Abstract
Implantable cardioverter defibrillators (ICDs) are recommended for primary and secondary
prevention of sudden cardiac death and were first implanted more than 40 years ago.
The addition of cardiac resynchronization improved outcomes in the heart failure population
and is now an important part of optimized therapy for this population. In this review,
we will address patient selection, risk stratification, and outcomes after ICD placement
and technological improvements. Gender disparities in referral and outcomes will be
discussed. Far from early technologies with limited pacing capabilities and no antitachycardia
pacing (ATP), we have now moved to complex devices with the addition of ATP/ATP during
charging, cardiac resynchronization therapy, remote monitoring, and improved battery
longevity. The requirement for defibrillation testing at time of implantation has
changed and in most implants are not required as part of new clinical guidelines.
As the components most likely to fail are the leads, and many complications arise
from the intravascular components, extravascular ICDs were developed, the subcutaneous
ICD is now an option for many patients, and substernal devices are under clinical
trials. Because shocks are associated with worse outcomes, optimized ICD programming
is now recommended, with the benefit of reducing appropriate and inappropriate shocks
with a decrease in mortality and no increase in the syncopal events. All these improvements
will have a positive effect on patient outcomes and quality of life, and new technologies
will be developed in the future.
Résumé
Les défibrillateurs cardioverteurs implantables (DCI) sont recommandés pour la prévention
primaire et secondaire de la mort cardiaque subite. La première implantation d’un
DCI remonte à plus de 40 ans. Depuis son introduction, la resynchronisation cardiaque
a permis d’améliorer le devenir des patients atteints d’insuffisance cardiaque; elle
fait maintenant partie intégrante de la thérapie optimisée au sein de cette population.
Nous abordons ici la sélection des patients, la stratification du risque et les résultats
obtenus à la suite de la mise en place d’un DCI et d’améliorations technologiques.
Nous nous penchons aussi sur les disparités entre les sexes en matière d’aiguillage
et d’issue thérapeutique. La technologie a beaucoup évolué depuis la création des
premiers dispositifs aux capacités de stimulation limitées qui n’offraient aucune
stimulation antitachycardie (SAT). Nous disposons maintenant de dispositifs complexes
permettant la délivrance de la SAT avant et pendant la charge, la resynchronisation
cardiaque, la télésurveillance et une meilleure autonomie des piles. Les exigences
relatives au test du seuil de défibrillation au moment de l’implantation ont changé
et ne s’appliquent pas à la plupart des implants selon les nouvelles lignes directrices
cliniques. Comme les sondes sont les composants les plus susceptibles de subir une
défaillance et que de nombreuses complications sont attribuables aux composants intravasculaires,
des DCI extravasculaires ont été mis au point. Les DCI sous-cutanés sont maintenant
une option pour de nombreux patients, et des dispositifs sous-sternaux sont en cours
d’essais cliniques. Les chocs étant associés à de pires résultats, la programmation
optimisée des DCI est maintenant recommandée. Celle-ci offre l’avantage de limiter
la délivrance de chocs appropriés ou inappropriés et de réduire ainsi la mortalité,
sans entraîner d’augmentation des manifestations syncopales. Toutes ces améliorations
influeront favorablement sur le devenir et la qualité de vie des patients, et de nouvelles
technologies sont à venir.
To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Canadian Journal of CardiologyAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
References
- Temporal trends in sudden cardiac death in Ontario, Canada.Resuscitation. 2019; 136: 1-7
- Sudden death risk-stratification in 2018-2019: the old and the new.Heart Lung Circ. 2019; 28: 57-64
- Frequency of sudden cardiac death and profiles of risk.Am J Cardiol. 1997; 80 (10F-9)
- 2020 Canadian Cardiovascular Society/Canadian Heart Rhythm Society position statement on the management of ventricular tachycardia and fibrillation in patients with structural heart disease.Can J Cardiol. 2020; 36: 822-836
- 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society.J Am Coll Cardiol. 2018; 72: 91-220
- Canadian Cardiovascular Society/Canadian Heart Rhythm Society 2016 implantable cardioverter-defibrillator guidelines.Can J Cardiol. 2017; 33: 174-188
- 2015 ESC guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: the Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC). Endorsed by Association for European Paediatric and Congenital Cardiology (AEPC).Europace. 2015; 17: 1601-1687
- One-year mortality after implantable defibrillator implantation: do risk stratification models help improving clinical practice?.J Interv Card Electrophysiol. 2021; (Online ahead of print)https://doi.org/10.1007/s10840-021-01083-y
- Outcomes in heart failure patients referred for consideration of implantable cardioverter defibrillator for primary prophylaxis of sudden cardiac death: what are the risks of waiting?.Can J Cardiol. 2009; 25: e342-e346
- Clinical risk stratification for primary prevention implantable cardioverter defibrillators.Circ Heart Fail. 2015; 8: 927-937
- Predicting early mortality after implantable defibrillator implantation: a clinical risk score for optimal patient selection.Am Heart J. 2006; 151: 397-403
- Preventive implantable cardioverter defibrillator therapy in contemporary clinical practice: need for more stringent selection criteria.ESC Heart Fail. 2021; 8: 3656-3662
- Impact of sacubitril/valsartan on implantable defibrillator eligibility in heart failure: a real-world experience.Eur Rev Med Pharmacol Sci. 2021; 25: 5690-5700
- Prediction of sudden cardiac arrest in the general population: review of traditional and emerging risk factors.Can J Cardiol. 2022; 38: 465-478
- Subanalyses of secondary prevention implantable cardioverter-defibrillator trials: antiarrhythmics versus implantable defibrillators (AVID), Canadian Implantable Defibrillator Study (CIDS), and Cardiac Arrest Study Hamburg (CASH).Curr Opin Cardiol. 2004; 19: 26-30
- Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure.N Engl J Med. 2005; 352: 225-237
- Improved survival with an implanted defibrillator in patients with coronary disease at high risk for ventricular arrhythmia. Multicenter Automatic Defibrillator Implantation Trial Investigators.N Engl J Med. 1996; 335: 1933-1940
- Sacubitril/valsartan and sudden cardiac death according to implantable cardioverter-defibrillator use and heart failure cause: a PARADIGM-HF analysis.JACC Heart Fail. 2020; 8: 844-855
- Regional variation in the use of implantable cardioverter-defibrillators for primary prevention: results from the National Cardiovascular Data Registry.Circ Cardiovasc Qual Outcomes. 2011; 4: 114-121
- Underutilization of implantable cardioverter defibrillator in primary prevention of sudden cardiac arrest.Cardiol Res. 2011; 2: 1-6
- Care gaps in adherence to heart failure guidelines: clinical inertia or physiological limitations?.JACC Heart Fail. 2020; 8: 725-738
- Use of primary prevention implantable cardioverter-defibrillators in a population-based cohort is associated with a significant survival benefit.Circ Arrhythm Electrophysiol. 2012; 5: 706-713
- Sex and racial differences in the use of implantable cardioverter-defibrillators among patients hospitalized with heart failure.JAMA. 2007; 298: 1525-1532
- Primary prevention of sudden cardiac death with device therapy in urban and rural populations.Can J Cardiol. 2017; 33: 437-442
- Sex differences in implantable cardioverter-defibrillator implantation indications and outcomes: lessons from the Nationwide Israeli-ICD Registry.Europace. 2014; 16: 1175-1180
- Sex differences in ICD benefit.J Electrocardiol. 2014; 47: 869-873
- Primary prevention implantable cardioverter defibrillator (ICD) therapy in women: data from a multicenter French registry.J Am Heart Assoc. 2016; 5e002756
- Gender and outcomes after primary prevention implantable cardioverter-defibrillator implantation: findings from the National Cardiovascular Data Registry (NCDR).Am Heart J. 2015; 170: 330-338
- Sex differences in the use of implantable cardioverter-defibrillators for primary and secondary prevention of sudden cardiac death.JAMA. 2007; 298: 1517-1524
- Sex differences in implantable cardioverter-defibrillator outcomes: findings from a prospective defibrillator database.Ann Intern Med. 2012; 156: 195-203
- Sex differences in rates and causes of 30-day readmissions after cardiac electronic device implantations: insights from the Nationwide Readmissions Database.Int J Cardiol. 2020; 302: 67-74
- Sex differences in acute complications of cardiac implantable electronic devices: implications for patient safety.J Am Heart Assoc. 2019; 8e010869
- Sex difference in inappropriate therapy and survival among 1471 implantable cardioverter-defibrillator recipients.J Cardiovasc Electrophysiol. 2019; 30: 1620-1625
- Sex differences in implantable cardiac defibrillator therapy according to arrhythmia detection times.Heart. 2020; 106: 520-526
- The influence of sex and age on ventricular arrhythmia in a population-based registry.Int J Cardiol. 2017; 244: 169-174
- Study design and cohort description of DEFIB-WOMEN: a national Danish study in patients with an ICD.Pacing Clin Electrophysiol. 2016; 39: 1261-1268
- New onset anxiety and depression in patients with an implantable cardioverter defibrillator during 24 months of follow-up (data from the national DEFIB-WOMEN study).Gen Hosp Psychiatry. 2021; 72: 59-65
- Anxiety and depression symptoms in Danish patients with an implantable cardioverter-defibrillator: prevalence and association with indication and sex up to 2 years of follow-up (data from the national DEFIB-WOMEN study).Europace. 2020; 22: 1830-1840
- Termination of malignant ventricular arrhythmias with an implanted automatic defibrillator in human beings.N Engl J Med. 1980; 303: 322-324
- Projected longevities of cardiac implantable defibrillators: a retrospective analysis over the period 2007-17 and the impact of technological factors in determining longevity.Europace. 2020; 22: 149-155
- Favorable trend of implantable cardioverter-defibrillator service life in a large single-nation population: insights from 10-year analysis of the Italian Implantable Cardioverter-Defibrillator Registry.J Am Heart Assoc. 2019; 8e012759
- Predicted longevity of contemporary cardiac implantable electronic devices: a call for industry-wide "standardized" reporting.Heart Rhythm. 2018; 15: 1756-1763
- Battery longevity of implantable cardioverter-defibrillators and cardiac resynchronization therapy defibrillators: technical, clinical and economic aspects: an expert review paper from EHRA.Europace. 2018; 20: 1882-1897
- Estimating the risks and benefits of implantable cardioverter defibrillator generator replacement: a systematic review.Pacing Clin Electrophysiol. 2016; 39: 709-722
- Predictors of short-term complications after implantable cardioverter-defibrillator replacement: results from the Ontario ICD database.Circ Arrhythm Electrophysiol. 2011; 4: 136-142
- Complication rates associated with pacemaker or implantable cardioverter-defibrillator generator replacements and upgrade procedures: results from the REPLACE registry.Circulation. 2010; 122: 1553-1561
- Cost-effectiveness of implantable cardiac devices in patients with systolic heart failure.Heart. 2016; 102: 1742-1749
- Cost-effectiveness analysis of implantable cardiac devices in patients with systolic heart failure: a US perspective using real world data.J Med Econ. 2020; 23: 690-697
- Cost-effectiveness of cardiac resynchronization therapy plus an implantable cardioverter-defibrillator in patients with heart failure: a systematic review.Cost Eff Resour Alloc. 2021; 19: 31
- Effect of battery longevity on costs and health outcomes associated with cardiac implantable electronic devices: a Markov model-based Monte Carlo simulation.J Interv Card Electrophysiol. 2017; 50: 149-158
- Costs and complications associated with transvenous lead reoperation in cardiac implantable electronic devices.J Cardiovasc Electrophysiol. 2020; 31: 503-511
- Recent temporal trends in hospital costs for non-surgical patients receiving implantable cardioverter defibrillators.J Interv Card Electrophysiol. 2021; https://doi.org/10.1007/s10840-021-00956-6
- Healthcare costs in implantable cardioverter-defibrillator recipients: a real-life cohort study on 19,408 patients from the French national healthcare database.Int J Cardiol. 2021; 348: 39-44
- Antibacterial envelope to prevent cardiac implantable device infection.N Engl J Med. 2019; 380: 1895-1905
- Prevention of Arrhythmia Device Infection Trial: the PADIT trial.J Am Coll Cardiol. 2018; 72: 3098-3109
- Use of healthcare claims to validate the Prevention of Arrhythmia Device Infection Trial cardiac implantable electronic device infection risk score.Europace. 2021; 23: 1446-1455
- Risk factors for infections involving cardiac implanted electronic devices.J Am Coll Cardiol. 2019; 74: 2845-2854
- Dual-chamber pacing or ventricular backup pacing in patients with an implantable defibrillator: the Dual Chamber and VVI Implantable Defibrillator (DAVID) trial.JAMA. 2002; 288: 3115-3123
- Driving Restrictions and Early Arrhythmias in Patients Receiving a Primary-Prevention Implantable Cardioverter-Defibrillator (DREAM-ICD) Study.Can J Cardiol. 2020; 36: 1269-1277
- 2019 HRS/EHRA/APHRS/LAHRS focused update to 2015 expert consensus statement on optimal implantable cardioverter-defibrillator programming and testing.J Interv Card Electrophysiol. 2020; 59: 35-144
- Management of implantable cardioverter defibrillator recipients: care beyond guidelines.Can J Cardiol. 2017; 33: 977-990
- Remote monitoring of implantable cardioverter-defibrillators: a systematic review and meta-analysis of clinical outcomes.J Am Coll Cardiol. 2015; 65: 2591-2600
- Canadian Registry of Electronic Device Outcomes: remote monitoring outcomes in the Abbott battery performance alert-a multicentre cohort.Europace. 2021; 23: 1319-1323
- The CONNECT (Clinical Evaluation of Remote Notification to Reduce Time to Clinical Decision) trial: the value of wireless remote monitoring with automatic clinician alerts.J Am Coll Cardiol. 2011; 57: 1181-1189
- Implant-based multiparameter telemonitoring of patients with heart failure (IN-TIME): a randomised controlled trial.Lancet. 2014; 384: 583-590
- Daily remote monitoring of implantable cardioverter-defibrillators: insights from the pooled patient-level data from three randomized controlled trials (IN-TIME, ECOST, TRUST).Eur Heart J. 2017; 38: 1749-1755
- Remote monitoring reduces healthcare use and improves quality of care in heart failure patients with implantable defibrillators: the evolution of management strategies of heart failure patients with implantable defibrillators (EVOLVO) study.Circulation. 2012; 125: 2985-2992
- Efficacy and safety of automatic remote monitoring for implantable cardioverter-defibrillator follow-up: the Lumos-T Safely Reduces Routine Office Device Follow-up (TRUST) trial.Circulation. 2010; 122: 325-332
- Remote monitoring of cardiovascular implantable electronic devices in Canada: survey of patients and device health care professionals.CJC Open. 2021; 3: 391-399
- Virtual follow-up and care for patients with cardiac electronic implantable devices: protocol for a systematic review.Syst Rev. 2020; 9: 153
- Remote-only monitoring for patients with cardiac implantable electronic devices: a before-and-after pilot study.CMAJ Open. 2021; 9: 53-61
- Cardioverter defibrillator implantation without induction of ventricular fibrillation: a single-blind, non-inferiority, randomised controlled trial (SIMPLE).Lancet. 2015; 385: 785-791
- Intra-operative defibrillation testing and clinical shock efficacy in patients with implantable cardioverter-defibrillators: the NORDIC ICD randomized clinical trial.Eur Heart J. 2015; 36: 2500-2507
- Clinical impact of defibrillation testing in a real-world S-ICD population: data from the ELISIR registry.J Cardiovasc Electrophysiol. 2021; 32: 468-476
- Rationale and design of the PRAETORIAN-DFT trial: a prospective randomized CompArative trial of SubcutanEous ImplanTable CardiOverter-DefibrillatoR ImplANtation with and without DeFibrillation testing.Am Heart J. 2019; 214: 167-174
- Subcutaneous implantable cardioverter-defibrillator and defibrillation testing: A propensity-matched pilot study.Heart Rhythm. 2021; 18: 2072-2079
- Comparative outcomes of Riata and Fidelis lead management strategies: results from the NCDR-ICD registry.Pacing Clin Electrophysiol. 2021; 44: 1897-1906
- Management and long-term outcomes associated with recalled implantable cardioverter-defibrillator leads: a multicenter experience.Heart Rhythm. 2020; 17: 1909-1916
- Disease severity and exercise testing reduce subcutaneous implantable cardioverter-defibrillator left sternal ECG screening success in hypertrophic cardiomyopathy.Circ Arrhythm Electrophysiol. 2017; 10e004801
- Role of exercise electrocardiogram to screen for T-wave oversensing after implantation of subcutaneous implantable cardioverter-defibrillator.Heart Rhythm. 2017; 14: 1436-1439
- Evaluation of subcutaneous ICD early performance in hypertrophic cardiomyopathy from the pooled EFFORTLESS and IDE cohorts.Heart Rhythm. 2016; 13: 1066-1074
- Appropriate and inappropriate shocks in hypertrophic cardiomyopathy patients with subcutaneous implantable cardioverter-defibrillators: an international multicenter study.Heart Rhythm. 2020; 17: 1107-1114
- Comparing the safety of subcutaneous versus transvenous ICDs: a meta-analysis.J Interv Card Electrophysiol. 2021; 60: 355-363
- The subcutaneous ICD: a review of the UNTOUCHED and PRAETORIAN trials.Arrhythm Electrophysiol Rev. 2021; 10: 108-112
- Rationale and design of the randomized prospective ATLAS study: avoid transvenous leads in appropriate subjects.Am Heart J. 2019; 207: 1-9
- Predictors of subcutaneous implantable cardioverter-defibrillator shocks and prognostic impact in patients with structural heart disease.Can J Cardiol. 2021; 37: 400-406
- Totally leadless dual-device implantation for combined spontaneous ventricular tachycardia defibrillation and pacemaker function: a first report.Can J Cardiol. 2017; 33 (1066.e5-7)
- Combination of a leadless pacemaker and subcutaneous defibrillator: first in-human report.Heart Rhythm Case Rep. 2015; 1: 469-471
- Acute and 3-month performance of a communicating leadless antitachycardia pacemaker and subcutaneous implantable defibrillator.JACC Clin Electrophysiol. 2017; 3: 1487-1498
- The extravascular implantable cardioverter-defibrillator: the pivotal study plan.J Cardiovasc Electrophysiol. 2021; 32: 2371-2378
- Novel extravascular defibrillation configuration with a coil in the substernal space: the ASD clinical study.JACC Clin Electrophysiol. 2017; 3: 905-910
- Indications and use of the wearable cardiac defibrillator.Eur Heart J. 2017; 38: 258-267
- The wearable cardioverter-defibrillator: current technology and evolving indications.Europace. 2017; 19: 335-345
- Wearable cardioverter-defibrillators: a review of evidence and indications.Trends Cardiovasc Med. 2021; 31: 196-201
- Use of a wearable defibrillator in terminating tachyarrhythmias in patients at high risk for sudden death: results of the WEARIT/BIROAD.Pacing Clin Electrophysiol. 2004; 27: 4-9
- The wearable cardioverter-defibrillator: experience in 153 patients and a long-term follow-up.J Clin Med. 2020; 9: 893
- Wearable cardioverter-defibrillator after myocardial infarction.N Engl J Med. 2018; 379: 1205-1215
- Impact of wearable cardioverter-defibrillator compliance on outcomes in the VEST trial: as-treated and per-protocol analyses.J Cardiovasc Electrophysiol. 2020; 31: 1009-1018
- Wearable cardioverter-defibrillator therapy for the prevention of sudden cardiac death: a systematic review and meta-analysis.JACC Clin Electrophysiol. 2019; 5: 152-161
- The wearable cardioverter defibrillator: an early single centre Australian experience. Some pitfalls and caveats for use.Heart Lung Circ. 2016; 25: 155-159
Article info
Publication history
Published online: February 03, 2022
Accepted:
January 15,
2022
Received:
October 29,
2021
Footnotes
See page 522 for disclosure information.
Identification
Copyright
© 2022 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.