclerosis in adolescents and young adults. Implications for prevention from the Pathobiological Determinants of Atherosclerosis in Youth Study.
        JAMA. 1999; 281: 727-735
        • Getz G.S.
        • Reardon C.A.
        Animal models of atherosclerosis.
        Arterioscler Thromb Vasc Biol. 2012; 32: 1104-1115
        • Stone G.W.
        • Maehara A.
        • Lansky A.J.
        • et al.
        A prospective natural-history study of coronary atherosclerosis.
        N Engl J Med. 2011; 364: 226-235
        • Stary H.C.
        • Chandler A.B.
        • Glagov S.
        • et al.
        A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association.
        Circulation. 1994; 89: 2462-2478
        • Strong J.P.
        • Malcom G.T.
        • Newman WP 3rd
        • Oalmann M.C.
        Early lesions of atherosclerosis in childhood and youth: natural history and risk factors..
        J Am Coll Nutr. 1992; 11 (Suppl:51S-54S)
        • Stary H.C.
        • Chandler A.B.
        • Dinsmore R.E.
        • et al.
        A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis.
        Circulation. 1995; 92: 1355-1374
        • Bentzon J.F.
        • Otsuka F.
        • Virmani R.
        • Falk E.
        Mechanisms of plaque formation and rupture.
        Circ Res. 2014; 114: 1852-1866
        • Hiatt W.R.
        • Armstrong E.J.
        • Larson C.J.
        • Brass E.P.
        Pathogenesis of the limb manifestations and exercise limitations in peripheral artery disease.
        Circ Res. 2015; 116: 1527-1539
        • Conte M.S.
        • Bradbury A.W.
        • Kolh P.
        • et al.
        Global vascular guidelines on the management of chronic limb-threatening ischemia.
        J Vasc Surg. 2019; 69: 3S-125S.e140
        • Olinic D.M.
        • Stanek A.
        • Tătaru D.A.
        • Homorodean C.
        • Olinic M.
        Acute limb ischemia: an update on diagnosis and management.
        J Clin Med. 2019; 8: 1215
        • Narula N.
        • Dannenberg A.J.
        • Olin J.W.
        • et al.
        Pathology of peripheral artery disease in patients with critical limb ischemia.
        J Am Coll Cardiol. 2018; 72: 2152-2163
        • Narula N.
        • Olin J.W.
        • Narula N.
        Pathologic disparities between peripheral artery disease and coronary artery disease.
        Arterioscler Thromb Vasc Biol. 2020; 40: 1982-1989
        • Steinberg D.
        In celebration of the 100th anniversary of the lipid hypothesis of atherosclerosis.
        J Lipid Res. 2013; 54: 2946-2949
        • Furie M.B.
        • Mitchell R.N.
        Plaque attack: one hundred years of atherosclerosis in The American Journal of Pathology.
        Am J Pathol. 2012; 180: 2184-2187
        • Ross R.
        • Glomset J.A.
        The pathogenesis of atherosclerosis (first of two parts).
        N Engl J Med. 1976; 295: 369-377
        • Ross R.
        • Glomset J.A.
        The pathogenesis of atherosclerosis (second of two parts).
        N Engl J Med. 1976; 295: 420-425
        • Hansson G.K.
        Inflammation, atherosclerosis, and coronary artery disease.
        N Engl J Med. 2005; 352: 1685-1695
        • Libby P.
        • Loscalzo J.
        • Ridker P.M.
        • et al.
        Inflammation, immunity, and infection in atherothrombosis: JACC Review Topic of the Week.
        J Am Coll Cardiol. 2018; 72: 2071-2081
        • Mayerl C.
        • Lukasser M.
        • Sedivy R.
        • Niederegger H.
        • Seiler R.
        • Wick G.
        Atherosclerosis research from past to present--on the track of two pathologists with opposing views, Carl von Rokitansky and Rudolf Virchow.
        Virchows Arch. 2006; 449: 96-103
        • Methe H.
        • Weis M.
        Atherogenesis and inflammation—was Virchow right?.
        Nephrol Dial Transplant. 2007; 22: 1823-1827
        • Choudhury R.P.
        • Lee J.M.
        • Greaves D.R.
        Mechanisms of disease: macrophage-derived foam cells emerging as therapeutic targets in atherosclerosis.
        Nat Clin Pract Cardiovasc Med. 2005; 2: 309-315
        • Das R.
        • Ganapathy S.
        • Mahabeleshwar G.H.
        • et al.
        Macrophage gene expression and foam cell formation are regulated by plasminogen.
        Circulation. 2013; 127: 1209-1218
        • Stemme S.
        • Faber B.
        • Holm J.
        • Wiklund O.
        • Witztum J.L.
        • Hansson G.K.
        T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein.
        Proc Natl Acad Sci U S A. 1995; 92: 3893-3897
        • Galkina E.
        • Ley K.
        Immune and inflammatory mechanisms of atherosclerosis.
        Annu Rev Immunol. 2009; 27: 165-197
        • Dollery C.M.
        • Libby P.
        Atherosclerosis and proteinase activation.
        Cardiovasc Res. 2006; 69: 625-635
        • Breslow J.L.
        Mouse models of atherosclerosis.
        Science. 1996; 272: 685-688
        • Tedgui A.
        • Mallat Z.
        Cytokines in atherosclerosis: pathogenic and regulatory pathways.
        Physiol Rev. 2006; 86: 515-581
        • Moore K.J.
        • Sheedy F.J.
        • Fisher E.A.
        Macrophages in atherosclerosis: a dynamic balance.
        Nat Rev Immunol. 2013; 13: 709-721
        • Davis B.K.
        • Wen H.
        • Ting J.P.Y.
        The inflammasome NLRs in immunity, inflammation, and associated diseases.
        Annu Rev Immunol. 2011; 29: 707-735
        • Zhang K.
        • Kaufman R.J.
        From endoplasmic-reticulum stress to the inflammatory response.
        Nature. 2008; 454: 455-462
        • Hoseini Z.
        • Sepahvand F.
        • Rashidi B.
        • Sahebkar A.
        • Masoudifar A.
        • Mirzaei H.
        NLRP3 inflammasome: its regulation and involvement in atherosclerosis.
        J Cell Physiol. 2018; 233: 2116-2132
        • Grebe A.
        • Hoss F.
        • Latz E.
        NLRP3 inflammasome and the IL-1 pathway in atherosclerosis.
        Circ Res. 2018; 122: 1722-1740
        • Kelley N.
        • Jeltema D.
        • Duan Y.
        • He Y.
        The NLRP3 inflammasome: an overview of mechanisms of activation and regulation.
        Int J Mol Sci. 2019; 20: 3328
        • Ridker P.M.
        From C-reactive protein to interleukin-6 to interleukin-1: moving upstream to identify novel targets for atheroprotection.
        Circ Res. 2016; 118: 145-156
        • Ratajczak M.Z.
        • Bujko K.
        • Cymer M.
        • et al.
        The Nlrp3 inflammasome as a “rising star” in studies of normal and malignant hematopoiesis.
        Leukemia. 2020; 34: 1512-1523
        • Natarajan P.
        • Jaiswal S.
        • Kathiresan S.
        Clonal hematopoiesis.
        Circ Genom Precis Med. 2018; 11e001926
        • Khetarpal S.A.
        • Qamar A.
        • Bick A.G.
        • et al.
        Clonal hematopoiesis of indeterminate potential reshapes age-related CVD: JACC Review Topic of the Week.
        J Am Coll Cardiol. 2019; 74: 578-586
        • Jin Y.
        • Fu J.
        Novel insights into the NLRP 3 inflammasome in atherosclerosis.
        J Am Heart Assoc. 2019; 8e012219
        • Tall A.R.
        • Westerterp M.
        Inflammasomes, neutrophil extracellular traps, and cholesterol.
        J Lipid Res. 2019; 60: 721-727
        • Ridker P.M.
        • Glynn R.J.
        • Hennekens C.H.
        C-reactive protein adds to the predictive value of total and HDL cholesterol in determining risk of first myocardial infarction.
        Circulation. 1998; 97: 2007-2011
        • Ridker P.M.
        • Buring J.E.
        • Shih J.
        • Matias M.
        • Hennekens C.H.
        Prospective study of C-reactive protein and the risk of future cardiovascular events among apparently healthy women.
        Circulation. 1998; 98: 731-733
        • Kaptoge S.
        • Di Angelantonio E.
        • et al.
        • Emerging Risk Factors Collaboration
        C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis.
        Lancet. 2010; 375: 132-140
        • Ridker P.M.
        • Hennekens C.H.
        • Buring J.E.
        • Rifai N.
        C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women.
        N Engl J Med. 2000; 342: 836-843
        • Ridker P.M.
        • Rifai N.
        • Pfeffer M.A.
        • et al.
        Inflammation, pravastatin, and the risk of coronary events after myocardial infarction in patients with average cholesterol levels.
        Circulation. 1998; 98: 839-844
        • Ridker P.M.
        • Cannon C.P.
        • Morrow D.
        • et al.
        C-reactive protein levels and outcomes after statin therapy.
        N Engl J Med. 2005; 352: 20-28
        • Morrow D.A.
        • Lemos J.A.D.
        • Sabatine M.S.
        • et al.
        Clinical relevance of C-reactive protein during follow-up of patients with acute coronary syndromes in the Aggrastat-to-Zocor Trial.
        Circulation. 2006; 114: 281-288
        • Ridker P.M.
        Clinical application of C-reactive protein for cardiovascular disease detection and prevention.
        Circulation. 2003; 107: 363-369
        • Saenz-Pipaon G.
        • Martinez-Aguilar E.
        • Orbe J.
        • et al.
        The role of circulating biomarkers in peripheral arterial disease.
        Int J Mol Sci. 2021; 22: 3601
        • McDermott M.M.
        • Lloyd-Jones D.M.
        The role of biomarkers and genetics in peripheral arterial disease.
        J Am Coll Cardiol. 2009; 54: 1228-1237
        • Ridker P.M.
        • Stampfer M.J.
        • Rifai N.
        Novel risk factors for systemic atherosclerosis: a comparison of C-reactive protein, fibrinogen, homocysteine, lipoprotein (a), and standard cholesterol screening as predictors of peripheral arterial disease.
        JAMA. 2001; 285: 2481-2485
        • Pradhan A.D.
        • Shrivastava S.
        • Cook N.R.
        • Rifai N.
        • Creager M.A.
        • Ridker P.M.
        Symptomatic peripheral arterial disease in women: nontraditional biomarkers of elevated risk.
        Circulation. 2008; 117: 823-831
        • Fatemi S.
        • Gottsäter A.
        • Zarrouk M.
        • et al.
        Lp-PLA(2) activity and mass and CRP are associated with incident symptomatic peripheral arterial disease.
        Sci Rep. 2019; 9: 5609
        • McDermott M.M.
        • Liu K.
        • Ferrucci L.
        • et al.
        Circulating blood markers and functional impairment in peripheral arterial disease.
        J Am Geriatr Soc. 2008; 56: 1504-1510
        • Koklesova L.
        • Mazurakova A.
        • Samec M.
        • et al.
        Homocysteine metabolism as the target for predictive medical approach, disease prevention, prognosis, and treatments tailored to the person.
        EPMA J. 2021; 12: 1-29
        • Welch G.N.
        • Loscalzo J.
        Homocysteine and atherothrombosis.
        N Engl J Med. 1998; 338: 1042-1050
        • Li Y.
        • Huang T.
        • Zheng Y.
        • Muka T.
        • Troup J.
        • Hu F.B.
        Folic acid supplementation and the risk of cardiovascular diseases: a meta-analysis of randomized controlled trials.
        J Am Heart Assoc. 2016; 5e003768
        • McDermott M.M.
        • Ferrucci L.
        • Liu K.
        • et al.
        D-dimer and inflammatory markers as predictors of functional decline in men and women with and without peripheral arterial disease.
        J Am Geriatr Soc. 2005; 53: 1688-1696
        • McDermott M.M.
        • Liu K.
        • Guralnik J.M.
        • et al.
        Functional decline in patients with and without peripheral arterial disease: predictive value of annual changes in levels of C-reactive protein and D-dimer.
        J Gerontol A Biol Sci Med Sci. 2006; 61: 374-379
        • Singh T.P.
        • Morris D.R.
        • Smith S.
        • Moxon J.V.
        • Golledge J.
        Systematic review and meta-analysis of the association between C-reactive protein and major cardiovascular events in patients with peripheral artery disease.
        Eur J Vasc Endovasc Surg. 2017; 54: 220-233
        • Di X.
        • Han W.
        • Liu C.W.
        • Ni L.
        • Zhang R.
        A systematic review and meta-analysis on the association between C-reactive protein levels and adverse limb events after revascularization in patients with peripheral arterial disease.
        J Vasc Surg. 2021; 74: 317-326
        • Bohula E.A.
        • Giugliano R.P.
        • Cannon C.P.
        • et al.
        Achievement of dual low-density lipoprotein cholesterol and high-sensitivity C-reactive protein targets more frequent with the addition of ezetimibe to simvastatin and associated with better outcomes in IMPROVE-IT.
        Circulation. 2015; 132: 1224-1233
        • Ridker P.M.
        • Danielson E.
        • Fonseca F.A.H.
        • et al.
        Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein.
        N Engl J Med. 2008; 359: 2195-2207
        • Berkley A.
        • Ferro A.
        Changes in C-reactive protein in response to anti-inflammatory therapy as a predictor of cardiovascular outcomes: a systematic review and meta-analysis.
        JRSM Cardiovasc Dis. 2020; 92048004020929235
        • Burleigh M.E.
        • Babaev V.R.
        • Oates J.A.
        • et al.
        Cyclooxygenase-2 promotes early atherosclerotic lesion formation in LDL receptor-deficient mice.
        Circulation. 2002; 105: 1816-1823
        • Bogaty P.
        • Brophy J.M.
        • Noel M.
        • et al.
        Impact of prolonged cyclooxygenase-2 inhibition on inflammatory markers and endothelial function in patients with ischemic heart disease and raised C-reactive protein.
        Circulation. 2004; 110: 934-939
        • Antman E.M.
        • DeMets D.
        • Loscalzo J.
        Cyclooxygenase inhibition and cardiovascular risk.
        Circulation. 2005; 112: 759-770
        • Bally M.
        • Dendukuri N.
        • Rich B.
        • et al.
        Risk of acute myocardial infarction with NSAIDs in real world use: bayesian meta-analysis of individual patient data.
        BMJ. 2017; 357: j1909
        • Li D.
        • El Kawkgi O.M.
        • Henriquez A.F.
        • Bancos I.
        Cardiovascular risk and mortality in patients with active and treated hypercortisolism.
        Gland Surg. 2020; 9: 43-58
        • Fardet L.
        • Petersen I.
        • Nazareth I.
        Risk of cardiovascular events in people prescribed glucocorticoids with iatrogenic Cushing’s syndrome: cohort study.
        BMJ. 2012; 345: e4928
        • Whitworth J.A.
        • Williamson P.M.
        • Mangos G.
        • Kelly J.J.
        Cardiovascular consequences of cortisol excess.
        Vasc Health Risk Manag. 2005; 1: 291-299
        • Walker B.R.
        Glucocorticoids and cardiovascular disease.
        Eur J Endocrinol. 2007; 157: 545-559
        • Mann D.L.
        Innate immunity and the failing heart: the cytokine hypothesis revisited.
        Circ Res. 2015; 116: 1254-1268
        • Khanna D.
        • McMahon M.
        • Furst D.E.
        Anti–tumor necrosis factor α therapy and heart failure: what have we learned and where do we go from here?.
        Arthritis Rheum. 2004; 50: 1040-1050
        • O’Donoghue M.L.
        • Glaser R.
        • Cavender M.A.
        • et al.
        Effect of losmapimod on cardiovascular outcomes in patients hospitalized with acute myocardial infarction: a randomized clinical trial.
        JAMA. 2016; 315: 1591-1599
        • O’Donoghue M.L.
        • Braunwald E.
        • White H.D.
        • et al.
        Effect of darapladib on major coronary events after an acute coronary syndrome: the SOLID-TIMI 52 randomized clinical trial.
        JAMA. 2014; 312: 1006-1015
        • White H.D.
        • Held C.
        • et al.
        • STABILITY Investigators
        Darapladib for preventing ischemic events in stable coronary heart disease.
        N Engl J Med. 2014; 370: 1702-1711
        • Nicholls S.J.
        • Kastelein J.J.
        • Schwartz G.G.
        • et al.
        Varespladib and cardiovascular events in patients with an acute coronary syndrome: the VISTA-16 randomized clinical trial.
        JAMA. 2014; 311: 252-262
        • Armstrong P.W.
        • Granger C.B.
        • Adams P.X.
        • et al.
        Pexelizumab for acute ST-elevation myocardial infarction in patients undergoing primary percutaneous coronary intervention: a randomized controlled trial.
        JAMA. 2007; 297: 43-51
        • Verrier E.D.
        • Shernan S.K.
        • Taylor K.M.
        • et al.
        Terminal complement blockade with pexelizumab during coronary artery bypass graft surgery requiring cardiopulmonary bypass: a randomized trial.
        JAMA. 2004; 291: 2319-2327
        • Smith P.K.
        • Shernan S.K.
        • Chen J.C.
        • et al.
        Effects of C5 complement inhibitor pexelizumab on outcome in high-risk coronary artery bypass grafting: combined results from the PRIMO-CABG I and II trials.
        J Thorac Cardiovasc Surg. 2011; 142: 89-98
        • Granger C.B.
        • Mahaffey K.W.
        • Weaver W.D.
        • et al.
        Pexelizumab, an anti-C5 complement antibody, as adjunctive therapy to primary percutaneous coronary intervention in acute myocardial infarction: the COMplement inhibition in Myocardial infarction treated with Angioplasty (COMMA) trial.
        Circulation. 2003; 108: 1184-1190
        • Mahaffey K.W.
        • Granger C.B.
        • Nicolau J.C.
        • et al.
        Effect of pexelizumab, an anti-C5 complement antibody, as adjunctive therapy to fibrinolysis in acute myocardial infarction: the COMPlement inhibition in myocardial infarction treated with thromboLYtics (COMPLY) trial.
        Circulation. 2003; 108: 1176-1183
        • Micha R.
        • Imamura F.
        • Wyler von Ballmoos M.
        • et al.
        Systematic review and meta-analysis of methotrexate use and risk of cardiovascular disease.
        Am J Cardiol. 2011; 108: 1362-1370
        • Ridker P.M.
        • Everett B.M.
        • Pradhan A.
        • et al.
        Low-dose methotrexate for the prevention of atherosclerotic events.
        N Engl J Med. 2018; 380: 752-762
        • Ridker P.M.
        • Howard C.P.
        • Walter V.
        • et al.
        Effects of interleukin-1β inhibition with canakinumab on hemoglobin A1c, lipids, C-reactive protein, interleukin-6, and fibrinogen: a phase IIb randomized, placebo-controlled trial.
        Circulation. 2012; 126: 2739-2748
        • Mullard A.
        Novartis’s canakinumab stumbles in cancer, again.
        Nat Rev Drug Discov. 2021; 20: 888
        • Russell K.S.
        • Yates D.P.
        • Kramer C.M.
        • et al.
        A randomized, placebo-controlled trial of canakinumab in patients with peripheral artery disease.
        Vasc Med. 2019; 24: 414-421
        • McKenzie B.J.
        • Wechalekar M.D.
        • Johnston R.V.
        • Schlesinger N.
        • Buchbinder R.
        Colchicine for acute gout.
        Cochrane Database Syst Rev. 2021; 8Cd006190
        • Ben-Chetrit E.
        • Levy M.
        Colchicine prophylaxis in familial Mediterranean fever: reappraisal after 15 years.
        Semin Arthritis Rheum. 1991; 20: 241-246
        • Dinarello C.A.
        • Wolff S.M.
        • Goldfinger S.E.
        • Dale D.C.
        • Alling D.W.
        Colchicine therapy for familial mediterranean fever. A double-blind trial.
        N Engl J Med. 1974; 291: 934-937
        • Imazio M.
        • Brucato A.
        • Cemin R.
        • et al.
        A randomized trial of colchicine for acute pericarditis.
        N Engl J Med. 2013; 369: 1522-1528
        • Lee J.Z.
        • Singh N.
        • Howe C.L.
        • et al.
        Colchicine for prevention of post-operative atrial fibrillation: a meta-analysis.
        JACC Clin Electrophysiol. 2016; 2: 78-85
        • Leung Y.Y.
        • Yao Hui L.L.
        • Kraus V.B.
        Colchicine--update on mechanisms of action and therapeutic uses.
        Semin Arthritis Rheum. 2015; 45: 341-350
        • Silvis M.J.M.
        • Fiolet A.T.L.
        • Opstal T.S.J.
        • et al.
        Colchicine reduces extracellular vesicle NLRP3 inflammasome protein levels in chronic coronary disease: a LoDoCo2 biomarker substudy.
        Atherosclerosis. 2021; 334: 93-100
        • Martínez G.J.
        • Robertson S.
        • Barraclough J.
        • et al.
        Colchicine acutely suppresses local cardiac production of inflammatory cytokines in patients with an acute coronary syndrome.
        J Am Heart Assoc. 2015; 4e002128
        • Opstal T.S.J.
        • Hoogeveen R.M.
        • Fiolet A.T.L.
        • et al.
        Colchicine attenuates inflammation beyond the inflammasome in chronic coronary artery disease.
        Circulation. 2020; 142: 1996-1998
        • Shah B.
        • Toprover M.
        • Crittenden D.B.
        • et al.
        Colchicine use and incident coronary artery disease in male patients with gout.
        Can J Cardiol. 2020; 36: 1722-1728
        • Fiolet A.T.L.
        • Opstal T.S.J.
        • Mosterd A.
        • et al.
        Efficacy and safety of low-dose colchicine in patients with coronary disease: a systematic review and meta-analysis of randomized trials.
        Eur Heart J. 2021; 42: 2765-2775
        • Ridker P.M.
        • Devalaraja M.
        • Baeres F.M.M.
        • et al.
        IL-6 inhibition with ziltivekimab in patients at high atherosclerotic risk (RESCUE): a double-blind, randomised, placebo-controlled, phase 2 trial.
        Lancet. 2021; 397: 2060-2069
        • Kleveland O.
        • Kunszt G.
        • Bratlie M.
        • et al.
        Effect of a single dose of the interleukin-6 receptor antagonist tocilizumab on inflammation and troponin T release in patients with non-ST-elevation myocardial infarction: a double-blind, randomized, placebo-controlled phase 2 trial.
        Eur Heart J. 2016; 37: 2406-2413
        • Broch K.
        • Anstensrud A.K.
        • Woxholt S.
        • et al.
        Randomized trial of interleukin-6 receptor inhibition in patients with acute ST-segment elevation myocardial infarction.
        J Am Coll Cardiol. 2021; 77: 1845-1855
        • Morton A.C.
        • Rothman A.M.
        • Greenwood J.P.
        • et al.
        The effect of interleukin-1 receptor antagonist therapy on markers of inflammation in non-ST elevation acute coronary syndromes: the MRC-ILA Heart Study.
        Eur Heart J. 2015; 36: 377-384
        • Abbate A.
        • Kontos M.C.
        • Abouzaki N.A.
        • et al.
        Comparative safety of interleukin-1 blockade with anakinra in patients with ST-segment elevation acute myocardial infarction (from the VCU-ART and VCU-ART2 pilot studies).
        Am J Cardiol. 2015; 115: 288-292
        • Abbate A.
        • Trankle C.R.
        • Buckley L.F.
        • et al.
        Interleukin-1 blockade inhibits the acute inflammatory response in patients with ST-segment-elevation myocardial infarction.
        J Am Heart Assoc. 2020; 9e014941
        • ClinicalTrials.gov
        ZEUS - A Research Study to Look at How Ziltivekimab Works Compared to Placebo in People With Cardiovascular Disease, Chronic Kidney Disease and Inflammation.
        (Available at:) (Accessed January 15, 2022)
        • Zhao T.X.
        • Kostapanos M.
        • Griffiths C.
        • et al.
        Low-dose interleukin-2 in patients with stable ischaemic heart disease and acute coronary syndromes (LILACS): protocol and study rationale for a randomised, double-blind, placebo-controlled, phase I/II clinical trial.
        BMJ Open. 2018; 8e022452
        • Zhao T.X.
        • Sriranjan R.S.
        • Lu Y.
        • et al.
        Low dose interleukin-2 in patients with stable ischaemic heart disease and acute coronary syndrome (LILACS) [abstract].
        Eur Heart J. 2020; 41: 1735
        • Stähli B.E.
        • Tardif J.C.
        • Carrier M.
        • et al.
        Effects of P-selectin antagonist inclacumab in patients undergoing coronary artery bypass graft surgery: SELECT-CABG trial.
        J Am Coll Cardiol. 2016; 67: 344-346
        • Stähli B.E.
        • Gebhard C.
        • Duchatelle V.
        • et al.
        Effects of the P-Selectin antagonist inclacumab on myocardial damage after percutaneous coronary intervention according to timing of infusion: insights from the SELECT-ACS trial.
        J Am Heart Assoc. 2016; 5e004255
        • ClinicalTrials.gov
        Colchicine and Spironolactone in Patients With MI / SYNERGY Stent Registry (CLEAR SYNERGY).
        (Available at:) (Accessed January 15, 2022)
        • ClinicalTrials.gov
        Colchicine for Prevention of Vascular Inflammation in Non-cardio Embolic Stroke (CONVINCE).
        (Available at:) (Accessed January 15, 2022)
        • ClinicalTrials.gov
        Low Dose ColchicinE in pAtients With Peripheral Artery DiseasE to Address Residual Vascular Risk (LEADER-PAD).
        (Available at:) (Accessed January 15, 2022)
        • Sehested T.S.G.
        • Bjerre J.
        • Ku S.
        • et al.
        Cost-effectiveness of canakinumab for prevention of recurrent cardiovascular events.
        JAMA Cardiol. 2019; 4: 128-135
        • Marquis-Gravel G.
        • Goodman S.G.
        • Anderson T.J.
        • et al.
        Colchicine for prevention of atherothrombotic events in patients with coronary artery disease: review and practical approach for clinicians.
        Can J Cardiol. 2021; 37: 1837-1845
        • Samuel M.
        • Tardif J.C.
        • Bouabdallaoui N.
        • et al.
        Colchicine for secondary prevention of cardiovascular disease: a systematic review and meta-analysis of randomized controlled trials.
        Can J Cardiol. 2021; 37: 776-785
        • Samuel M.
        • Waters D.D.
        Will colchicine soon be part of primary and secondary cardiovascular prevention?.
        Can J Cardiol. 2020; 36: 1697-1699
        • Visseren F.L.J.
        • Mach F.
        • Smulders Y.M.
        • et al.
        2021 ESC guidelines on cardiovascular disease prevention in clinical practice: developed by the Task Force for Cardiovascular Disease Prevention in Clinical Practice with representatives of the European Society of Cardiology and 12 medical societies with the special contribution of the European Association of Preventive Cardiology (EAPC).
        Eur Heart J. 2021; 42: 3227-3237