Advertisement
Canadian Journal of Cardiology

Neurodevelopment and Cognition Across the Lifespan in Patients With Single-Ventricle Physiology: Abnormal Brain Maturation and Accumulation of Brain Injuries

Published:February 11, 2022DOI:https://doi.org/10.1016/j.cjca.2022.02.009

      Abstract

      The proportion of adults with single-ventricle physiology (SVP) has significantly increased over time. Improved longevity, however, may be associated with increased risks to brain health in adulthood. Children with SVP are at risk for neurodevelopmental impairment early in life and neurocognitive impairment as they age, and existing epidemiologic evidence suggests that adults with complex congenital heart disease, including SVP, are at increased risk of stroke and dementia, as compared with age-matched controls. Mechanisms that could contribute to increased potential for cognitive impairment in adults with SVP include the following: (i) baseline brain dysmaturation beginning in utero; (ii) subsequent acquired injury occurring in early childhood from staged surgeries; and (iii) pathophysiologic factors related to SVP itself, both in childhood and potentially throughout the lifespan as new arrhythmias, heart failure, and other issues may develop. Associated pathophysiologic mechanisms may include thromboembolism, hypercoagulability, hypoxia, hypoperfusion, and inflammation. Despite increasingly robust pediatric literature with neuroradiologic-neuropsychology correlates in SVP, there is a dearth of similar research in adults, with respect to both complex congenital heart disease overall and SVP specifically. Unanswered questions in adults with SVP include the following: (i) what is the prevalence of baseline brain injury and neurocognitive impairment in adulthood; (ii) what is the incident risk of these issues over time; and (iii) how much may be mediated by incident brain injury across the lifespan in adulthood, as opposed to from underlying susceptibility from dysmaturation and early childhood insults. In this review, we describe what is known regarding the brain health in individuals with SVP across the lifespan, and identify priority areas for future research.

      Résumé

      La proportion d'adultes présentant une physiologie de ventricule unique (PVU) a considérablement augmenté au fil du temps. Cependant, l'amélioration de la longévité peut être associée à des risques accrus pour la santé cérébrale à l'âge adulte. Les enfants atteints de PVU risquent de souffrir de troubles du développement neurologique au début de leur vie et de troubles neurocognitifs à mesure qu'ils vieillissent, et les données épidémiologiques existantes suggèrent que les adultes atteints de cardiopathies congénitales complexes, y compris de PVU, courent un risque accru d'accident vasculaire cérébral et de démence, par rapport aux cas témoins, appariés selon l'âge. Les mécanismes qui pourraient contribuer à un potentiel accru de déficience cognitive chez les adultes atteints de PVU sont les suivants: (i) une dysmaturation cérébrale de base commençant in utero; (ii) des lésions acquises ultérieurement survenant dans la petite enfance à la suite d'interventions chirurgicales planifiées; et (iii) des facteurs physiopathologiques liés à la PVU elle-même, à la fois durant l'enfance et potentiellement tout au long de la vie, à mesure que de nouvelles arythmies, une insuffisance cardiaque et d'autres problèmes peuvent se développer. Les mécanismes pathophysiolo-giques associés peuvent inclure la thromboembolie, l'hypercoagulabilité, l'hypoxie, l'hypoperfusion et l'inflammation. En dépit d'une littérature pédiatrique de plus en plus étoffée sur les corrélats neuroradiologiques et neuropsychologiques de la PVU, il existe un manque de recherches similaires chez les adultes, tant en ce qui concerne les cardiopathies congénitales complexes en général que la PVU en particulier. Les questions suivantes restent sans réponse chez les adultes atteints de PVU: (i) quelle est la prévalence des lésions cérébrales de base et des déficiences neurocognitives à l'âge adulte; (ii) quel est le risque incident de ces problèmes au fil du temps; et (iii) dans quelle mesure les lésions cérébrales incidentes survenues à l'âge adulte tout au long de la vie peuvent-elles jouer un rôle médiateur, par opposition à une susceptibilité sous-jacente due à la dysmaturation et aux agressions durant la petite enfance? Dans cette revue de littérature, nous décrivons ce que l'on sait de la santé cérébrale des personnes atteintes présentant une PVU tout au long de leur vie, et nous identifions les domaines prioritaires pour des recherches futures.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • GBD 2017 Congenital Heart Disease Collaborators
        Global, regional, and national burden of congenital heart disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017.
        Lancet Child Adolesc Health. 2020; 4: 185-200
        • Kverneland L.S.
        • Kramer P.
        • Ovroutski S.
        Five decades of the Fontan operation: a systematic review of international reports on outcomes after univentricular palliation.
        Congenit Heart Dis. 2018; 13: 181-193
        • Pundi K.N.
        • Johnson J.N.
        • Dearani J.A.
        • et al.
        40-year follow-up after the Fontan operation: long-term outcomes of 1052 patients.
        J Am Coll Cardiol. 2015; 66: 1700-1710
      1. Institute DCR. STS Congenital heart surgery executive summary children. Table 3: primary procedure, 35 most frequent for children, last 4 years. Jan 2015-Dec 2018. Available at: https://www.annalsthoracicsurgery.org/article/S0003-4975(18)31477-2/fulltext. Accessed May 13, 2022

        • Gunn J.K.
        • Beca J.
        • Hunt R.W.
        • et al.
        Perioperative risk factors for impaired neurodevelopment after cardiac surgery in early infancy.
        Arch Dis Child. 2016; 101: 1010-1016
        • Gaynor J.W.
        • Gerdes M.
        • Nord A.S.
        • et al.
        Is cardiac diagnosis a predictor of neurodevelopmental outcome after cardiac surgery in infancy?.
        J Thorac Cardiovasc Surg. 2010; 140: 1230-1237
        • Mussatto K.A.
        • Hoffmann R.G.
        • Hoffman G.M.
        • et al.
        Risk and prevalence of developmental delay in young children with congenital heart disease.
        Pediatrics. 2014; 133: e570-e577
        • Mahle W.
        • Clancy R.
        • Moss E.
        • et al.
        Neurodevelopmental outcome and lifestyle assessment in school-aged and adolescent children with hypoplastic left heart syndrome.
        Pediatrics. 2000; 105: 1082-1089
        • Verrall C.E.
        • Yang J.Y.M.
        • Chen J.
        • et al.
        Neurocognitive dysfunction and smaller brain volumes in adolescents and adults with a Fontan circulation.
        Circulation. 2021; 143: 878-891
        • Noorani S.
        • Roy B.
        • Sahib A.K.
        • et al.
        Caudate nuclei volume alterations and cognition and mood dysfunctions in adolescents with single ventricle heart disease.
        J Neurosci Res. 2020; 98: 1877-1888
        • Tyagi M.
        • Fteropoulli T.
        • Hurt C.S.
        • et al.
        Cognitive dysfunction in adult CHD with different structural complexity.
        Cardiol Young. 2017; 27: 851-859
        • Bagge C.N.
        • Henderson V.W.
        • Laursen H.B.
        • et al.
        Risk of dementia in adults with congenital heart disease: population-based cohort study.
        Circulation. 2018; 137: 1912-1920
        • Miller S.P.
        • Mcquillen P.S.
        • Hamrick S.
        • et al.
        Abnormal brain development in newborns with congenital heart disease.
        N Engl J Med. 2007; 357: 1928-1938
        • Limperopoulos C.
        • Tworetzky W.
        • Mcelhinney D.B.
        • et al.
        Brain volume and metabolism in fetuses with congenital heart disease.
        Circulation. 2010; 121: 26-33
        • Clouchoux C.
        • Du Plessis A.J.
        • Bouyssi-Kobar M.
        • et al.
        Delayed cortical development in fetuses with complex congenital heart disease.
        Cereb Cortex. 2013; 23: 2932-2943
        • Dimitropoulos A.
        • Mcquillen P.S.
        • Sethi V.
        • et al.
        Brain injury and development in newborns with critical congenital heart disease.
        Neurology. 2013; 81: 241-248
        • Claessens N.H.P.
        • Chau V.
        • De Vries L.S.
        • et al.
        Brain injury in infants with critical congenital heart disease: insights from two clinical cohorts with different practice approaches.
        J Pediatr. 2019; 215: 75-82.e2
        • Shively S.
        • Scher A.I.
        • Perl D.P.
        • Diaz-Arrastia R.
        Dementia resulting from traumatic brain injury: What is the pathology?.
        Arch Neurol. 2012; 69: 1245-1251
        • Sun L.
        • Macgowan C.K.
        • Sled J.G.
        • et al.
        Reduced fetal cerebral oxygen consumption is associated with smaller brain size in fetuses with congenital heart disease.
        Circulation. 2015; 131: 1313-1323
        • Khairy P.
        • Poirier N.
        • Mercier L.-A.E.
        Univentricular heart.
        Circulation. 2007; 115: 800-812
        • Hansen J.H.
        • Rotermann I.
        • Logoteta J.
        • et al.
        Neurodevelopmental outcome in hypoplastic left heart syndrome: impact of perioperative cerebral tissue oxygenation of the Norwood procedure.
        J Thorac Cardiovasc Surg. 2016; 151: 1358-1366
        • Newburger J.W.
        • Sleeper L.A.
        • Bellinger D.C.
        • et al.
        Early developmental outcome in children with hypoplastic left heart syndrome and related anomalies.
        Circulation. 2012; 125: 2081-2091
        • Medoff-Cooper B.
        • Irving S.Y.
        • Hanlon A.L.
        • et al.
        The association among feeding mode, growth, and developmental outcomes in infants with complex congenital heart disease at 6 and 12 months of age.
        J Pediatr. 2016; 169: 154-159.e1
        • Ravishankar C.
        • Zak V.
        • Williams I.A.
        • et al.
        Association of impaired linear growth and worse neurodevelopmental outcome in infants with single ventricle physiology: a report from the Pediatric Heart Network Infant Single Ventricle Trial.
        J Pediatr. 2013; 162: 250-256.e2
        • Hsieh A.
        • Tabbutt S.
        • Xu D.
        • et al.
        Impact of perioperative brain injury and development on feeding modality in infants with single ventricle heart disease.
        J Am Heart Assoc. 2019; 8e012291
        • Parekh S.A.
        • Cox S.M.
        • Barkovich A.J.
        • et al.
        The effect of size and asymmetry at birth on brain injury and neurodevelopmental outcomes in congenital heart disease.
        Pediatr Cardiol. 2022; 43: 868-877
        • Gaynor J.W.
        • Ittenbach R.F.
        • Gerdes M.
        • et al.
        Neurodevelopmental outcomes in preschool survivors of the Fontan procedure.
        J Thorac Cardiovasc Surg. 2014; 147 (discussion 1282-3.e5): 1276-1282
        • Marino B.S.
        • Lipkin P.H.
        • Newburger J.W.
        • et al.
        Neurodevelopmental outcomes in children with congenital heart disease: evaluation and management: a scientific statement from the American Heart Association.
        Circulation. 2012; 126: 1143-1172
        • Diab N.S.
        • Barish S.
        • Dong W.
        • et al.
        Molecular genetics and complex inheritance of congenital heart disease.
        Genes. 2021; 12: 1020
        • Zaidi S.
        • Brueckner M.
        Genetics and genomics of congenital heart disease.
        Circ Res. 2017; 120: 923-940
        • Fahed A.C.
        • Gelb B.D.
        • Seidman J.G.
        • Seidman C.E.
        Genetics of congenital heart disease.
        Circ Res. 2013; 112: 707-720
        • Wernovsky G.
        Current insights regarding neurological and developmental abnormalities in children and young adults with complex congenital cardiac disease.
        Cardiol Young. 2006; 16: 92-104
        • Zaidi S.
        • Choi M.
        • Wakimoto H.
        • et al.
        De novo mutations in histone-modifying genes in congenital heart disease.
        Nature. 2013; 498: 220-223
        • Jin S.C.
        • Homsy J.
        • Zaidi S.
        • et al.
        Contribution of rare inherited and de novo variants in 2871 congenital heart disease probands.
        Nat Genet. 2017; 49: 1593-1601
        • Homsy J.
        • Zaidi S.
        • Shen Y.
        • et al.
        De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies.
        Science. 2015; 350: 1262-1266
        • Wu Y.
        • Jin X.
        • Zhang Y.
        • Zheng J.
        • Yang R.
        Genetic and epigenetic mechanisms in the development of congenital heart diseases.
        World J Pediatr Surg. 2021; 4e000196
        • Cristancho A.G.
        • Marsh E.D.
        Epigenetics modifiers: potential hub for understanding and treating neurodevelopmental disorders from hypoxic injury.
        J Neurodev Disord. 2020; 12: 37
        • Choudhry H.
        • Harris A.L.
        Advances in hypoxia-inducible factor biology.
        Cell Metab. 2018; 27: 281-298
        • Ma Q.
        • Xiong F.
        • Zhang L.
        Gestational hypoxia and epigenetic programming of brain development disorders.
        Drug Discov Today. 2014; 19: 1883-1896
        • McRae M.E.
        Long-term issues after the Fontan procedure.
        AACN Adv Crit Care. 2013; 24 (quiz 283-4): 264-282
        • Firdouse M.
        • Agarwal A.
        • Chan A.K.
        • Mondal T.
        Thrombosis and thromboembolic complications in Fontan patients.
        Clin Appl Thromb/Hemost. 2014; 20: 484-492
        • Deshaies C.
        • Hamilton R.M.
        • Shohoudi A.
        • et al.
        Thromboembolic risk after atriopulmonary, lateral tunnel, and extracardiac conduit Fontan surgery.
        J Am Coll Cardiol. 2019; 74: 1071-1081
        • Egbe A.C.
        • Connolly H.M.
        • Niaz T.
        • et al.
        Prevalence and outcome of thrombotic and embolic complications in adults after Fontan operation.
        Am Heart J. 2017; 183: 10-17
        • Egbe A.C.
        • Connolly H.M.
        • McLeod C.J.
        • et al.
        Thrombotic and embolic complications associated with atrial arrhythmia after Fontan operation: role of prophylactic therapy.
        J Am Coll Cardiol. 2016; 68: 1312-1319
        • Claessens N.H.P.
        • Breur J.
        • Groenendaal F.
        • et al.
        Brain microstructural development in neonates with critical congenital heart disease: an atlas-based diffusion tensor imaging study.
        Neuroimage Clin. 2019; 21: 101672
        • Ehrler M.
        • Latal B.
        • Kretschmar O.
        • Von Rhein M.
        • O'Gorman Tuura R.
        Altered frontal white matter microstructure is associated with working memory impairments in adolescents with congenital heart disease: a diffusion tensor imaging study.
        NeuroImage: Clin. 2020; 25: 102123
        • Ehrler M.
        • Schlosser L.
        • Brugger P.
        • et al.
        Altered white matter microstructure is related to cognition in adults with congenital heart disease.
        Brain Commun. 2021; 3: fcaa224
        • Brewster R.C.
        • King T.Z.
        • Burns T.G.
        • Drossner D.M.
        • Mahle W.T.
        White matter integrity dissociates verbal memory and auditory attention span in emerging adults with congenital heart disease.
        J Int Neuropsychol Soc. 2015; 21: 22-33
        • Licht D.J.
        • Shera D.M.
        • Clancy R.R.
        • et al.
        Brain maturation is delayed in infants with complex congenital heart defects.
        J Thorac Cardiovasc Surg. 2009; 137 (discussion 536-7): 529-536
        • von Rhein M.
        • Buchmann A.
        • Hagmann C.
        • et al.
        Severe congenital heart defects are associated with global reduction of neonatal brain volumes.
        J Pediatr. 2015; 167: 1259-12563.e1
        • Claessens N.H.P.
        • Moeskops P.
        • Buchmann A.
        • et al.
        Delayed cortical gray matter development in neonates with severe congenital heart disease.
        Pediatr Res. 2016; 80: 668-674
        • Ortinau C.
        • Alexopoulos D.
        • Dierker D.
        • et al.
        Cortical folding is altered before surgery in infants with congenital heart disease.
        J Pediatr. 2013; 163: 1507-1510
        • Ortinau C.
        • Beca J.
        • Lambeth J.
        • et al.
        Regional alterations in cerebral growth exist preoperatively in infants with congenital heart disease.
        J Thorac Cardiovasc Surg. 2012; 143: 1264-1270
        • Feldmann M.
        • Guo T.
        • Miller S.P.
        • et al.
        Delayed maturation of the structural brain connectome in neonates with congenital heart disease.
        Brain Commun. 2020; 2: fcaa209
        • Birca A.
        • Vakorin V.A.
        • Porayette P.
        • et al.
        Interplay of brain structure and function in neonatal congenital heart disease.
        Ann Clin Transl Neurol. 2016; 3: 708-722
        • Peyvandi S.
        • Kim H.
        • Lau J.
        • et al.
        The association between cardiac physiology, acquired brain injury, and postnatal brain growth in critical congenital heart disease.
        J Thorac Cardiovasc Surg. 2018; 155: 291-300.e3
        • Block A.J.
        • Mcquillen P.S.
        • Chau V.
        • et al.
        Clinically silent preoperative brain injuries do not worsen with surgery in neonates with congenital heart disease.
        J Thorac Cardiovasc Surg. 2010; 140: 550-557
        • Mulkey S.B.
        • Swearingen C.J.
        • Melguizo M.S.
        • et al.
        Multi-tiered analysis of brain injury in neonates with congenital heart disease.
        Pediatr Cardiol. 2013; 34: 1772-1784
        • Peyvandi S.
        • Chau V.
        • Guo T.
        • et al.
        Neonatal brain injury and timing of neurodevelopmental assessment in patients with congenital heart disease.
        J Am Coll Cardiol. 2018; 71: 1986-1996
        • Claessens N.H.P.
        • Algra S.O.
        • Ouwehand T.L.
        • et al.
        Perioperative neonatal brain injury is associated with worse school-age neurodevelopment in children with critical congenital heart disease.
        Dev Med Child Neurol. 2018; 60: 1052-1058
        • van Tilborg E.
        • de Theije C.G.M.
        • van Hal M.
        • et al.
        Origin and dynamics of oligodendrocytes in the developing brain: Implications for perinatal white matter injury.
        Glia. 2018; 66: 221-238
        • Back S.A.
        • Han B.H.
        • Luo N.L.
        • et al.
        Selective vulnerability of late oligodendrocyte progenitors to hypoxia–ischemia.
        J Neurosci. 2002; 22: 455-463
        • Back S.A.
        • Luo N.L.
        • Borenstein N.S.
        • et al.
        Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury.
        J Neurosci. 2001; 21: 1302-1312
        • Srivastava T.
        • Diba P.
        • Dean J.M.
        • et al.
        A TLR/AKT/FoxO3 immune tolerance–like pathway disrupts the repair capacity of oligodendrocyte progenitors.
        J Clin Invest. 2018; 128: 2025-2041
        • Segovia K.N.
        • Mcclure M.
        • Moravec M.
        • et al.
        Arrested oligodendrocyte lineage maturation in chronic perinatal white matter injury.
        Ann Neurol. 2008; 63: 520-530
        • Buser J.R.
        • Maire J.
        • Riddle A.
        • et al.
        Arrested preoligodendrocyte maturation contributes to myelination failure in premature infants.
        Ann Neurol. 2012; 71: 93-109
        • Back S.A.
        White matter injury in the preterm infant: pathology and mechanisms.
        Acta Neuropathol. 2017; 134: 331-349
        • Yuen J.
        • Tracy
        • Silbereis C.
        • et al.
        Oligodendrocyte-encoded HIF function couples postnatal myelination and white matter angiogenesis.
        Cell. 2014; 158: 383-396
        • Back S.A.
        • Riddle A.
        • Dean J.
        • Hohimer A.R.
        The instrumented fetal sheep as a model of cerebral white matter injury in the premature infant.
        Neurotherapeutics. 2012; 9: 359-370
        • Licht D.J.
        • Wang J.
        • Silvestre D.W.
        • et al.
        Preoperative cerebral blood flow is diminished in neonates with severe congenital heart defects.
        J Thorac Cardiovasc Surg. 2004; 128: 841-849
        • Mcquillen P.S.
        • Barkovich A.J.
        • Hamrick S.E.G.
        • et al.
        Temporal and anatomic risk profile of brain injury with neonatal repair of congenital heart defects.
        Stroke. 2007; 38: 736-741
        • Peyvandi S.
        • Donofrio M.T.
        Circulatory changes and cerebral blood flow and oxygenation during transition in newborns with congenital heart disease.
        Semin Pediatr Neurol. 2018; 28: 38-47
        • Votava-Smith J.K.
        • Statile C.J.
        • Taylor M.D.
        • et al.
        Impaired cerebral autoregulation in preoperative newborn infants with congenital heart disease.
        J Thorac Cardiovasc Surg. 2017; 154: 1038-1044
        • Dean J.M.
        • Mcclendon E.
        • Hansen K.
        • et al.
        Prenatal cerebral ischemia disrupts MRI-defined cortical microstructure through disturbances in neuronal arborization.
        Sci Transl Med. 2013; 5: 168ra7
        • Mcclendon E.
        • Chen K.
        • Gong X.
        • et al.
        Prenatal cerebral ischemia triggers dysmaturation of caudate projection neurons.
        Ann Neurol. 2014; 75: 508-524
        • Morton P.D.
        • Korotcova L.
        • Lewis B.K.
        • et al.
        Abnormal neurogenesis and cortical growth in congenital heart disease.
        Sci Transl Med. 2017; 9eaah7029
        • Rollins C.K.
        • Ortinau C.M.
        • Stopp C.
        • et al.
        Regional brain growth trajectories in fetuses with congenital heart disease.
        Ann Neurol. 2021; 89: 143-157
        • Andropoulos D.B.
        • Hunter J.V.
        • Nelson D.P.
        • et al.
        Brain immaturity is associated with brain injury before and after neonatal cardiac surgery with high-flow bypass and cerebral oxygenation monitoring.
        J Thorac Cardiovasc Surg. 2010; 139: 543-556
        • Gaynor J.W.
        • Stopp C.
        • Wypij D.
        • et al.
        Neurodevelopmental outcomes after cardiac surgery in infancy.
        Pediatrics. 2015; 135: 816-825
        • Sarajuuri A.
        • Jokinen E.
        • Mildh L.
        • et al.
        Neurodevelopmental burden at age 5 years in patients with univentricular heart.
        Pediatrics. 2012; 130: e1636-e1646
        • Davidson J.
        • Gringras P.
        • Fairhurst C.
        • Simpson J.
        Physical and neurodevelopmental outcomes in children with single-ventricle circulation.
        Arch Dis Child. 2015; 100: 449-453
        • Sarrechia I.
        • Miatton M.
        • De Wolf D.
        • et al.
        Neurocognitive development and behaviour in school-aged children after surgery for univentricular or biventricular congenital heart disease.
        Eur J Cardio-Thorac Surg. 2016; 49: 167-174
        • Atallah J.
        • Garcia Guerra G.
        • Joffe A.R.
        • et al.
        Survival, neurocognitive, and functional outcomes after completion of staged surgical palliation in a cohort of patients with hypoplastic left heart syndrome.
        J Am Heart Assoc. 2020; 9e013632
        • Forbess J.
        • Visconti K.
        • Bellinger D.
        • Jonas R.
        Neurodevelopmental outcomes in children after the Fontan operation.
        Circulation. 2001; 104: I127-I132
        • Bergemann A.
        • Hansen J.H.
        • Rotermann I.
        • et al.
        Neuropsychological performance of school-aged children after staged surgical palliation of hypoplastic left heart syndrome.
        Eur J Cardiothorac Surg. 2015; 47: 803-811
        • Brosig C.
        • Mussatto K.
        • Hoffman G.
        • et al.
        Neurodevelopmental outcomes for children with hypoplastic left heart syndrome at the age of 5 years.
        Pediatr Cardiol. 2013; 34: 1597-1604
        • Cassidy A.R.
        • White M.T.
        • Demaso D.R.
        • Newburger J.W.
        • Bellinger D.C.
        Executive function in children and adolescents with critical cyanotic congenital heart disease.
        J Int Neuropsychol Soc. 2015; 21: 34-49
        • Gerstle M.
        • Beebe D.W.
        • Drotar D.
        • Cassedy A.
        • Marino B.S.
        Executive functioning and school performance among pediatric survivors of complex congenital heart disease.
        J Pediatr. 2016; 173: 154-159
        • Puosi R.
        • Korkman M.
        • Sarajuuri A.
        • et al.
        Neurocognitive development and behavioral outcome of 2-year-old children with univentricular heart.
        J Int Neuropsychol Soc. 2011; 17: 1094-1103
        • Knirsch W.
        • Liamlahi R.
        • Hug M.I.
        • et al.
        Mortality and neurodevelopmental outcome at 1 year of age comparing hybrid and Norwood procedures.
        Eur J Cardio-Thorac Surg. 2012; 42: 33-39
        • Knirsch W.
        • Mayer K.N.
        • Scheer I.
        • et al.
        Structural cerebral abnormalities and neurodevelopmental status in single ventricle congenital heart disease before Fontan procedure.
        Eur J Cardiothorac Surg. 2017; 51: 740-746
        • Goldberg C.S.
        • Lu M.
        • Sleeper L.A.
        • et al.
        Factors associated with neurodevelopment for children with single ventricle lesions.
        J Pediatr. 2014; 165: 490-496.e8
        • Goldberg C.S.
        • Hu C.
        • Brosig C.
        • et al.
        Behavior and quality of life at 6 years for children with hypoplastic left heart syndrome.
        Pediatrics. 2019; 144e20191010
        • Sananes R.
        • Goldberg C.S.
        • Newburger J.W.
        • et al.
        Six-year neurodevelopmental outcomes for children with single-ventricle physiology.
        Pediatrics. 2021; 147e2020014589
        • Hiraiwa A.
        • Ibuki K.
        • Tanaka T.
        • et al.
        Toddler neurodevelopmental outcomes are associated with school-age IQ in children with single ventricle physiology.
        Semin Thorac Cardiovasc Surg. 2020; 32: 302-310
        • Watson C.G.
        • Stopp C.
        • Wypij D.
        • et al.
        Altered white matter microstructure correlates with IQ and processing speed in children and adolescents post-Fontan.
        J Pediatr. 2018; 200: 140-149.e4
        • Hiraiwa A.
        • Kawasaki Y.
        • Ibuki K.
        • et al.
        Brain development of children with single ventricle physiology or transposition of the great arteries: a longitudinal observation study.
        Semin Thorac Cardiovasc Surg. 2020; 32: 936-944
        • Wolfe K.R.
        • Brinton J.
        • Di Maria M.V.
        • Meier M.
        • Liptzin D.R.
        Oxygen saturations and neurodevelopmental outcomes in single ventricle heart disease.
        Pediatr Pulmonol. 2019; 54: 922-927
        • Wolfe K.R.
        • Liptzin D.R.
        • Brigham D.
        • et al.
        Relationships between physiologic and neuropsychologic functioning after Fontan.
        J Pediatr. 2020; 227: 239-246
        • Fogel M.A.
        • Li C.
        • Elci O.U.
        • et al.
        Neurological injury and cerebral blood flow in single ventricles throughout staged surgical reconstruction.
        Circulation. 2017; 135: 671-682
        • Bucholz E.M.
        • Sleeper L.A.
        • Goldberg C.S.
        • et al.
        Socioeconomic status and long-term outcomes in single ventricle heart disease.
        Pediatrics. 2020; 146e20201240
        • Bucholz E.M.
        • Sleeper L.A.
        • Sananes R.
        • et al.
        Trajectories in neurodevelopmental, health-rlated quality of life, and functional status outcomes by socioeconomic status and maternal education in children with single ventricle heart disease.
        J Pediatr. 2021; 229: 289-293.e3
        • Bellinger D.C.
        • Watson C.G.
        • Rivkin M.J.
        • et al.
        Neuropsychological status and structural brain imaging in adolescents with single ventricle who underwent the Fontan procedure.
        J Am Heart Assoc. 2015; 4e002302
        • du Plessis K.
        • d'Udekem Y.
        The neurodevelopmental outcomes of patients with single ventricles across the lifespan.
        Ann Thorac Surg. 2019; 108: 1565-1572
        • Pike N.A.
        • Roy B.
        • Gupta R.
        • et al.
        Brain abnormalities in cognition, anxiety, and depression regulatory regions in adolescents with single ventricle heart disease.
        J Neurosci Res. 2018; 96: 1104-1118
        • Singh S.
        • Roy B.
        • Pike N.
        • et al.
        Altered brain diffusion tensor imaging indices in adolescents with the Fontan palliation.
        Neuroradiology. 2019; 61: 811-824
        • Pike N.A.
        • Roy B.
        • Moye S.
        • et al.
        Reduced hippocampal volumes and memory deficits in adolescents with single ventricle heart disease.
        Brain Behav. 2021; 11e01977
        • Cabrera-Mino C.
        • Roy B.
        • Woo M.A.
        • et al.
        Reduced brain mammillary body volumes and memory deficits in adolescents who have undergone the Fontan procedure.
        Pediatr Res. 2020; 87: 169-175
        • Singh S.
        • Kumar R.
        • Roy B.
        • et al.
        Regional brain gray matter changes in adolescents with single ventricle heart disease.
        Neurosci Lett. 2018; 665: 156-162
        • Stout K.K.
        • Daniels C.J.
        • Aboulhosn J.A.
        • et al.
        2018 AHA/ACC guideline for the management of adults with congenital heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines.
        J Am Coll Cardiol. 2019; 73: 1494-1563
        • Keir M.
        • Ebert P.
        • Kovacs A.H.
        • et al.
        Neurocognition in adult congenital heart disease: how to monitor and prevent progressive decline.
        Can J Cardiol. 2019; 35: 1675-1685
        • Chavali M.
        • Ulloa-Navas M.
        • Pérez-Borredá P.
        • et al.
        Wnt-dependent oligodendroglial-endothelial interactions regulate white matter vasculaturization and attenuate injury.
        Neuron. 2020; 108: 1130-1145.e5
        • Lee F.-T.
        • Marini D.
        • Seed M.
        • Sun L.
        Maternal hyperoxygenation in congenital heart disease.
        Transl Pediatr. 2021; 10: 2197-2209
        • Wu Y.
        • Kapse K.
        • Jacobs M.
        • et al.
        Association of maternal psychological distress with in utero brain development in fetuses with congenital heart disease.
        JAMA Pediatr. 2020; 174e195316
        • Brito N.H.
        • Troller-Renfree S.V.
        • Leon-Santos A.
        • et al.
        Associations among the home language environment and neural activity during infancy.
        Dev Cogn Neurosci. 2020; 43: 100780
        • Noble K.G.
        • Houston S.M.
        • Brito N.H.
        • et al.
        Family income, parental education and brain structure in children and adolescents.
        Nat Neurosci. 2015; 18: 773-778
        • Lu Y.-C.
        • Kapse K.
        • Andersen N.
        • et al.
        Association between socioeconomic status and in utero fetal brain development.
        JAMA Network Open. 2021; 4e213526
        • Noble K.G.
        • Magnuson K.
        • Gennetian L.A.
        • et al.
        Baby's first years: design of a randomized controlled trial of poverty reduction in the United States.
        Pediatrics. 2021; 148e2020049702
        • Roberts S.D.
        • Kazazian V.
        • Ford M.K.
        • et al.
        The association between parent stress, coping and mental health, and neurodevelopmental outcomes of infants with congenital heart disease.
        Clin Neuropsychol. 2021; 35: 948-972
        • Madhavan M.
        • Graff-Radford J.
        • Piccini J.P.
        • Gersh B.J.
        Cognitive dysfunction in atrial fibrillation.
        Nat Rev Cardiol. 2018; 15: 744-756
        • Frey A.
        • Homola G.A.
        • Henneges C.
        • et al.
        Temporal changes in total and hippocampal brain volume and cognitive function in patients with chronic heart failure—the COGNITION.MATTERS-HF cohort study.
        Eur Heart J. 2021; 42: 1569-1578
        • Rychik J.
        • Goldberg D.J.
        Late consequences of the Fontan operation.
        Circulation. 2014; 130: 1525-1528