Canadian Journal of Cardiology

Ventricular Assist Device Use in Patients With Single-Ventricle Circulation

Published:March 18, 2022DOI:


      Ventricular assist devices (VADs) are being increasingly used to support patients with congenital heart disease and single-ventricle physiology. Because of their unique anatomy and physiology, special consideration must be used to provide effective mechanical circulatory support for each individual patient. This can include alternative cannulation techniques, strategies to balance cardiac output to the systemic and pulmonary circulations from a single ventricle, or the use of continuous vs pulsatile VADs for better ventricular offloading. In this article we review the etiology of single-ventricle failure, VAD options for support, cannulation strategies, post-VAD management considerations, and outcomes at each of the 3 stages of palliation.


      Les dispositifs d’assistance ventriculaire (DAV) sont de plus en plus utilisés chez les patients présentant une cardiopathie congénitale et un cœur univentriculaire. Or, chacun de ces patients présente des caractéristiques anatomiques et physiologiques uniques auxquelles il convient d’être particulièrement attentif si l’on veut mettre en place une assistance circulatoire mécanique efficace, laquelle peut prendre diverses formes : techniques de canulation non conventionnelles, stratégies d’équilibrage des débits systémique et pulmonaire de la circulation univentriculaire ou mise en place de DAV à flux continu ou pulsatile permettant une meilleure décharge ventriculaire. Dans le présent article, nous passons en revue l’étiologie de l’insuffisance cardiaque univentriculaire, les options en matière de DAV, les stratégies de canulation, les modalités de prise en charge des porteurs de DAV et l’issue de chacune des trois étapes de palliation.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Newburger J.W.
        • Sleeper L.A.
        • William Gaynor J.
        • et al.
        Transplant-free survival and interventions at 6 years in the SVR trial.
        Circulation. 2018; 137: 2246-2253
        • Yu C.
        • Moore B.M.
        • Kotchetkova I.
        • Cordina R.L.
        • Celermajer D.S.
        Causes of death in a contemporary adult congenital heart disease cohort.
        Heart. 2018; 104: 1678-1682
        • Burchill L.J.
        • Gao L.
        • Kovacs A.H.
        • et al.
        Hospitalization trends and health resource use for adult congenital heart disease-related heart failure.
        J Am Heart Assoc. 2018; 7e008775
        • Warnes C.
        • Liberthson R.
        • Danielson G.
        • et al.
        Task Force 1: the changing profile of congenital heart disease in adult life.
        J Am Coll Cardiol. 2001; 37: 1161-1198
        • Hoffman J.I.E.
        • Kaplan S.
        The incidence of congenital heart disease.
        J Am Coll Cardiol. 2002; 39: 1890-1900
        • Joong A.
        • Gossett J.G.
        • Blume E.D.
        • et al.
        Variability in clinical decision-making for ventricular assist device implantation in pediatrics.
        Pediatr Transplant. 2020; 24e13840
        • Miller J.R.
        • Eghtesady P.
        Ventricular assist device use in congenital heart disease with a comparison to heart transplant.
        J Comp Eff Res. 2014; 3: 533-546
        • Lorts A.
        • Conway J.
        • Schweiger M.
        • et al.
        ISHLT consensus statement for the selection and management of pediatric and congenital heart disease patients on ventricular assist devices endorsed by the American Heart Association.
        J Heart Lung Transplant. 2021; 40: 709-732
        • Lorts A.
        • Eghtesady P.
        • Mehegan M.
        • et al.
        Outcomes of children supported with devices labeled as “temporary” or short term: a report from the Pediatric Interagency Registry for Mechanical Circulatory Support.
        J Heart Lung Transplant. 2018; 37: 54-60
        • Yarlagadda V.V.
        • Maeda K.
        • Zhang Y.
        • et al.
        Temporary circulatory support in U.S. children awaiting heart transplantation.
        J Am Coll Cardiol. 2017; 70: 2250-2260
        • Carlo W.F.
        • Villa C.R.
        • Lal A.K.
        • Morales D.L.
        Ventricular assist device use in single ventricle congenital heart disease.
        Pediatr Transplant. 2017; 21e13031
        • Cho S.M.
        • Mehaffey J.H.
        • Meyers S.L.
        • et al.
        Cerebrovascular events in patients with centrifugal-flow left ventricular assist devices: propensity score–matched analysis from the Intermacs Registry.
        Circulation. 2021; 144: 763-772
        • Davies R.R.
        • Hussain T.
        • Tandon A.
        Using virtual reality simulated implantation for fit-testing pediatric patients for adult ventricular assist devices.
        JTCVS Tech. 2021; 6: 134-137
        • Farooqi K.M.
        • Saeed O.
        • Zaidi A.
        • et al.
        3D printing to guide ventricular assist device placement in adults with congenital heart disease and heart failure.
        JACC Heart Fail. 2016; 4: 301-311
        • Philip J.
        • Powers E.
        • Machado D.
        • et al.
        Pulsatile ventricular assist device as a bridge to transplant for the early high-risk single-ventricle physiology.
        J Thorac Cardiovasc Surg. 2021; 162: 405-413.e4
        • Hoganson D.M.
        • Boston U.S.
        • Gazit A.Z.
        • et al.
        Successful bridge through transplantation with Berlin Heart ventricular assist device in a child with failing Fontan.
        Ann Thorac Surg. 2015; 99: 707-709
        • Pearce F.B.
        • Kirklin J.K.
        • Holman W.L.
        • Barrett C.S.
        • Romp R.L.
        • Lau Y.R.
        Successful cardiac transplant after Berlin Heart bridge in a single ventricle heart: use of aortopulmonary shunt as a supplementary source of pulmonary blood flow.
        J Thorac Cardiovasc Surg. 2009; 137: e40-e42
        • Villa C.R.
        • Lorts A.
        • Riggs K.W.
        • Alten J.
        • Morales D.L.
        How small can you go? A 2.5-kg infant with pulmonary atresia and coronary atresia bridged to cardiac transplantation with a paracorporeal-continuous flow ventricular assist device.
        J Thorac Cardiovasc Surg. 2019; 158: e67-e69
        • Maeda K.
        • Yarlagadda V.V.
        • Rosenthal D.N.
        • Almond C.S.
        Successful use of a ventricular assist device in a neonate with hypoplastic left heart syndrome with right ventricular dysfunction.
        J Thorac Cardiovasc Surg. 2018; 156: e171-e173
        • Gazit A.Z.
        • Petrucci O.
        • Manning P.
        • et al.
        A novel surgical approach to mechanical circulatory support in univentricular infants.
        Ann Thorac Surg. 2017; 104: 1630-1636
        • Weinstein S.
        • Bello R.
        • Pizarro C.
        • et al.
        The use of the Berlin Heart EXCOR in patients with functional single ventricle.
        J Thorac Cardiovasc Surg. 2014; 147: 697-705
        • Irving C.A.
        • Cassidy J.V.
        • Kirk R.C.
        • Griselli M.
        • Hasan A.
        • Crossland D.S.
        Successful bridge to transplant with the Berlin Heart after cavopulmonary shunt.
        J Heart Lung Transplant. 2009; 28: 399-401
        • Bedzra E.K.S.
        • Barnes A.
        • Birnbaum B.
        • St Louis J.D.
        Mechanical support of superior cavopulmonary (Glenn) physiology to heart transplantation.
        JTCVS Tech. 2021; 6: 144-146
        • Maeda K.
        • Nasirov T.
        • Yarlagadda V.
        • et al.
        Single ventricular assist device support for the failing bidirectional Glenn patient.
        Ann Thorac Surg. 2020; 110: 1659-1666
        • Moon J.
        • Tunuguntla H.
        • Tume S.
        • et al.
        Clinical outcomes of ventricular assist device for failing bidirectional Glenn physiology.
        J Heart Lung Transplant. 2021; 40: S90-S91
        • Peng D.M.
        • Koehl D.A.
        • Cantor R.S.
        • et al.
        Outcomes of children with congenital heart disease implanted with ventricular assist devices: an analysis of the Pediatric Interagency Registry for Mechanical Circulatory Support (Pedimacs).
        J Heart Lung Transplant. 2019; 38: 420-430
        • Lal A.K.
        • Chen S.
        • Maeda K.
        • et al.
        Successful bridge to transplant with a continuous flow ventricular assist device in a single ventricle patient with an aortopulmonary shunt.
        ASAIO J. 2014; 60: 119-121
        • Davies R.R.
        • Lantz Apn J.L.
        • Mullowney S.K.
        • et al.
        Heart failure after cavopulmonary connection: conversion to biventricular circulatory support.
        Ann Thorac Surg. 2021; 112: e185-e188
        • Imielski B.R.
        • Niebler R.A.
        • Kindel S.J.
        • Woods R.K.
        HeartWare ventricular assist device implantation in patients with Fontan physiology.
        Artif Organs. 2017; 41: 40-46
        • Nandi D.
        • Miller K.D.
        • Bober C.M.
        • et al.
        Systemic atrioventricular valve excision and ventricular assist devices in pediatric patients.
        Ann Thorac Surg. 2018; 105: 170-174
        • Chen S.
        • Rosenthal D.N.
        • Murray J.
        • et al.
        Bridge to transplant with ventricular assist device support in pediatric patients with single ventricle heart disease.
        ASAIO J. 2020; 66: 205-211
        • Lorts A.
        • Villa C.
        • Riggs K.W.
        • Broderick J.
        • Morales D.L.S.
        First use of HeartMate 3 in a failing Fontan circulation.
        Ann Thorac Surg. 2018; 106: e233-e234
        • Arnaoutakis G.J.
        • Blitzer D.
        • Fuller S.
        • et al.
        Mechanical circulatory support as bridge to transplantation for the failing single ventricle.
        Ann Thorac Surg. 2017; 103: 193-197
        • Chau P.
        • Lim H.M.
        • Schumacher K.R.
        • Grifka R.G.
        • Peng D.M.
        Use of hemodynamic ramp study to optimize continuous-flow ventricular assist device in a Fontan patient.
        ASAIO J. 2019; 65: e47-e49
        • Cedars A.
        • Kutty S.
        • Danford D.
        • et al.
        Systemic ventricular assist device support in Fontan patients: a report by ACTION.
        J Heart Lung Transplant. 2021; 40: 368-376
        • O’Connor M.J.
        • Lorts A.
        • Davies R.R.
        • et al.
        Early experience with the HeartMate 3 continuous-flow ventricular assist device in pediatric patients and patients with congenital heart disease: a multicenter registry analysis.
        J Heart Lung Transplant. 2020; 39: 573-579
        • Ranney D.N.
        • Habermann A.C.
        • Meza J.M.
        • et al.
        Implantation of a HeartMate 3 ventricular assist device in a 21-kg pediatric patient with Fontan failure.
        J Card Surg. 2020; 35: 3634-3637
        • Valeske K.
        • Yerebakan C.
        • Mueller M.
        • Akintuerk H.
        Urgent implantation of the Berlin Heart Excor biventricular assist device as a total artificial heart in a patient with single ventricle circulation.
        J Thorac Cardiovasc Surg. 2014; 147: 1712-1714
        • Halaweish I.
        • Ohye R.G.
        • Si M.S.
        Berlin Heart ventricular assist device as a long-term bridge to transplantation in a Fontan patient with failing single ventricle.
        Pediatr Transplant. 2015; 19: E193-E195
        • Deshpande S.R.
        • Dalal A.
        • Kim D.W.
        • Babaliaros V.
        • Jokhadar M.
        Acute embolic myocardial infarction and heart failure in a Fontan patient: recovery with Impella device and successful transplantation.
        ASAIO J. 2016; 62: e52-e54
        • Smith R.
        • Perrotta M.
        • Fentress D.
        • Kurtz J.
        Utilization of Impella therapy for cardiogenic shock in the setting of systemic LV Fontan anatomy.
        J Am Coll Cardiol. 2021; 77: 1973
        • Morray B.H.
        • Dimas V.V.
        • Lim S.
        • et al.
        Circulatory support using the Impella device in Fontan patients with systemic ventricular dysfunction: a multicenter experience.
        Catheter Cardiovasc Interv. 2017; 90: 118-123
        • Riggs K.W.
        • Lorts A.
        • Villa C.R.
        • Tweddell J.
        • Bryant R.
        • Morales D.L.S.
        The right tool for the right job: bridging a failing Fontan to transplant.
        Ann Thorac Surg. 2018; 106: e145-e146
        • Sughimoto K.
        • Pidborochynski T.
        • Buchholz H.
        • et al.
        Paracorporeal support in pediatric patients: the role of the patient-device interaction, Ann Thorac Surg, 2021.
        • Rossano J.W.
        • Goldberg D.J.
        • Fuller S.
        • Ravishankar C.
        • Montenegro L.M.
        • Gaynor J.W.
        Successful use of the Total Artificial Heart in the failing Fontan circulation.
        Ann Thorac Surg. 2014; 97: 1438-1440
        • Kato H.
        • Gandhi S.K.
        Use of Berlin Heart ventricular assist devices as a total artificial heart.
        J Thorac Cardiovasc Surg. 2018; 156: 743-745
        • Woods R.K.
        • Kindel S.J.
        • Mitchell M.E.
        • Hraska V.
        • Niebler R.A.
        Total artificial heart using bilateral paracorporeal pulsatile ventricular assist devices in an 8.2-kg child.
        Ann Thorac Surg. 2018; 105: e255-e257
        • Ovroutski S.
        • Miera O.
        • Krabatsch T.
        • Berger F.
        • Photiadis J.
        • Potapov E.
        Two pumps for single ventricle: mechanical support for establishment of biventricular circulation.
        Ann Thorac Surg. 2017; 104: e143-e145
        • Adachi I.
        • Williams E.
        • Jeewa A.
        • Elias B.
        • McKenzie E.D.
        Mechanically assisted Fontan completion: a new approach for the failing Glenn circulation due to isolated ventricular dysfunction.
        J Heart Lung Transplant. 2016; 35: 1380-1381
        • Deng M.
        • Jeewa A.
        • Honjo O.
        Iatrogenic ventricular septal defect during right ventricular assist device insertion in congenitally corrected transposition of the great arteries.
        J Card Surg. 2022; 37: 1080-1082
        • Miller J.R.
        • Lancaster T.S.
        • Callahan C.
        • Abarbanell A.M.
        • Eghtesady P.
        An overview of mechanical circulatory support in single-ventricle patients.
        Transl Pediatr. 2018; 7: 151-161
        • Woods R.K.
        • Ghanayem N.S.
        • Mitchell M.E.
        • Kindel S.
        • Niebler R.A.
        Mechanical circulatory support of the Fontan patient.
        Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2017; 20: 20-27
        • Morales D.L.S.
        • Zafar F.
        • Almond C.S.
        • et al.
        Berlin Heart EXCOR use in patients with congenital heart disease.
        J Heart Lung Transplant. 2017; 36: 1209-1216
        • Horne D.
        • Conway J.
        • Rebeyka I.M.
        • Buchholz H.
        Mechanical circulatory support in univentricular hearts: current management.
        Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2015; 18: 17-24
        • Gorbea M.
        A review of physiologic considerations and challenges in pediatric patients with failing single-ventricle physiology undergoing ventricular assist device placement.
        J Cardiothorac Vasc Anesth. 2022; 36: 1756-1770
        • Jayakumar K.A.
        • Addonizio L.J.
        • Kichuk-Chrisant M.R.
        • et al.
        Cardiac transplantation after the Fontan or Glenn procedure.
        J Am Coll Cardiol. 2004; 44: 2065-2072
        • Adachi I.
        • Tunuguntla H.
        • Elias B.
        • Masand P.M.
        • Tume S.C.
        Atriopulmonary connection for mechanically assisted Fontan completion: classic technique for modern strategy.
        JTCVS Tech. 2020; 3: 307-309
        • Merritt T.
        • Gazit A.
        • Carvajal H.
        • et al.
        Evolution of ventricular assist device support strategy in children with univentricular physiology, Ann Thorac Surg, 2021.
        • Jaquiss R.D.B.
        • Aziz H.
        Is four stage management the future of univentricular hearts? Destination therapy in the young.
        Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2016; 19: 50-54
        • Di Molfetta A.
        • Ferrari G.
        • Iacobelli R.
        • Filippelli S.
        • Amodeo A.
        Concurrent use of continuous and pulsatile flow ventricular assist device on a Fontan patient: a simulation study.
        Artif Organs. 2017; 41: 32-39
        • Di Molfetta A.
        • Ferrari G.
        • Filippelli S.
        • et al.
        Use of ventricular assist device in univentricular physiology: the role of lumped parameter models.
        Artif Organs. 2016; 40: 444-453
        • Moosmann J.
        • Dittrich S.
        • Purbojo A.
        • Cesnjevar R.
        RVAD implantation in a Fontan patient with protein-losing enteropathy as a bridge to transplant: Prêtre modification.
        J Card Surg. 2020; 35: 1721-1724
        • Prêtre R.
        • Häussler A.
        • Bettex D.
        • Genoni M.
        Right-sided univentricular cardiac assistance in a failing Fontan circulation.
        Ann Thorac Surg. 2008; 86: 1018-1020
        • Mascio C.E.
        Mechanical support of the failing Fontan circulation.
        Semin Thorac Cardiovasc Surg. 2021; 33: 454-458
        • Jaquiss R.D.B.
        • Woods R.K.
        Insertion of the Total Artificial Heart in the Fontan circulation.
        Ann Cardiothorac Surg. 2020; 9: 134-140
        • Conway J.
        • St Louis J.
        • Morales D.L.S.
        • Law S.
        • Tjossem C.
        • Humpl T.
        Delineating survival outcomes in children < 10 kg bridged to transplant or recovery with the Berlin Heart EXCOR ventricular assist device.
        JACC Heart Fail. 2015; 3: 70-77
        • Conway J.
        • Cantor R.
        • Koehl D.
        • et al.
        Survival after heart transplant listing for infants on mechanical circulatory support.
        J Am Heart Assoc. 2020; 9e011890
        • Puri K.
        • Adachi I.
        Mechanical support for the failing single ventricle at pre-Fontan stage: current state of the field and future directions.
        Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2021; 24: 10-18
        • Philip J.
        • Reyes K.
        • Ebraheem M.
        • Gupta D.
        • Fudge J.C.
        • Bleiweis M.S.
        Hybrid procedure with pulsatile ventricular assist device for hypoplastic left heart syndrome awaiting transplantation.
        J Thorac Cardiovasc Surg. 2019; 158: e59-e61
        • Zafar F.
        • Conway J.
        • Bleiweis M.S.
        • et al.
        Berlin Heart EXCOR and ACTION post-approval surveillance study report.
        J Heart Lung Transplant. 2021; 40: 251-259
        • Rossano J.W.
        • VanderPluym C.J.
        • Peng D.M.
        • et al.
        Fifth Annual Pediatric Interagency Registry for Mechanical Circulatory Support (Pedimacs) Report.
        Ann Thorac Surg. 2021; 112: 1763-1774
        • Hollander S.A.
        Left ventricular assist device support as destination therapy in pediatric patients with end-stage heart failure.
        Prog Pediatr Cardiol. 2017; 47: 44-48
        • Tunuguntla H.
        • Conway J.
        • Villa C.
        • Rapoport A.
        • Jeewa A.
        Destination-therapy ventricular assist device in children: “the future is now.
        Can J Cardiol. 2020; 36: 216-222