Advertisement
Canadian Journal of Cardiology

Updates in Endovascular Procedural Navigation

  • Matthew J. Eagleton
    Correspondence
    Corresponding author: Dr Matthew J. Eagleton, Division of Vascular and Endovascular Surgery, Massachusetts General Hospital, 55 Fruit Street, WACC 440, Boston, Massachusetts 02114, USA. Tel.: +1-617-726-8279.
    Affiliations
    Division of Vascular and Endovascular Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
    Search for articles by this author
Published:February 28, 2022DOI:https://doi.org/10.1016/j.cjca.2022.02.020

      Abstract

      There have been significant advancements in endovascular technology over the past decade. Increasingly complex disease processes are being addressed in a less invasive fashion, while still relying on standard 2-dimensional greyscale fluoroscopy imaging to guide the procedures. With the advent of flat-panel detectors as standard on fluoroscopy units and the use of fluoroscopy cone-beam computed tomography, the development of improved imaging tools has occurred that will help improve the imaging modalities used to perform these endovascular procedures. Fusion imaging, the overlay of preoperative 3-dimensional computed tomographic images, helps interventionalists perform endovascular procedures. Building on this technology, improvements in its function and use have occurred with the additional application of artificial intelligence and machine learning, allowing the images to independently accommodate to changes in the visualised anatomy. Corresponding development of navigation systems, allowing for the tracking of endovascular tools within these images by means of either fibre optics or electromagnetic field generators, are looking to improve the accuracy of the procedures while reducing the need for radiation and contrast agents. These tools are making a dramatic change in our ability to perform complex endovascular procedures, and are the future gold standard. Ultimately, these will allow procedures to occur more quickly and more safely.

      Résumé

      Les techniques endovasculaires ont connu des avancées considérables au cours de la dernière décennie. Des processus pathologiques de plus en plus complexes sont traités de manière moins invasive, mais le guidage des interventions repose toujours sur l’imagerie radioscopique bidimensionnelle standard à niveaux de gris. L’intégration des détecteurs plats comme outils standards dans les services de radioscopie et l’utilisation de la tomographie volumétrique à faisceau conique radioscopique ont permis de mettre au point de meilleurs outils d’imagerie qui contribueront à perfectionner les modalités d’imagerie employées pendant les interventions endovasculaires. La fusion d’images, c’est-à-dire la superposition de clichés tomodensitométriques tridimensionnels préopératoires, assiste les chirurgiens qui réalisent des interventions endovasculaires. Cette technologie a servi de base aux améliorations de son fonctionnement et de son utilisation, qui ont été rendues possibles grâce à l’application de l’intelligence artificielle et de l’apprentissage automatique, et qui permettent de produire des images s’adaptant de manière autonome aux changements dans les sièges anatomiques visualisés. Parallèlement, la mise au point de systèmes de navigation permettant la surveillance des instruments endovasculaires sur ces images à l’aide de fibres optiques ou de générateurs de champs électromagnétiques, vise à augmenter la précision des interventions tout en limitant le recours aux rayonnements et aux agents de contraste. Ces outils transforment radicalement nos capacités à réaliser des interventions endovasculaires complexes et constituent la future norme d’excellence. En définitive, ils permettront de réaliser des interventions de plus courte durée et plus sûres.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Dijkstra M.L.
        • Eagleton M.J.
        • Greenberg R.K.
        • et al.
        Intraoperative C-arm cone-beam computed tomography in fenestrated/branched aortic endografting.
        J Vasc Surg. 2011; 53: 583-590
        • Schwein A.
        • Chinnadurai P.
        • Behler G.
        • et al.
        Computed tomography angiography-fluoroscopy image fusion allows visceral vessel cannulation wihtout angiography during fenestrated endovascular aneurysm repair.
        J Vasc Surg. 2018; 68: 2-11
        • McNally M.M.
        • Scali S.
        • Feezor R.J.
        • et al.
        Three-dimensional fusion computed tomography decreases radation exposure, procedure time, and contrast used during fenestrated endovascular aortic repair.
        J Vasc Surg. 2015; 61: 309-316
        • Sailer A.M.
        • de Haan M.W.
        • Peppelenbosch A.G.
        • et al.
        CTA with fluoroscopy image fusion guidance in endovascular complex aortic aneurysm repair.
        Eur J Vasc Endovasc Surg. 2014; 47: 349-356
        • Myrcha P.
        • Milek T.
        • Wozniak W.
        • et al.
        3D-fusion-imaging–assisted carotid artery stenting is safe and feasible.
        Int Angiol. 2019; 38: 326-333
        • Haga M.
        • Fujimura K.
        • Shindo S.
        • et al.
        Efficacy of fusion imaging in endovascular revascularization of the superficial femoral artery.
        Ann Vasc Surg. 2022; 80: 206-212
        • de Beaufort L.M.
        • Nasr B.
        • le Corvec T.
        • et al.
        Automated image fusion guidance during endovascular aorto-iliac procedures: a randomized controlled pilot study.
        Ann Vasc Surg. 2021; 75: 86-93
        • Megens M.
        • Leistikow M.D.
        • van Dusschoten A.
        • et al.
        Shape accuracy of fiber optic sensing for medical devices characterized in bench experiments.
        Med Phys. 2021; 48: 3936-3947
        • Jansen M.
        • Khandige A.
        • Kobeiter H.
        • et al.
        Three dimensional visualisation of endovascular guidewires and catheters based on laser light instead of fluoroscopy with Fiber Optic RealShape technology: preclinical results.
        Eur J Vasc Endovasc Surg. 2020; 60: 135-143
        • van Herwaarden J.A.
        • Jansen M.M.
        • Vonken E.P.A.
        • et al.
        First in human clinical feasibility study of endovascular navigation with Fiber Optic RealShape (FORS) technology.
        Eur J Vasc Endovasc Surg. 2021; 61: 317-325
        • Dua A.
        • Eagleton M.J.
        A revolution of EVAR imaging technologies.
        Endovasc Today. 2019; 18: 72-76
        • Tystad Lund K.
        • Tangen G.A.
        • Manstad-Hulaas F.
        Electromagnetic navigation versus fluoroscopy in aortic endovascular procedures: a phantom study.
        Int J Comput Assist Radiol Surg. 2017; 12: 51-57
        • Cochennec F.
        • Riga C.
        • Hamady M.
        • et al.
        Improved catheter navigation with 3D electromagnetic guidance.
        J Endovasc Ther. 2013; 20: 39-47
        • Manstad-Hulaas F.
        • Ommedal S.
        • Tangen G.A.
        • et al.
        Side-branched AAA stent graft insertion using navigation technology: a phantom study.
        Eur Surg Res. 2007; 39: 364-371
        • de Lambert A.
        • Esneault S.
        • Lucas A.
        • et al.
        Electromagnetic tracking for registration and navigation in endovascular aneurysm repair: a phantom study.
        Eur J Vasc Endovasc Surg. 2012; 43: 684-689
        • Sidhu R.
        • Weir-McCall J.
        • Cochennec F.
        • et al.
        Evaluation of an electromagnetic 3D navigation system to facilitate endovascular tasks: a feasibility study.
        Eur J Vasc Endovasc Surg. 2012; 43: 22-29
        • West K.
        • Al-Nimer S.
        • Goel V.R.
        • et al.
        Three-dimensional holographic guidance, navigation, and control (3D-GNC) for endograft positioning in porcine aorta: feasibility comparison with 2-dimensional X-ray fluoroscopy.
        J Endovasc Ther. 2021; 28: 796-803
        • Pionteck A.
        • Pierrat B.
        • Gorges S.
        • et al.
        Finite-element based image registration for endovascular aortic aneurysm repair.
        Modelling. 2020; 1: 22-38
        • Mohammadi H.
        • Lessard S.
        • Therasse E.
        • et al.
        A numerical preoperative planning model to predict arterial deformations in endovsacular aortic aneurysm repair.
        Ann Biomed Engineering. 2018; 46: 2148-2161
        • Pionteck A.
        • Pierrat B.
        • Gorges S.
        • et al.
        Evaluation and verification of fast computationsl simulations of stent-graft deployment in endovacular aneurys repair.
        Front Med Tech. 2021; 3: 3-13
        • Riga C.V.
        • Bicknell C.D.
        • Hamady M.
        • et al.
        Tortuous iliac systems—a significant burden to conventional cannulation in the visceral segment: is there a role for robotic catheter technology?.
        J Vasc Interv Radiol. 2012; 23: 1369-1375
        • Maurel B.
        • Hertault A.
        • Gonzalez T.M.
        • et al.
        Evaluation of visceral artery displacement by endograt delivery system insertion.
        J Endovasc Ther. 2014; 21: 339-347