Advertisement
Canadian Journal of Cardiology

Prenatal Diagnosis and Management of Single-Ventricle Heart Disease

  • Lindsay R. Freud
    Affiliations
    Division of Paediatric Cardiology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
    Search for articles by this author
  • Mike Seed
    Correspondence
    Corresponding author: Dr Mike Seed, The Hospital for Sick Children, 555 University Ave, Toronto, Ontario M5G 1X8, Canada. Tel.: +1-416-813-7654 ext 202459; fax: +1-416-813-7547.
    Affiliations
    Division of Paediatric Cardiology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
    Search for articles by this author
Published:April 13, 2022DOI:https://doi.org/10.1016/j.cjca.2022.04.003

      Abstract

      In the current era, most single-ventricle heart disease (SVHD) is diagnosed prenatally by means of fetal echocardiography. Disparities exist, however, by socioeconomic status and remote location, which require further attention. Prenatal diagnosis affords the opportunity to counsel expectant parents regarding the life-long course of children with SVHD, including the stages of single-ventricle palliation and challenges of the Fontan circulation; to discuss pregnancy management options; and to optimise delivery planning and perinatal care. Prognosis may be refined by specific features on the fetal echocardiogram, such as ventricular morphology, total anomalous pulmonary venous return, and atrioventricular valve regurgitation. Expectant mothers should be referred for evaluation of extracardiac anomalies and/or a genetic syndrome, which also significantly affect outcome. Fetuses with SVHD should be cared for by a multidisciplinary team and ideally delivered at term at or near a cardiac surgical center. Serial echocardiograms refine the anticipated postnatal physiology to optimise transitional care, including the need for prostaglandin or urgent atrial septal intervention in fetuses with hypoplastic left heart syndrome. In selected patients, there may be a role for fetal cardiac intervention to improve mortality or achieve a biventricular circulation after birth. Together, these strategies enhance the preoperative status of the neonate. Recent advances in fetal cardiovascular magnetic resonance imaging have focused on studying the relationships between cardiovascular physiology and fetal growth and development. These novel techniques allow for the exploration of the physiologic effects of SVHD on the brain and open avenues for the investigation of neuroprotective therapies.

      Résumé

      De nos jours, les cas de cœur univentriculaire (CU) sont pour la plupart diagnostiqués pendant la période prénatale par échocardiographie fœtale. Il existe toutefois des disparités, fondées sur le statut socio-économique et sur l’éloignement des grands centres, auxquelles il convient de porter davantage attention. Le diagnostic prénatal permet de renseigner les futurs parents sur le parcours de vie de l’enfant présentant un CU, notamment en ce qui concerne les étapes de la palliation univentriculaire et les défis que présente la circulation de Fontan. C’est aussi l’occasion de discuter des options de prise en charge de la grossesse et d’optimiser la planification de l’accouchement et les soins périnataux. Le pronostic peut être affiné en fonction de certaines caractéristiques de l’échocardiogramme fœtal, telles que la morphologie ventriculaire, le retour veineux pulmonaire anormal total et la régurgitation des valves atrioventriculaires. Les femmes enceintes doivent être dirigées vers les ressources appropriées afin que soit effectuée une évaluation visant à déceler la présence éventuelle d’anomalies extracardiaques ou d’un syndrome génétique, également susceptibles de peser lourdement sur le devenir de l’enfant. Les fœtus présentant un CU doivent être pris en charge par une équipe multidisciplinaire et, idéalement, naître à terme dans un centre de chirurgie cardiaque ou à proximité de celui-ci. Les échocardiogrammes en série affinent les données prévisionnelles sur la physiologie postnatale et permettent d’optimiser les soins de transition, y compris l’administration de prostaglandine ou une intervention visant à corriger d’urgence une communication interatriale en cas de syndrome d’hypoplasie fœtale du cœur gauche. Chez certains patients, la chi-rurgie cardiaque fœtale peut limiter la mortalité ou permettre d’obtenir une circulation biventriculaire postnatale. Toutes ces stratégies concourent à améliorer l’état préopératoire du nouveau-né. Les progrès récents dans le domaine de l’imagerie par résonance magnétique cardiovasculaire fœtale s’articulent autour de l’étude des relations entre la physiologie cardiovasculaire et le développement du fœtus. Les nouvelles techniques qui en sont issues permettent d’examiner les effets physiologiques du CU sur le cerveau et d’ouvrir des pistes de recherche en matière de traitements neuroprotecteurs.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Krishnan A.
        • Jacobs M.B.
        • Morris S.A.
        • et al.
        Impact of socioeconomic status, race and ethnicity, and geography on prenatal detection of hypoplastic left heart syndrome and transposition of the great arteries.
        Circulation. 2021; 143: 2049-2060
        • Marantz P.
        • Saenz Tejeira M.M.
        • Pena G.
        • Segovia A.
        • Fustinana C.
        Fetal and neonatal mortality in patients with isolated congenital heart diseases and heart conditions associated with extracardiac abnormalities.
        Arch Argent Pediatr. 2013; 111: 418-422
        • Oepkes D.
        • Haak M.
        Extracardiac malformations: associations and importance: consequences for perinatal management of foetal cardiac patients.
        Cardiol Young. 2014; 24: 55-59
        • Bensemlali M.
        • Bajolle F.
        • Ladouceur M.
        • et al.
        Associated genetic syndromes and extracardiac malformations strongly influence outcomes of fetuses with congenital heart diseases.
        Arch Cardiovasc Dis. 2016; 109: 330-336
        • Alsoufi B.
        • McCracken C.
        • Oster M.
        • Shashidharan S.
        • Kanter K.
        Genetic and extracardiac anomalies are associated with inferior single ventricle palliation outcomes.
        Ann Thorac Surg. 2018; 106: 1204-1212
        • Zakaria D.
        • Tang X.
        • Bhakta R.
        • ElHassan N.O.
        • Prodhan P.
        Chromosomal abnormalities affect the surgical outcome in infants with hypoplastic left heart syndrome: a large cohort analysis.
        Pediatr Cardiol. 2018; 39: 11-18
        • Marshall A.C.
        • Levine J.
        • Morash D.
        • et al.
        Results of in utero atrial septoplasty in fetuses with hypoplastic left heart syndrome.
        Prenat Diagn. 2008; 28: 1023-1028
        • Brown D.W.
        • Cohen K.E.
        • O’Brien P.
        • et al.
        Impact of prenatal diagnosis in survivors of initial palliation of single ventricle heart disease: analysis of the National Pediatric Cardiology Quality Improvement Collaborative database.
        Pediatr Cardiol. 2015; 36: 314-321
        • Cloete E.
        • Bloomfield F.H.
        • Sadler L.
        • et al.
        Antenatal detection of treatable critical congenital heart disease is associated with lower morbidity and mortality.
        J Pediatr. 2019; 204: 66-70
        • Quartermain M.D.
        • Hill K.D.
        • Goldberg D.J.
        • et al.
        Prenatal diagnosis influences preoperative status in neonates with congenital heart disease: an analysis of the Society of Thoracic Surgeons congenital heart surgery database.
        Pediatr Cardiol. 2019; 40: 489-496
        • Weber R.W.
        • Stiasny B.
        • Ruecker B.
        • et al.
        Prenatal diagnosis of single ventricle physiology impacts on cardiac morbidity and mortality.
        Pediatr Cardiol. 2019; 40: 61-70
        • Vaidyanathan B.
        • Vijayaraghavan A.
        • Thomas S.
        • Sudhakar A.
        Pregnancy and early post-natal outcomes of fetuses with functionally univentricular heart in a low-and-middle-income country.
        Cardiol Young. 2020; 30: 1844-1850
        • Morris S.A.
        • Ethen M.K.
        • Penny D.J.
        • et al.
        Prenatal diagnosis, birth location, surgical center, and neonatal mortality in infants with hypoplastic left heart syndrome.
        Circulation. 2014; 129: 285-292
        • Lee W.
        Performance of the basic fetal cardiac ultrasound examination.
        J Ultrasound Med. 1998; 17: 601-607
      1. AIUM-ACR-ACOG-SMFM-SRU practice parameter for the performance of standard diagnostic obstetric ultrasound examinations.
        J Ultrasound Med. 2018; 37: e13-24
        • Carvalho J.S.
        • Allan L.D.
        • Chaoui R.
        • et al.
        • International Society of Ultrasound in Obtetrics and Gynecology
        ISUOG practice guidelines (updated): sonographic screening examination of the fetal heart.
        Ultrasound Obstet Gynecol. 2013; 41: 348-359
        • Freud L.R.
        • Moon-Grady A.
        • Escobar-Diaz M.C.
        • et al.
        Low rate of prenatal diagnosis among neonates with critical aortic stenosis: insight into the natural history in utero.
        Ultrasound Obstet Gynecol. 2015; 45: 326-332
        • Ronai C.
        • Freud L.R.
        • Brown D.W.
        • Tworetzky W.
        Low prenatal detection rate of valvar pulmonary stenosis: What are we missing?.
        Prenat Diagn. 2020; 40: 966-971
        • Donofrio M.T.
        • Moon-Grady A.J.
        • Hornberger L.K.
        • et al.
        • American Heart Association Adults With Congenital Heart Disease Joint Committee of the Council on Cardiovascular Disease in the Young and Council on Clinical Cardiology
        • Council on Cardiovascular Surgery and Anesthesia, and Council on Cardiovascular and Stroke Nursing
        Diagnosis and treatment of fetal cardiac disease: a scientific statement from the American Heart Association.
        Circulation. 2014; 129: 2183-2242
        • Hutchinson D.
        • McBrien A.
        • Howley L.
        • et al.
        Early first trimester fetal echocardiography: identification of cardiac structures by 2D imaging and color Doppler from six weeks gestation.
        J Am Coll Cardiol. 2013; 61: e556
        • Rychik J.
        • Ayres N.
        • Cuneo B.
        • et al.
        American Society of Echocardiography guidelines and standards for performance of the fetal echocardiogram.
        J Am Soc Echocardiogr. 2004; 17: 803-810
      2. AIUM practice parameter for the performance of fetal echocardiography.
        J Ultrasound Med. 2020; 39: e5-16
        • Beroukhim R.S.
        • Gauvreau K.
        • Benavidez O.J.
        • et al.
        Perinatal outcome after prenatal diagnosis of single-ventricle cardiac defects.
        Ultrasound Obstet Gynecol. 2015; 45: 657-663
        • Liu M.Y.
        • Zielonka B.
        • Snarr B.S.
        • et al.
        Longitudinal assessment of outcome from prenatal diagnosis through fontan operation for over 500 fetuses with single ventricle-type congenital heart disease: the Philadelphia Fetus-to-Fontan Cohort Study.
        J Am Heart Assoc. 2018; 7e009145
        • Oster M.E.
        • Knight J.H.
        • Suthar D.
        • Amin O.
        • Kochilas L.K.
        Long-term outcomes in single-ventricle congenital heart disease.
        Circulation. 2018; 138: 2718-2720
        • Donofrio M.T.
        • Skurow-Todd K.
        • Berger J.T.
        • et al.
        Risk-stratified postnatal care of newborns with congenital heart disease determined by fetal echocardiography.
        J Am Soc Echocardiogr. 2015; 28: 1339-1349
        • Sanapo L.
        • Pruetz J.D.
        • Slodki M.
        • et al.
        Fetal echocardiography for planning perinatal and delivery room care of neonates with congenital heart disease.
        Echocardiography. 2017; 34: 1804-1821
        • Cohen M.S.
        • Schultz A.H.
        • Tian Z.Y.
        • et al.
        Heterotaxy syndrome with functional single ventricle: does prenatal diagnosis improve survival?.
        Ann Thorac Surg. 2006; 82: 1629-1636
        • Hancock H.S.
        • Romano J.C.
        • Armstrong A.
        • et al.
        Single ventricle and total anomalous pulmonary venous connection: implications of prenatal diagnosis.
        World J Pediatr Congenit Heart Surg. 2018; 9: 434-439
        • Guleserian K.J.
        • Armsby L.B.
        • Thiagarajan R.R.
        • et al.
        Natural history of pulmonary atresia with intact ventricular septum and right-ventricle-dependent coronary circulation managed by the single-ventricle approach.
        Ann Thorac Surg. 2006; 81 ([discussion: 2258]): 2250-2257
        • Kulkarni A.
        • Patel N.
        • Singh T.P.
        • et al.
        Risk factors for death or heart transplantation in single-ventricle physiology (tricuspid atresia, pulmonary atresia, and heterotaxy): a systematic review and meta-analysis.
        J Heart Lung Transplant. 2019; 38: 739-747
        • Silverman N.H.
        • Kleinman C.S.
        • Rudolph A.M.
        • et al.
        Fetal atrioventricular valve insufficiency associated with nonimmune hydrops: a two-dimensional echocardiographic and pulsed Doppler ultrasound study.
        Circulation. 1985; 72: 825-832
        • Tsang W.
        • van der Velde M.
        • Windrim R.
        • Smallhorn J.
        • Hornberger L.K.
        Hydrops fetalis: primary cardiovascular etiologies and clinical outcome in 98 affected pregnancies.
        J Am Coll Cardiol. 2002; 39: 415
        • Michelfelder E.
        • Polzin W.
        • Hirsch R.
        Hypoplastic left heart syndrome with intact atrial septum: utilization of a hybrid catheterization facility for cesarean section delivery and prompt neonatal intervention.
        Catheter Cardiovasc Interv. 2008; 72: 983-987
        • Divanovic A.
        • Hor K.
        • Cnota J.
        • et al.
        Prediction and perinatal management of severely restrictive atrial septum in fetuses with critical left heart obstruction: clinical experience using pulmonary venous Doppler analysis.
        J Thorac Cardiovasc Surg. 2011; 141: 988-994
        • Szwast A.
        • Tian Z.
        • McCann M.
        • Donaghue D.
        • Rychik J.
        Vasoreactive response to maternal hyperoxygenation in the fetus with hypoplastic left heart syndrome.
        Circ Cardiovasc Imaging. 2010; 3: 172-178
        • Herrmann J.L.
        • Irons M.L.
        • Mascio C.E.
        • et al.
        Congenital pulmonary lymphangiectasia and early mortality after stage 1 reconstruction procedures.
        Cardiol Young. 2017; 27: 1356-1360
        • Saul D.
        • Degenhardt K.
        • Iyoob S.D.
        • et al.
        Hypoplastic left heart syndrome and the nutmeg lung pattern in utero: a cause and effect relationship or prognostic indicator?.
        Pediatr Radiol. 2016; 46: 483-489
        • Costello J.M.
        • Polito A.
        • Brown D.W.
        • et al.
        Birth before 39 weeks’ gestation is associated with worse outcomes in neonates with heart disease.
        Pediatrics. 2010; 126: 277-284
        • Costello J.M.
        • Pasquali S.K.
        • Jacobs J.P.
        • et al.
        Gestational age at birth and outcomes after neonatal cardiac surgery: an analysis of the Society of Thoracic Surgeons congenital heart surgery database.
        Circulation. 2014; 129: 2511-2517
        • Alsoufi B.
        • Manlhiot C.
        • Mahle W.T.
        • et al.
        Low-weight infants are at increased mortality risk after palliative or corrective cardiac surgery.
        J Thorac Cardiovasc Surg. 2014; 148: 2508-25014 e1
        • Jenkins K.J.
        • Gauvreau K.
        • Newburger J.W.
        • et al.
        Consensus-based method for risk adjustment for surgery for congenital heart disease.
        J Thorac Cardiovasc Surg. 2002; 123: 110-118
        • Ades A.M.
        • Dominguez T.E.
        • Nicolson S.C.
        • et al.
        Morbidity and mortality after surgery for congenital cardiac disease in the infant born with low weight.
        Cardiol Young. 2010; 20: 8-17
        • Alsoufi B.
        • McCracken C.
        • Ehrlich A.
        • et al.
        Single ventricle palliation in low weight patients is associated with worse early and midterm outcomes.
        Ann Thorac Surg. 2015; 99: 668-676
        • Calderon J.
        • Stopp C.
        • Wypij D.
        • et al.
        Early-term birth in single-ventricle congenital heart disease after the Fontan procedure: neurodevelopmental and psychiatric outcomes.
        J Pediatr. 2016; 179: 96-103
        • Surendran S.
        • Kumar T.K.S.
        • Tansey B.
        • et al.
        Influence of weight at the time of first palliation on survival in patients with a single ventricle.
        Cardiol Young. 2017; 27: 1778-1785
        • Alsoufi B.
        • McCracken C.
        • Kochilas L.K.
        • Clabby M.
        • Kanter K.
        Factors associated with interstage mortality following neonatal single ventricle palliation.
        World J Pediatr Congenit Heart Surg. 2018; 9: 616-623
        • Kaplinski M.
        • Ittenbach R.F.
        • Hunt M.L.
        • et al.
        Decreasing interstage mortality after the Norwood procedure: a 30-year experience.
        J Am Heart Assoc. 2020; 9e016889
        • Ghanayem N.S.
        • Allen K.R.
        • Tabbutt S.
        • et al.
        Interstage mortality after the Norwood procedure: results of the multicenter Single Ventricle Reconstruction Trial.
        J Thorac Cardiovasc Surg. 2012; 144: 896-906
        • Sharma V.J.
        • Iyengar A.J.
        • Zannino D.
        • et al.
        Protein-losing enteropathy and plastic bronchitis after the Fontan procedure.
        J Thorac Cardiovasc Surg. 2021; 161: 2158-21565 e4
        • Munsterman I.D.
        • Duijnhouwer A.L.
        • Kendall T.J.
        • et al.
        The clinical spectrum of Fontan-associated liver disease: results from a prospective multimodality screening cohort.
        Eur Heart J. 2019; 40: 1057-1068
        • Rathgeber S.L.
        • Harris K.C.
        Fontan-associated liver disease: evidence for early surveillance of liver health in pediatric Fontan patients.
        Can J Cardiol. 2019; 35: 217-220
        • Khuong J.N.
        • Wilson T.G.
        • Grigg L.E.
        • et al.
        Fontan-associated nephropathy: predictors and outcomes.
        Int J Cardiol. 2020; 306: 73-77
        • Simpson K.E.
        • Pruitt E.
        • Kirklin J.K.
        • et al.
        Fontan patient survival after pediatric heart transplantation has improved in the current era.
        Ann Thorac Surg. 2017; 103: 1315-1320
        • Kulkarni A.
        • Neugebauer R.
        • Lo Y.
        • et al.
        Outcomes and risk factors for listing for heart transplantation after the Norwood procedure: An analysis of the Single Ventricle Reconstruction Trial.
        J Heart Lung Transplant. 2016; 35: 306-311
        • d’Udekem Y.
        • Iyengar A.J.
        • Cochrane A.D.
        • et al.
        The Fontan procedure: contemporary techniques have improved long-term outcomes.
        Circulation. 2007; 116: I157-I164
        • Khairy P.
        • Fernandes S.M.
        • Mayer J.E.
        • et al.
        Long-term survival, modes of death, and predictors of mortality in patients with Fontan surgery.
        Circulation. 2008; 117: 85-92
        • Pundi K.N.
        • Johnson J.N.
        • Dearani J.A.
        • et al.
        40-year follow-up after the Fontan operation: long-term outcomes of 1,052 patients.
        J Am Coll Cardiol. 2015; 66: 1700-1710
        • Downing T.E.
        • Allen K.Y.
        • Glatz A.C.
        • et al.
        Long-term survival after the Fontan operation: twenty years of experience at a single center.
        J Thorac Cardiovasc Surg. 2017; 154: 243-253 e2
        • Cohen M.S.
        • Zak V.
        • Atz A.M.
        • et al.
        Anthropometric measures after Fontan procedure: Implications for suboptimal functional outcome.
        Am Heart J. 2010; 160: 1092-1098.e1
        • Newburger J.W.
        • Sleeper L.A.
        • Bellinger D.C.
        • et al.
        Early developmental outcome in children with hypoplastic left heart syndrome and related anomalies: the single ventricle reconstruction trial.
        Circulation. 2012; 125: 2081-2091
        • Hinton R.B.
        • Andelfinger G.
        • Sekar P.
        • et al.
        Prenatal head growth and white matter injury in hypoplastic left heart syndrome.
        Pediatr Res. 2008; 64: 364-369
        • Claessens N.H.P.
        • Chau V.
        • de Vries L.S.
        • et al.
        Brain injury in infants with critical congenital heart disease: insights from two clinical cohorts with different practice approaches.
        J Pediatr. 2019; 215: 75-82.e2
        • Peyvandi S.
        • Lim J.M.
        • Marini D.
        • et al.
        Fetal brain growth and risk of postnatal white matter injury in critical congenital heart disease.
        J Thorac Cardiovasc Surg. 2021; 162: 1007-10014.e1
        • Bellinger D.C.
        • Watson C.G.
        • Rivkin M.J.
        • et al.
        Neuropsychological status and structural brain imaging in adolescents with single ventricle who underwent the Fontan procedure.
        J Am Heart Assoc. 2015; 4e002302
        • DeMaso D.R.
        • Calderon J.
        • Taylor G.A.
        • et al.
        Psychiatric disorders in adolescents with single ventricle congenital heart disease.
        Pediatrics. 2017; 139e20162241
        • Watson C.G.
        • Stopp C.
        • Wypij D.
        • et al.
        Altered white matter microstructure correlates with iq and processing speed in children and adolescents post-Fontan.
        J Pediatr. 2018; 200: 140-149.e4
        • Cassidy A.R.
        • Bernstein J.H.
        • Bellinger D.C.
        • Newburger J.W.
        • DeMaso D.R.
        Visual-spatial processing style is associated with psychopathology in adolescents with critical congenital heart disease.
        Clin Neuropsychol. 2019; 33: 760-778
        • Pike N.A.
        • Evangelista L.S.
        • Doering L.V.
        • et al.
        Quality of life, health status, and depression: comparison between adolescents and adults after the Fontan procedure with healthy counterparts.
        J Cardiovasc Nurs. 2012; 27: 539-546
        • Song M.S.
        • Hu A.
        • Dyhamenahali U.
        • et al.
        Extracardiac lesions and chromosomal abnormalities associated with major fetal heart defects: comparison of intrauterine, postnatal and postmortem diagnoses.
        Ultrasound Obstet Gynecol. 2009; 33: 552-559
        • Miller A.
        • Riehle-Colarusso T.
        • Alverson C.J.
        • et al.
        Congenital heart defects and major structural noncardiac anomalies, Atlanta, Georgia, 1968 to 2005.
        J Pediatr. 2011; 159: 70-78.e2
        • Zaidi S.
        • Brueckner M.
        Genetics and genomics of congenital heart disease.
        Circ Res. 2017; 120: 923-940
        • Pierpont M.E.
        • Brueckner M.
        • Chung W.K.
        • et al.
        Genetic basis for congenital heart disease: revisited: a scientific statement from the American Heart Association.
        Circulation. 2018; 138: e653-711
        • Yu Z.
        • Pek N.M.Q.
        • Gu M.
        Delving into the molecular world of single ventricle congenital heart disease [e-pub ahead of print].
        Curr Cardiol Rep. 2022 Feb 26; https://doi.org/10.1007/s11886-022-01667-8
        • Alsoufi B.
        • McCracken C.
        • Schlosser B.
        • et al.
        Outcomes of multistage palliation of infants with functional single ventricle and heterotaxy syndrome.
        J Thorac Cardiovasc Surg. 2016; 151: 1369-1377.e2
        • Peterson J.K.
        • Setty S.P.
        • Knight J.H.
        • et al.
        Postoperative and long-term outcomes in children with trisomy 21 and single ventricle palliation.
        Congenit Heart Dis. 2019; 14: 854-863
        • Lara D.A.
        • Ethen M.K.
        • Canfield M.A.
        • Nembhard W.N.
        • Morris S.A.
        A population-based analysis of mortality in patients with Turner syndrome and hypoplastic left heart syndrome using the Texas Birth Defects Registry.
        Congenit Heart Dis. 2017; 12: 105-112
        • Chew J.D.
        • Soslow J.H.
        • Thurm C.
        • et al.
        Heart transplantation in children with Turner syndrome: analysis of a linked dataset.
        Pediatr Cardiol. 2018; 39: 610-616
        • Philip J.
        • Gupta D.
        • Bleiweis M.S.
        • Pietra B.A.
        • Vyas H.V.
        Hypoplastic left heart in Turner’s syndrome: a primary indication for transplant?.
        Cardiol Young. 2018; 28: 458-460
        • Cooper D.S.
        • Riggs K.W.
        • Zafar F.
        • et al.
        Cardiac surgery in patients with trisomy 13 and 18: an analysis of the Society of Thoracic Surgeons congenital heart surgery database.
        J Am Heart Assoc. 2019; 8e012349
        • Rychik J.
        • Rome J.J.
        • Collins M.H.
        • et al.
        J Am Coll Cardiol. 1999; 34: 554-560
        • Vlahos A.P.
        • Lock J.E.
        • McElhinney D.B.
        • van der Velde M.E.
        Hypoplastic left heart syndrome with intact or highly restrictive atrial septum: outcome after neonatal transcatheter atrial septostomy.
        Circulation. 2004; 109: 2326-2330
        • Glatz J.A.
        • Tabbutt S.
        • Gaynor J.W.
        • et al.
        Hypoplastic left heart syndrome with atrial level restriction in the era of prenatal diagnosis.
        Ann Thorac Surg. 2007; 84: 1633-1638
        • Seed M.
        • Bradley T.
        • Bourgeois J.
        • Jaeggi E.
        • Yoo S.J.
        Antenatal MR imaging of pulmonary lymphangiectasia secondary to hypoplastic left heart syndrome.
        Pediatr Radiol. 2009; 39: 747-749
        • Marshall A.C.
        • van der Velde M.E.
        • Tworetzky W.
        • et al.
        Creation of an atrial septal defect in utero for fetuses with hypoplastic left heart syndrome and intact or highly restrictive atrial septum.
        Circulation. 2004; 110: 253-258
        • Chaturvedi R.R.
        • Ryan G.
        • Seed M.
        • van Arsdell G.
        • Jaeggi E.T.
        Fetal stenting of the atrial septum: technique and initial results in cardiac lesions with left atrial hypertension.
        Int J Cardiol. 2013; 168: 2029-2036
        • Taketazu M.
        • Barrea C.
        • Smallhorn J.F.
        • Wilson G.J.
        • Hornberger L.K.
        Intrauterine pulmonary venous flow and restrictive foramen ovale in fetal hypoplastic left heart syndrome.
        J Am Coll Cardiol. 2004; 43: 1902-1907
        • Michelfelder E.
        • Gomez C.
        • Border W.
        • Gottliebson W.
        • Franklin C.
        Predictive value of fetal pulmonary venous flow patterns in identifying the need for atrial septoplasty in the newborn with hypoplastic left ventricle.
        Circulation. 2005; 112: 2974-2979
        • Jantzen D.W.
        • Moon-Grady A.J.
        • Morris S.A.
        • et al.
        Hypoplastic left heart syndrome with intact or restrictive atrial septum: a report from the International Fetal Cardiac Intervention Registry.
        Circulation. 2017; 136: 1346-1349
        • Moon-Grady A.J.
        • Morris S.A.
        • Belfort M.
        • et al.
        International Fetal Cardiac Intervention Registry: a worldwide collaborative description and preliminary outcomes.
        J Am Coll Cardiol. 2015; 66: 388-399
        • Makikallio K.
        • McElhinney D.B.
        • Levine J.C.
        • et al.
        Fetal aortic valve stenosis and the evolution of hypoplastic left heart syndrome: patient selection for fetal intervention.
        Circulation. 2006; 113: 1401-1405
        • Hunter L.E.
        • Chubb H.
        • Miller O.
        • Sharland G.
        • Simpson J.M.
        Fetal aortic valve stenosis: a critique of case selection criteria for fetal intervention.
        Prenat Diagn. 2015; 35: 1176-1181
        • Friedman K.G.
        • Sleeper L.A.
        • Freud L.R.
        • et al.
        Improved technical success, postnatal outcome and refined predictors of outcome for fetal aortic valvuloplasty.
        Ultrasound Obstet Gynecol. 2018; 52: 212-220
        • Jaeggi E.
        • Renaud C.
        • Ryan G.
        • Chaturvedi R.
        Intrauterine therapy for structural congenital heart disease: contemporary results and Canadian experience.
        Trends Cardiovasc Med. 2016; 26: 639-646
        • Freud L.R.
        • McElhinney D.B.
        • Marshall A.C.
        • et al.
        Fetal aortic valvuloplasty for evolving hypoplastic left heart syndrome: postnatal outcomes of the first 100 patients.
        Circulation. 2014; 130: 638-645
        • Hogan W.J.
        • Grinenco S.
        • Armstrong A.
        • et al.
        Fetal cardiac intervention for pulmonary atresia with intact ventricular septum: International Fetal Cardiac Intervention Registry.
        Fetal Diagn Ther. 2020; 47: 731-739
        • Tworetzky W.
        • McElhinney D.B.
        • Marx G.R.
        • et al.
        In utero valvuloplasty for pulmonary atresia with hypoplastic right ventricle: techniques and outcomes.
        Pediatrics. 2009; 124: e510-e518
        • Tulzer A.
        • Arzt W.
        • Gitter R.
        • et al.
        Immediate effects and outcome of in-utero pulmonary valvuloplasty in fetuses with pulmonary atresia with intact ventricular septum or critical pulmonary stenosis.
        Ultrasound Obstet Gynecol. 2018; 52: 230-237
        • Jansz M.S.
        • Seed M.
        • van Amerom J.F.
        • et al.
        Metric optimized gating for fetal cardiac MRI.
        Magn Reson Med. 2010; 64: 1304-1314
        • Seed M.
        • van Amerom J.F.
        • Yoo S.J.
        • et al.
        Feasibility of quantification of the distribution of blood flow in the normal human fetal circulation using CMR: a cross-sectional study.
        J Cardiovasc Magn Reson. 2012; 14: 79
        • Prsa M.
        • Sun L.
        • van Amerom J.
        • et al.
        Reference ranges of blood flow in the major vessels of the normal human fetal circulation at term by phase-contrast magnetic resonance imaging.
        Circ Cardiovasc Imaging. 2014; 7: 663-670
        • Saini B.S.
        • Darby J.R.T.
        • Portnoy S.
        • et al.
        Normal human and sheep fetal vessel oxygen saturations by T2 magnetic resonance imaging.
        J Physiol. 2020; 598: 3259-3281
        • Sun L.
        • van Amerom J.F.P.
        • Marini D.
        • et al.
        MRI characterization of hemodynamic patterns of human fetuses with cyanotic congenital heart disease.
        Ultrasound Obstet Gynecol. 2021; 58: 824-836
        • Goolaub D.S.
        • Xu J.
        • Schrauben E.M.
        • et al.
        Volumetric fetal flow imaging with magnetic resonance imaging.
        IEEE Trans Med Imag. 2022; (Online ahead of print. https://doi.org/10.1109/TMI.2022.3176814)
        • Sun L.
        • Macgowan C.K.
        • Sled J.G.
        • et al.
        Reduced fetal cerebral oxygen consumption is associated with smaller brain size in fetuses with congenital heart disease.
        Circulation. 2015; 131: 1313-1323
        • Matthiesen N.B.
        • Henriksen T.B.
        • Gaynor J.W.
        • et al.
        Congenital heart defects and indices of fetal cerebral growth in a nationwide cohort of 924 422 liveborn infants.
        Circulation. 2016; 133: 566-575
        • Sadwani A.R.V.
        • Gholipour A.
        • Mittleman M.
        • et al.
        Fetal brain volume predicts neurodevelopment in congenital heart disease.
        Circulation. 2022;
        • Matthiesen N.B.
        • Henriksen T.B.
        • Agergaard P.
        • et al.
        Congenital heart defects and indices of placental and fetal growth in a nationwide study of 924 422 liveborn infants.
        Circulation. 2016; 134: 1546-1556
        • Al Nafisi B.
        • van Amerom J.F.
        • Forsey J.
        • et al.
        Fetal circulation in left-sided congenital heart disease measured by cardiovascular magnetic resonance: a case-control study.
        J Cardiovasc Magn Reson. 2013; 15: 65
        • Roy C.W.
        • Marini D.
        • Lloyd D.F.A.
        • et al.
        Preliminary experience using motion compensated CINE magnetic resonance imaging to visualise fetal congenital heart disease.
        Circ Cardiovasc Imaging. 2018; 11e007745