Advertisement
Canadian Journal of Cardiology

Surgical Strategies in Single Ventricle Management of Neonates and Infants

  • Christoph Haller
    Affiliations
    Department of Cardiovascular Surgery, Labatt Family Heart Centre, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
    Search for articles by this author
  • David J. Barron
    Correspondence
    Corresponding author: Dr David J. Barron, Division of Cardiovascular Surgery, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada. Tel.: +1-416-813-6420; fax: +1-416-813-7984.
    Affiliations
    Department of Cardiovascular Surgery, Labatt Family Heart Centre, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
    Search for articles by this author

      Abstract

      No area of congenital heart disease has undergone greater change and innovation than single ventricle management over the past 20 years. Surgical and catheterisation laboratory interventions have transformed outcomes such that in some subgroups more than 80% of the patients can survive into adulthood. Driven by parallel development in diagnostic imaging and cardiac intensive care, surgical management is focused on the neonatal period as the key time to creating a balanced circulation and limiting pulmonary blood flow. Different configurations of the circulation, including new types of surgical shunts, and the role of “hybrid” circulations provide greater options and better physiology. This overview focuses on these changes in surgical management and timing, but also looks at the exciting areas of regenerative therapies to improve ventricular function, and the concept of ventricular rehabilitation to achieve biventricular circulations in certain groups of patients. The importance of early (neonatal) intervention and multidisciplinary approach to management is emphasised, as well as looking beyond simply survival to also improving neurodevelopmental outcomes.

      Résumé

      La prise en charge du cœur univentriculaire a été marquée par les changements et les innovations les plus marquants dans le domaine des cardiopathies congénitales au cours des vingt dernières années. Les interventions chirurgicales et le cathétérisme en laboratoire ont connu de telles avancées que, dans certains sous-groupes, plus de 80 % des patients survivent jusqu’à l’âge adulte. Grâce au développement parallèle de l’imagerie diagnostique et des soins intensifs cardiaques, la prise en charge chirurgicale se focalise sur la période néonatale comme moment clé pour établir une circulation équilibrée et limiter le flux sanguin pulmonaire. Différentes configurations circulatoires, notamment de nouveaux types de shunts chirurgicaux et les circulations « hybrides », multiplient les options envisageables et se traduisent par des gains sur le plan physiologique. Le présent article de synthèse est centré sur ces changements touchant la prise en charge chirurgicale et le moment de sa mise en œuvre. Nous y abordons par ailleurs le domaine passionnant des thérapies régénératives ayant pour but d’améliorer la fonction ventriculaire, de même que le concept de la réadaptation ventriculaire visant à établir des circulations biventriculaires chez certains patients. Nous soulignons aussi l’importance d’une intervention précoce (néonatale) et d’une prise en charge multidisciplinaire pour non seulement prolonger la survie, mais aussi améliorer les résultats sur le plan neurodéveloppemental.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Mascio C.E.
        • Irons M.L.
        • Ittenbach R.F.
        • et al.
        Thirty years and 1663 consecutive Norwood procedures: has survival plateaued?.
        J Thorac Cardiovasc Surg. 2019; 158: 220-229
        • Hadjicosta E.
        • Franklin R.
        • Seale A.
        • et al.
        Cohort study of intervened functionally univentricular heart in England and Wales (2000-2018).
        Heart. 2022; 108: 1046-1054
        • Siffel C.
        • Riehle-Colarusso T.
        • Oster M.E.
        • Correa A.
        Survival of children with hypoplastic left heart syndrome.
        Pediatrics. 2015; 136: e864-e870
        • Best K.E.
        • Miller N.
        • Draper E.
        • et al.
        The improved prognosis of hypoplastic left heart: a population-based register study of 343 cases in England and Wales.
        Front Pediatr. 2021; 9: 635776
        • Savla J.J.
        • Putt M.E.
        • Huang J.
        • et al.
        Impact of maternal-fetal environment on mortality in children with single ventricle heart disease.
        J Am Heart Assoc. 2022; 11e020299
        • Freud L.R.
        • Seed M.
        Prenatal diagnosis and management of single ventricle heart disease.
        Can J Cardiol. 2022; 38: 897-908
        • Cloete E.
        • Bloomfield F.H.
        • Sadler L.
        • et al.
        Antenatal detection of treatable critical congenital heart disease is associated with lower morbidity and mortality.
        J Pediatr. 2019; 204: 66-70
        • Rasiah S.V.
        • Ewer A.K.
        • Miller P.
        • et al.
        Antenatal perspective of hypoplastic left heart syndrome: 5 years on.
        Arch Dis Child Fetal Neonatal Ed. 2008; 93: F192-F197
        • Murtuza B.
        • Jones T.J.
        • Barron D.J.
        • Brawn W.J.
        Temporary restriction of right ventricle-pulmonary artery conduit flow using haemostatic clips following Norwood I reconstruction: potential for improved outcomes.
        Interact Cardiovasc Thorac Surg. 2012; 14: 327-329
        • Hoffman G.M.
        • Tweddell J.S.
        • Ghanayem N.S.
        • et al.
        Alteration of the critical arteriovenous oxygen saturation relationship by sustained afterload reduction after the norwood procedure.
        J Thorac Cardiovasc Surg. 2004; 127: 738-745
        • Ismail M.F.
        • Elmahrouk A.F.
        • Arafat A.A.
        • et al.
        Evolution of the Norwood operation outcomes in patients with late presentation.
        J Thorac Cardiovasc Surg. 2020; 159: 1040-1048
        • Elmahrouk A.F.
        • Ismail M.F.
        • Arafat A.A.
        • et al.
        Combined Norwood and cavopulmonary shunt as the first palliation in late presenters with hypoplastic left heart syndrome and single ventricle lesions..
        J Thorac Cardiovasc Surg. 2022; 163: 1592-1600
        • Sames-Dolzer E.
        • Hakami L.
        • Innerhuber M.
        • Tulzer G.
        • Mair R.
        Older age at the time of the Norwood procedure is a risk factor for early postoperative mortality.
        Eur J Cardiothorac Surg. 2015; 47: 257-261
        • Frommelt P.C.
        • Guey L.T.
        • Minich L.L.
        • et al.
        Does initial shunt type for the norwood procedure affect echocardiographic measures of cardiac size and function during infancy? The Single Ventricle Reconstruction Trial.
        Circulation. 2012; 125: 2630-2638
        • Newburger J.W.
        • Sleeper L.A.
        • Gaynor J.W.
        • et al.
        Transplant-free survival and interventions at 6 years in the SVR Trial.
        Circulation. 2018; 137: 2246-2253
        • Frommelt P.C.
        • Hu C.
        • Trachtenberg F.
        • et al.
        Impact of initial shunt type on echocardiographic indices in children after single right ventricle palliations: the SVR Trial at 6 years.
        Circ Cardiovasc Imaging. 2019; 12
        • Mahle W.T.
        • Hu C.
        • Trachtenberg F.
        • et al.
        Heart failure after the Norwood procedure: an analysis of the Single Ventricle Reconstruction Trial.
        J Heart Lung Transplant. 2018; 37: 879-885
        • Wilder T.J.
        • McCrindle B.W.
        • Phillips A.B.
        • et al.
        Survival and right ventricular performance for matched children after stage-1 Norwood: modified Blalock-Taussig shunt versus right-ventricle–to–pulmonary-artery conduit.
        J Thorac Cardiovasc Surg. 2015; 150 (1440-52.e8.)
        • Tseng S.Y.
        • Siddiqui S.
        • Di Maria M.V.
        • et al.
        Atrioventricular valve regurgitation in single ventricle heart disease: a common problem associated with progressive deterioration and mortality.
        J Am Heart Assoc. 2020; 9
        • Mahle W.T.
        • Cohen M.S.
        • Spray T.L.
        • Rychik J.
        Atrioventricular valve regurgitation in patients with single ventricle: impact of the bidirectional cavopulmonary anastomosis.
        Ann Thorac Surg. 2001; 72: 831-835
        • Honjo O.
        • Atlin C.R.
        • Mertens L.
        • et al.
        Atrioventricular valve repair in patients with functional single-ventricle physiology: Impact of ventricular and valve function and morphology on survival and reintervention.
        J Thorac Cardiovasc Surg. 2011; 142 (326-35.e2)
        • Hill K.D.
        • Rhodes J.F.
        • Aiyagari R.
        • et al.
        Intervention for recoarctation in the Single Ventricle Reconstruction Trial: incidence, risk, and outcomes.
        Circulation. 2013; 128: 954-961
        • Haller C.
        • Chetan D.
        • Saedi A.
        • et al.
        Geometry and growth of the reconstructed aorta in patients with hypoplastic left heart syndrome and variants.
        J Thorac Cardiovasc Surg. 2017; 153: 1479-14787.e1
        • Kumar S.R.
        • Kung G.
        • Noh N.
        • et al.
        Single-ventricle outcomes after neonatal palliation of severe Ebstein anomaly with modified Starnes procedure.
        Circulation. 2016; 134: 1257-1264
        • Bentham J.R.
        • Zava N.K.
        • Harrison W.J.
        • et al.
        Duct stenting versus modified Blalock-Taussig shunt in neonates with duct-dependent pulmonary blood flow: associations with clinical outcomes in a multicenter national study.
        Circulation. 2018; 137: 581-588
        • Glatz A.C.
        • Petit C.J.
        • Goldstein B.H.
        • et al.
        Comparison between patent ductus arteriosus stent and modified Blalock-Taussig shunt as palliation for infants with ductal-dependent pulmonary blood flow: insights from the Congenital Catheterisation Research Collaborative.
        Circulation. 2018; 137: 589-601
        • Alsagheir A.
        • Koziarz A.
        • Makhdoum A.
        • et al.
        Duct stenting versus modified Blalock-Taussig shunt in neonates and infants with duct-dependent pulmonary blood flow: a systematic review and meta-analysis.
        J Thorac Cardiovasc Surg. 2021; 161: 379-390.e8
        • Haller C.
        • Caldarone C.A.
        The evolution of therapeutic strategies: niche apportionment for hybrid palliation.
        Ann Thorac Surg. 2018; 106: 1873-1880
        • Chetan D.
        • Kotani Y.
        • Jacques F.
        • et al.
        Surgical palliation strategy does not affect interstage ventricular dysfunction or atrioventricular valve regurgitation in children with hypoplastic left heart syndrome and variants.
        Circulation. 2013; 128: S205-S212
        • Grotenhuis H.B.
        • Ruijsink B.
        • Chetan D.
        • et al.
        Impact of Norwood versus hybrid palliation on cardiac size and function in hypoplastic left heart syndrome.
        Heart. 2016; 102: 966-974
        • Wilder T.J.
        • McCrindle B.W.
        • Hickey E.J.
        • et al.
        Is a hybrid strategy a lower-risk alternative to stage 1 Norwood operation?.
        J Thorac Cardiovasc Surg. 2017; 153: 163-172.e6
        • Shimizu S.
        • Kawada T.
        • Une D.
        • et al.
        Hybrid stage I palliation for hypoplastic left heart syndrome has no advantage on ventricular energetics: a theoretical analysis.
        Heart Vessels. 2016; 31: 105-113
        • Li J.
        • Zhang G.
        • Benson L.
        • et al.
        Comparison of the profiles of postoperative systemic hemodynamics and oxygen transport in neonates after the hybrid or the Norwood procedure: a pilot study.
        Circulation. 2007; 116 (I-179-87)
        • Kobayashi D.
        • Natarajan G.
        • Turner D.R.
        • et al.
        Effect of hybrid stage 1 procedure on ventricular function in infants with hypoplastic left heart syndrome.
        Cardiol Young. 2016; 26: 867-875
        • Latus H.
        • Nassar M.S.
        • Wong J.
        • et al.
        Ventricular function and vascular dimensions after Norwood and hybrid palliation of hypoplastic left heart syndrome.
        Heart. 2018; 104: 244-252
        • di Molfetta A.
        • Iacobelli R.
        • Guccione P.
        • et al.
        Evolution of ventricular energetics in the different stages of palliation of hypoplastic left heart syndrome: a retrospective clinical study.
        Pediatr Cardiol. 2017; 38: 1613-1619
        • Gaber N.
        • Gagliardi M.
        • Patel P.
        • et al.
        Fetal reprogramming and senescence in hypoplastic left heart syndrome and in human pluripotent stem cells during cardiac differentiation.
        Am J Pathol. 2013; 183: 720-734
        • Brooks P.A.
        • Khoo N.S.
        • Mackie A.S.
        • Hornberger L.K.
        Right ventricular function in fetal hypoplastic left heart syndrome.
        J Am Soc Echocardiogr. 2012; 25: 1068-1074
        • Brooks P.A.
        • Khoo N.S.
        • Hornberger L.K.
        Systolic and diastolic function of the fetal single left ventricle.
        J Am Soc Echocardiogr. 2014; 27: 972-977
        • Traister A.
        • Patel R.
        • Huang A.
        • et al.
        Cardiac regenerative capacity is age- and disease-dependent in childhood heart disease.
        PLoS One. 2018; 13e0200342
        • Tworetzky W.
        • Wilkins-Haug L.
        • Jennings R.W.
        • et al.
        Balloon dilation of severe aortic stenosis in the fetus: potential for prevention of hypoplastic left heart syndrome: candidate selection, technique, and results of successful intervention.
        Circulation. 2004; 110: 2125-2131
        • Freud L.R.
        • McElhinney D.B.
        • Marshall A.C.
        • et al.
        Fetal aortic valvuloplasty for evolving hypoplastic left heart syndrome.
        Circulation. 2014; 130: 638-645
        • Hogan W.J.
        • Grinenco S.
        • Armstrong A.
        • et al.
        Fetal cardiac intervention for pulmonary atresia with intact ventricular septum: International Fetal Cardiac Intervention Registry.
        Fetal Diagn Ther. 2020; 47: 731-739
        • Chaturvedi R.R.
        • Ryan G.
        • Seed M.
        • van Arsdell G.
        • Jaeggi E.T.
        Fetal stenting of the atrial septum: Technique and initial results in cardiac lesions with left atrial hypertension.
        Int J Cardiol. 2013; 168: 2029-2036
        • Meza J.M.
        • Jaquiss R.D.B.
        • Anderson B.R.
        • et al.
        Current practices in the timing of stage 2 palliation: a survey of the CHSS and ECHSA.
        World J Pediatr Congenit Heart Surg. 2017; 8: 135-141
        • Meza J.M.
        • Hickey E.J.
        • Blackstone E.H.
        • et al.
        The optimal timing of stage 2 palliation for hypoplastic left heart syndrome: an analysis of the Pediatric Heart Network Single Ventricle Reconstruction Trial public data set.
        Circulation. 2017; 136: 1737-1748
        • Meza J.M.
        • Hickey E.
        • McCrindle B.
        • et al.
        The optimal timing of stage-2-palliation after the Norwood operation.
        Ann Thorac Surg. 2018; 105: 193-199
        • Barron D.J.
        • Haq I.U.
        • Crucean A.
        • et al.
        The importance of age and weight on cavopulmonary shunt (stage II) outcomes after the Norwood procedure: planned versus unplanned surgery.
        J Thorac Cardiovasc Surg. 2017; 154: 228-238
        • Rüffer A.
        • Arndt F.
        • Potapov S.
        • et al.
        Early stage 2 palliation is crucial in patients with a right-ventricle–to–pulmonary-artery conduit.
        Ann Thorac Surg. 2011; 91: 816-822
        • Rudd N.A.
        • Ghanayem N.S.
        • Hill G.D.
        • et al.
        Interstage home monitoring for infants with single ventricle heart disease: education and management: a scientific statement from the American Heart Association.
        J Am Heart Assoc. 2020; 9e014548
        • Poh C.L.
        • Chiletti R.
        • Zannino D.
        • et al.
        Ventricular assist device support in patients with single ventricles: the Melbourne experience.
        Interact Cardiovasc Thorac Surg. 2017; 25: 310-316
        • Hickey E.
        • Pham-Hung E.
        • Nosikova Y.
        • et al.
        NASA model of “threat and error” in pediatric cardiac surgery: patterns of error chains.
        Ann Thorac Surg. 2017; 103: 1300-1307
        • Ruiz V.M.
        • Saenz L.
        • Lopez-Magallon A.
        • et al.
        Early prediction of critical events for infants with single-ventricle physiology in critical care using routinely collected data.
        J Thorac Cardiovasc Surg. 2019; 158: 234-243.e3
        • Hoffman G.M.
        • Niebler R.A.
        • Scott J.P.
        • et al.
        Interventions associated with treatment of low cardiac output after stage 1 Norwood palliation.
        Ann Thorac Surg. 2021; 111: 1620-1627
        • Haller C.
        • Friedberg M.K.
        • Laflamme M.A.
        The role of regenerative therapy in the treatment of right ventricular failure: a literature review.
        Stem Cell Res Ther. 2020; 11: 502
        • Wehman B.
        • Sharma S.
        • Pietris N.
        • et al.
        Mesenchymal stem cells preserve neonatal right ventricular function in a porcine model of pressure overload.
        Am J Physiol-Heart Circ Physiol. 2016; 310: H1816-H1826
        • Liufu R.
        • Shi G.
        • He X.
        • et al.
        The therapeutic impact of human neonatal BMSC in a right ventricular pressure overload model in mice.
        Stem Cell Res Ther. 2020; 11: 96
        • Oommen S.
        • Yamada S.
        • Cantero Peral S.
        • et al.
        Human umbilical cord blood–derived mononuclear cells improve murine ventricular function upon intramyocardial delivery in right ventricular chronic pressure overload.
        Stem Cell Res Ther. 2015; 6: 50
        • Davies B.
        • Elwood N.J.
        • Li S.
        • et al.
        Human cord blood stem cells enhance neonatal right ventricular function in an ovine model of right ventricular training.
        Ann Thorac Surg. 2010; 89: 585-593.e4
        • Sano T.
        • Ousaka D.
        • Goto T.
        • et al.
        Impact of cardiac progenitor cells on heart failure and survival in single ventricle congenital heart disease.
        Circ Res. 2018; 122: 994-1005
        • Wehman B.
        • Pietris N.
        • Bigham G.
        • et al.
        Cardiac progenitor cells enhance neonatal right ventricular function after pulmonary artery banding.
        Ann Thorac Surg. 2017; 104: 2045-2053
        • Sharma S.
        • Mishra R.
        • Bigham G.E.
        • et al.
        A deep proteome analysis identifies the complete secretome as the functional unit of human cardiac progenitor cells.
        Circ Res. 2017; 120: 816-834
        • Nie S.
        • Wang X.
        • Sivakumaran P.
        • et al.
        Biologically active constituents of the secretome of human W8B2+ cardiac stem cells.
        Sci Rep. 2018; 8: 1579
        • Weixler V.
        • Lapusca R.
        • Grangl G.
        • et al.
        Autogenous mitochondria transplantation for treatment of right heart failure.
        J Thorac Cardiovasc Surg. 2021; 162: e111-e121
        • Rupp S.
        • Bauer J.
        • Tonn T.
        • et al.
        Intracoronary administration of autologous bone marrow–derived progenitor cells in a critically ill two-yr-old child with dilated cardiomyopathy.
        Pediatr Transplant. 2009; 13: 620-623
        • Rupp S.
        • Zeiher A.M.
        • Dimmeler S.
        • et al.
        A regenerative strategy for heart failure in hypoplastic left heart syndrome: Intracoronary administration of autologous bone marrow–derived progenitor cells.
        J Heart Lung Transplant. 2010; 29: 574-577
        • Rupp S.
        • Jux C.
        • Bönig H.
        • et al.
        Intracoronary bone marrow cell application for terminal heart failure in children.
        Cardiol Young. 2012; 22: 558-563
        • Burkhart H.M.
        • Qureshi M.Y.
        • Rossano J.W.
        • et al.
        Autologous stem cell therapy for hypoplastic left heart syndrome: safety and feasibility of intraoperative intramyocardial injections.
        J Thorac Cardiovasc Surg. 2019; 158: 1614-1623
        • Vincenti M.
        • O’Leary P.W.
        • Qureshi M.Y.
        • et al.
        Clinical impact of autologous cell therapy on hypoplastic left heart syndrome after bidirectional cavopulmonary anastomosis.
        Semin Thorac Cardiovasc Surg. 2021; 33: 791-801
        • Kaushal S.
        • Wehman B.
        • Pietris N.
        • et al.
        Study design and rationale for ELPIS: A phase I/IIb randomised pilot study of allogeneic human mesenchymal stem cell injection in patients with hypoplastic left heart syndrome.
        Am Heart J. 2017; 192: 48-56
        • Ishigami S.
        • Ohtsuki S.
        • Tarui S.
        • et al.
        Intracoronary autologous cardiac progenitor cell transfer in patients with hypoplastic left heart syndrome: the TICAP prospective phase 1 controlled trial.
        Circ Res. 2015; 116: 653-664
        • Ishigami S.
        • Ohtsuki S.
        • Eitoku T.
        • et al.
        Intracoronary cardiac progenitor cells in single ventricle physiology: the PERSEUS (Cardiac Progenitor Cell Infusion to Treat Univentricular Heart Disease) randomised phase 2 trial.
        Circ Res. 2017; 120: 1162-1173
        • Shiba Y.
        • Fernandes S.
        • Zhu W.Z.
        • et al.
        Human ES-cell–derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts.
        Nature. 2012; 489: 322-325
        • Shiba Y.
        • Filice D.
        • Fernandes S.
        • et al.
        Electrical integration of human embryonic stem cell–derived cardiomyocytes in a guinea pig chronic infarct model.
        J Cardiovasc Pharmacol Ther. 2014; 19: 368-381
        • Romagnuolo R.
        • Masoudpour H.
        • Porta-Sánchez A.
        • et al.
        Human embryonic stem cell–derived cardiomyocytes regenerate the infarcted pig heart but induce ventricular tachyarrhythmias.
        Stem Cell Rep. 2019; 12: 967-981
        • Filice D.
        • Dhahri W.
        • Solan J.L.
        • et al.
        Optical mapping of human embryonic stem cell–derived cardiomyocyte graft electrical activity in injured hearts.
        Stem Cell Res Ther. 2020; 11: 417
        • Yerebakan C.
        • Murray J.
        • Valeske K.
        • et al.
        Long-term results of biventricular repair after initial Giessen hybrid approach for hypoplastic left heart variants.
        J Thorac Cardiovasc Surg. 2015; 149 (1112-22.e2)
        • Haller C.
        • Honjo O.
        • Caldarone C.A.
        • van Arsdell G.S.
        Growing the borderline hypoplastic left ventricle: hybrid approach.
        Oper Tech Thorac Cardiovasc Surg. 2016; 21: 124-138
        • Sojak V.
        • Bokenkamp R.
        • Kuipers I.
        • Schneider A.
        • Hazekamp M.
        Biventricular repair after the hybrid Norwood procedure.
        Eur J Cardiothorac Surg. 2019; 56: 110-116
        • Hickey E.J.
        • Caldarone C.A.
        • Blackstone E.H.
        • et al.
        Critical left ventricular outflow tract obstruction: the disproportionate impact of biventricular repair in borderline cases.
        J Thorac Cardiovasc Surg. 2007; 134: 1429-1437.e7
        • Emani S.M.
        Biventricular repair in patients with borderline left heart—the “growing” experience.
        World J Pediatr Congenit Heart Surg. 2019; 10: 18-19
        • Verrall C.E.
        • Yang J.Y.M.
        • Chen J.
        • et al.
        Neurocognitive dysfunction and smaller brain volumes in adolescents and adults with a Fontan circulation.
        Circulation. 2021; 143: 878-891
        • du Plessis K.
        • d’Udekem Y.
        The neurodevelopmental outcomes of patients with single ventricles across the lifespan.
        Ann Thorac Surg. 2019; 108: 1565-1572
        • Peyvandi S.
        • Lim J.M.
        • Marini D.
        • et al.
        Fetal brain growth and risk of postnatal white matter injury in critical congenital heart disease.
        J Thorac Cardiovasc Surg. 2021; 162 (1007-10014.e1)
        • Sarajuuri A.
        • Jokinen E.
        • Puosi R.
        • et al.
        Neurodevelopment in children with hypoplastic left heart syndrome.
        J Pediatr. 2010; 157 (414-20.e4)
        • Rotermann I.
        • Logoteta J.
        • Falta J.
        • et al.
        Neurodevelopmental outcome in single-ventricle patients: is the Norwood procedure a risk factor?.
        Eur J Cardiothorac Surg. 2017; 52: 558-564
        • Bergmane I.
        • Lacis A.
        • Lubaua I.
        • Jakobsons E.
        • Erglis A.
        Follow-up of the patients after stem cell transplantation for pediatric dilated cardiomyopathy.
        Pediatr Transplant. 2013; 17: 266-270
        • Barron D.J.
        • Kilby M.D.
        • Davies B.
        • et al.
        Hypoplastic left heart syndrome. 2009; 374: 14
        • Emani S.M.
        • Bacha E.A.
        • McElhinney D.B.
        • et al.
        Primary left ventricular rehabilitation is effective in maintaining two-ventricle physiology in the borderline left heart.
        J Thorac Cardiovasc Surg. 2009; 138: 1276-1282