Advertisement
Canadian Journal of Cardiology

Cardiac Implantable Electronic Devices in the Fontan Patient

  • Blandine Mondésert
    Correspondence
    Corresponding author: Dr Blandine Mondésert, Montreal Heart Institute, 5000 Belanger Street, Montréal, Québec H1T1C8, Canada.
    Affiliations
    Adult Congenital Heart Disease Center, Montreal Heart Institute, Medicine Department, Université de Montréal, Montréal, Québec, Canada
    Search for articles by this author
  • Jeremy P. Moore
    Affiliations
    Division of Cardiology, Department of Medicine, Ahmanson/UCLA Adult Congenital Heart Disease Center, Los Angeles, California, USA

    UCLA Cardiac Arrhythmia Center, UCLA Health System, Los Angeles, California, USA

    Division of Cardiology, Department of Pediatrics, UCLA Health System, Los Angeles, California, USA
    Search for articles by this author
  • Paul Khairy
    Affiliations
    Adult Congenital Heart Disease Center, Montreal Heart Institute, Medicine Department, Université de Montréal, Montréal, Québec, Canada
    Search for articles by this author

      Abstract

      As a result of remarkable progress in operative techniques and cardiology care during childhood, Fontan patients continue to age and require team-based multidisciplinary expertise to manage complications encountered in adulthood. They face particular challenges in terms of altered hemodynamic stressors, cardiac and hepatic failure, and arrhythmias. Arrhythmias in Fontan patients are highly prevalent and associated with underlying anatomy, surgical technique, and postoperative sequelae. Diagnostic tools, treatments, and device strategies for arrhythmias in Fontan patients should be adapted to the specific anatomy, type of surgical repair, and clinical status. Great strides in our understanding of arrhythmia mechanisms, options and techniques to obtain access to relevant cardiac structures, and application of both old and new technologies have contributed to improving cardiac implantable electronic device (CIED) therapies for this unique population. In this state-of-the-art review, we discuss the various arrhythmias encountered in Fontan patients, their diagnosis, and options for treatment and prevention, with a focus on CIEDs. Throughout, access challenges particular to the Fontan circulation are considered. Recently developed technologies, such as the subcutaneous implantable cardioverter defibrillator, carry the potential to be transformative but require awareness of Fontan-specific issues. Moreover, new leadless pacing technology represents a promising strategy that may soon become applicable to Fontan patients with sinus-node dysfunction. CIEDs are essential tools in managing Fontan patients, but the complex clinical scenarios that arise in this patient population are among the most challenging for the electrophysiologist treating patients with congenital heart disease.

      Résumé

      En raison des progrès remarquables accomplis en matière de techniques opératoires et de soins cardiologiques pédiatriques, les patients qui ont subi l’intervention de Fontan continuent d’avancer en âge et ont besoin d’une expertise multidisciplinaire pour gérer les complications qu’ils rencontrent à l’âge adulte. Ces patients doivent composer avec des difficultés particulières ayant à voir avec la modification des facteurs de stress hémodynamique, l’insuffisance cardiaque et hépatique, et les arythmies. Ces dernières sont très fréquentes chez les patients ayant subi l’intervention de Fontan et se trouvent associées à l’anatomie sous-jacente, à la technique chirurgicale et aux séquelles postopératoires. Les outils diagnostiques, les traitements et les stratégies technologiques visant à remédier aux arythmies chez les patients ayant subi l’intervention de Fontan devraient être adaptés aux ca-ractéristiques anatomiques individuelles, au type de réparation chi-rurgicale et au tableau clinique. Les grandes avancées sur le plan de notre compréhension des mécanismes de l’arythmie, les options et les techniques dont nous disposons pour accéder aux structures cardiaques d’intérêt, de même que la mise en œuvre de technologies an-ciennes et nouvelles ont contribué à améliorer les traitements faisant appel à des dispositifs cardiaques électroniques implantables (DCEI) dans cette population unique. Le présent article dresse un bilan exhaustif de la question. Nous y abordons les diverses formes d’a-rythmies qui touchent les patients ayant subi l’intervention de Fontan, leur diagnostic et les options de traitement et de prévention, en accordant une attention toute particulière aux DCEI. Les problèmes d’accès que pose la circulation de Fontan sont pris en compte tout au long de notre article. Les technologies récemment mises au point, comme le défibrillateur cardioverteur implantable sous-cutané, pourraient être porteuses de changements profonds, mais elles nécessitent une prise de conscience des problèmes qui se rattachent à l’intervention de Fontan. En outre, la nouvelle technologie de stimulation sans sonde se révèle une stratégie prometteuse qui pourrait bientôt devenir applicable dans les cas de dysfonctionnement du nœud sinusal chez les patients ayant subi l’intervention de Fontan. Les DCEI sont des outils essentiels pour la prise en charge des patients ayant subi l’intervention de Fontan. Cependant, les scénarios cliniques complexes observés au sein de cette population de patients font partie de ceux qui posent le plus de difficultés aux électrophysiologistes qui traitent les patients atteints de cardiopathies congénitales.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Khairy P.
        • Poirier N.
        • Mercier L.A.
        Univentricular heart.
        Circulation. 2007; 115: 800-812
        • Hoffman J.I.
        • Kaplan S.
        The incidence of congenital heart disease.
        J Am Coll Cardiol. 2002; 39: 1890-1900
        • Rao P.S.
        Tricuspid atresia.
        Curr Treat Options Cardiovasc Med. 2000; 2: 507-520
        • Fontan F.
        • Baudet E.
        Surgical repair of tricuspid atresia.
        Thorax. 1971; 26: 240-248
        • Rychik J.
        • Atz A.M.
        • Celermajer D.S.
        • et al.
        Evaluation and management of the child and adult with Fontan circulation: a scientific statement from the American Heart Association.
        Circulation. 2019; 140: e234-e284
        • Backer C.L.
        • Deal B.J.
        • Kaushal S.
        • Russell H.M.
        • Tsao S.
        • Mavroudis C.
        Extracardiac versus intra-atrial lateral tunnel Fontan: extracardiac is better.
        Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2011; 14: 4-10
        • de Leval M.R.
        The Fontan circulation: a challenge to William Harvey?.
        Nat Clin Pract Cardiovasc Med. 2005; 2: 202-208
        • Del Duca D.
        • Tadevosyan A.
        • Karbassi F.
        • et al.
        Hypoxia in early life is associated with lasting changes in left ventricular structure and function at maturity in the rat.
        Int J Cardiol. 2012; 156: 165-173
        • Dahlqvist J.A.
        • Karlsson M.
        • Wiklund U.
        • et al.
        Heart rate variability in children with Fontan circulation: lateral tunnel and extracardiac conduit.
        Pediatr Cardiol. 2012; 33: 307-315
        • Jonas R.A.
        The intra/extracardiac conduit fenestrated fontan.
        Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2011; 14: 11-18
        • Zhao Q.Y.
        • Huang H.
        • Tang Y.H.
        • et al.
        Relationship between autonomic innervation in crista terminalis and atrial arrhythmia.
        J Cardiovasc Electrophysiol. 2009; 20: 551-557
        • Schwartz I.
        • McCracken C.E.
        • Petit C.J.
        • Sachdeva R.
        Late outcomes after the Fontan procedure in patients with single ventricle: a meta-analysis.
        Heart. 2018; 104: 1508-1514
        • Dahlqvist J.A.
        • Sunnegardh J.
        • Hanseus K.
        • et al.
        Pacemaker treatment after Fontan surgery: a Swedish national study.
        Congenit Heart Dis. 2019; 14: 582-589
        • Momma K.
        • Takao A.
        • Shibata T.
        Characteristics and natural history of abnormal atrial rhythms in left isomerism.
        Am J Cardiol. 1990; 65: 231-236
        • Dahlqvist J.A.
        • Wiklund U.
        • Karlsson M.
        • et al.
        Sinus node dysfunction in patients with Fontan circulation: could heart rate variability be a predictor for pacemaker implantation?.
        Pediatr Cardiol. 2019; 40: 685-693
        • Alnoor M.
        • Burch G.
        • Armsby L.
        • Batra A.
        • Balaji S.
        Hemodynamic impact of atrial pacing in patients with Fontan physiology and junctional rhythm: a cardiac catheterization study.
        Pediatr Cardiol. 2021; 43: 508-514
        • Song M.K.
        • Bae E.J.
        • Kwon B.S.
        • et al.
        Intra-atrial reentrant tachycardia in adult patients after Fontan operation.
        Int J Cardiol. 2015; 187: 157-163
        • Verheugt C.L.
        • Uiterwaal C.S.
        • vanderVelde E.T.
        • et al.
        Mortality in adult congenital heart disease.
        Eur Heart J. 2010; 31: 1220-1229
        • Escudero C.
        • Khairy P.
        • Sanatani S.
        Electrophysiologic considerations in congenital heart disease and their relationship to heart failure.
        Can J Cardiol. 2013; 29: 821-829
        • Khairy P.
        • Van Hare G.F.
        • Balaji S.
        • et al.
        PACES/HRS expert consensus statement on the Recognition and Management of Arrhythmias in Adult Congenital Heart Disease: developed in partnership between the Pediatric and Congenital Electrophysiology Society (PACES) and the Heart Rhythm Society (HRS). Endorsed by the governing bodies of PACES, HRS, the American College of Cardiology (ACC), the American Heart Association (AHA), the European Heart Rhythm Association (EHRA), the Canadian Heart Rhythm Society (CHRS), and the International Society for Adult Congenital Heart Disease (ISACHD).
        Heart Rhythm. 2014; 11: e102-e165
        • Kramer C.C.
        • Maldonado J.R.
        • Olson M.D.
        • Gingerich J.C.
        • Ochoa L.A.
        • Law I.H.
        Safety and efficacy of atrial antitachycardia pacing in congenital heart disease.
        Heart Rhythm. 2018; 15: 543-547
        • Drago F.
        • Silvetti M.S.
        • Grutter G.
        • De Santis A.
        Long term management of atrial arrhythmias in young patients with sick sinus syndrome undergoing early operation to correct congenital heart disease.
        Europace. 2006; 8: 488-494
        • Khairy P.
        • Landzberg M.J.
        • Gatzoulis M.A.
        • et al.
        Transvenous pacing leads and systemic thromboemboli in patients with intracardiac shunts: a multicenter study.
        Circulation. 2006; 113: 2391-2397
        • Assaad I.E.
        • Pastor T.
        • O'Leary E.
        • et al.
        Atrial pacing in Fontan patients: the effect of transvenous lead on clot burden.
        Heart Rhythm. 2021; 18: 1860-1867
        • Marinelli A.
        • Behar J.M.
        • Colunga P.M.
        • Griffiths S.
        • Gatzoulis M.A.
        • Wong T.
        Intra-atrial block requiring dual-site atrial pacing through a femoral approach in a univentricular heart.
        HeartRhythm Case Rep. 2020; 6: 390-394
        • Rosenthal E.
        • Konta L.
        Transvenous atrial pacing from the superior vena cava stump after the hemi-Fontan operation: a new approach.
        Pacing Clin Electrophysiol. 2014; 37: 531-536
        • Moore J.P.
        • Shannon K.M.
        Transpulmonary atrial pacing: an approach to transvenous pacemaker implantation after extracardiac conduit Fontan surgery.
        J Cardiovasc Electrophysiol. 2014; 25: 1028-1031
        • Arif S.
        • Clift P.F.
        • De Giovanni J.V.
        Permanent trans-venous pacing in an extra-cardiac Fontan circulation.
        Europace. 2016; 18: 304-307
        • Umamaheshwar K.L.
        • Singh A.S.
        • Sivakumar K.
        Endocardial transvenous pacing in patients with surgically palliated univentricular hearts: a review on different techniques, problems and management.
        Indian Pacing Electrophysiol J. 2019; 19: 15-22
        • Hoyt W.J.
        • Moore J.P.
        • Shannon K.M.
        • Kannankeril P.J.
        • Fish F.A.
        Epicardial atrial pacing after the extracardiac Fontan operation: feasibility of an entirely transvenous approach.
        J Cardiovasc Electrophysiol. 2022; 33: 128-133
        • Harake D.E.
        • Shannon K.M.
        • Aboulhosn J.A.
        • Moore J.P.
        Transvenous pacemaker implantation after the bidirectional Glenn operation for patients with complex congenital disease.
        J Cardiovasc Electrophysiol. 2018; 29: 497-503
        • Bharati S.
        • Lev M.
        The course of the conduction system in single ventricle with inverted (L-) loop and inverted (L-) transposition.
        Circulation. 1975; 51: 723-730
        • Shaher R.M.
        The electrocardiogram in single ventricle.
        Br Heart J. 1963; 25: 465-473
        • Marshall A.M.
        A review of surgical atrioventricular block with emphasis in patients with single ventricle physiology.
        Congenit Heart Dis. 2016; 11: 462-467
        • D'Ercole F.
        • Arora H.
        • Kumar P.A.
        Paravertebral block for thoracic surgery.
        J Cardiothorac Vasc Anesth. 2018; 32: 915-927
        • Gupta N.
        • Moore J.P.
        • Shannon K.
        A novel approach to eliminate intraventricular lead placement in patients with congenital heart disease.
        J Interv Card Electrophysiol. 2012; 35: 115-118
        • Egbe A.C.
        • Huntley G.D.
        • Connolly H.M.
        • et al.
        Outcomes of cardiac pacing in adult patients after a Fontan operation.
        Am Heart J. 2017; 194: 92-98
        • Bowman H.C.
        • Shannon K.M.
        • Biniwale R.
        • Moore J.P.
        Cardiac implantable device outcomes and lead survival in adult congenital heart disease.
        Int J Cardiol. 2021; 324: 52-59
        • McLeod C.J.
        • Attenhofer C.H.
        • Warnes C.A.
        • et al.
        Epicardial versus endocardial permanent pacing in adults with congenital heart disease.
        J Interv Card Electrophysiol. 2010; 28: 235-243
        • Bulic A.
        • Zimmerman F.J.
        • Ceresnak S.R.
        Ventricular pacing in single ventricles: a bad combination.
        Heart Rhythm. 2017; 14: 853-857
        • Poh C.L.
        • Celermajer D.S.
        • Grigg L.E.
        Pacemakers are associated with a higher risk of late death and transplantation in the Fontan population.
        Int J Cardiol. 2019; 282: 33-37
        • Fishberger S.B.
        • Wernovsky G.
        • Gentles T.L.
        • et al.
        Long-term outcome in patients with pacemakers following the Fontan operation.
        Am J Cardiol. 1996; 77: 887-889
        • Kodama Y.
        • Kuraoka A.
        • Ishikawa Y.
        • et al.
        Outcome of patients with functional single ventricular heart after pacemaker implantation: what makes it poor, and what can we do?.
        Heart Rhythm. 2019; 16: 1870-1874
        • Dubin A.M.
        • Janousek J.
        • Rhee E.
        • et al.
        Resynchronization therapy in pediatric and congenital heart disease patients: an international multicenter study.
        J Am Coll Cardiol. 2005; 46: 2277-2283
        • Cecchin F.
        • Frangini P.A.
        • Brown D.W.
        • et al.
        Cardiac resynchronization therapy (and multisite pacing) in pediatrics and congenital heart disease: five years experience in a single institution.
        J Cardiovasc Electrophysiol. 2009; 20: 58-65
        • O'Leary E.T.
        • Gauvreau K.
        • Alexander M.E.
        • et al.
        Dual-site ventricular pacing in patients with Fontan physiology and heart block: does it mitigate the detrimental effects of single-site ventricular pacing?.
        JACC Clin Electrophysiol. 2018; 4: 1289-1297
        • Joyce J.
        • O'Leary E.T.
        • Mah D.Y.
        • Harrild D.M.
        • Rhodes J.
        Cardiac resynchronization therapy improves the ventricular function of patients with Fontan physiology.
        Am Heart J. 2020; 230: 82-92
        • Janousek J.
        • van Geldorp I.E.
        • Krupickova S.
        • et al.
        Permanent cardiac pacing in children: choosing the optimal pacing site: a multicenter study.
        Circulation. 2013; 127: 613-623
        • Motonaga K.S.
        • Miyake C.Y.
        • Punn R.
        • Rosenthal D.N.
        • Dubin A.M.
        Insights into dyssynchrony in hypoplastic left heart syndrome.
        Heart Rhythm. 2012; 9: 2010-2015
        • Strauss D.G.
        Differentiation between left bundle branch block and left ventricular hypertrophy: implications for cardiac resynchronization therapy.
        J Electrocardiol. 2012; 45: 635-639
        • Rosner A.
        • Khalapyan T.
        • Dalen H.
        • McElhinney D.B.
        • Friedberg M.K.
        • Lui G.K.
        Classic-pattern dyssynchrony in adolescents and adults with a Fontan circulation.
        J Am Soc Echocardiogr. 2018; 31: 211-219
        • Khairy P.
        • Fernandes S.M.
        • Mayer Jr., J.E.
        • et al.
        Long-term survival, modes of death, and predictors of mortality in patients with Fontan surgery.
        Circulation. 2008; 117: 85-92
        • Poh C.
        • Hornung T.
        • Celermajer D.S.
        • et al.
        Modes of late mortality in patients with a Fontan circulation.
        Heart. 2020; 106: 1427-1431
        • Pundi K.N.
        • Pundi K.N.
        • Johnson J.N.
        • et al.
        Sudden cardiac death and late arrhythmias after the Fontan operation.
        Congenit Heart Dis. 2017; 12: 17-23
        • Rathod R.H.
        • Prakash A.
        • Powell A.J.
        • Geva T.
        Myocardial fibrosis identified by cardiac magnetic resonance late gadolinium enhancement is associated with adverse ventricular mechanics and ventricular tachycardia late after Fontan operation.
        J Am Coll Cardiol. 2010; 55: 1721-1728
        • Dodeja A.K.
        • Thomas C.
        • Daniels C.J.
        • Kertesz N.
        • Kamp A.
        Detection of arrhythmias in adult congenital heart disease patients with LINQTM implantable loop recorder.
        Congenit Heart Dis. 2019; 14: 745-751
        • Tonko J.B.
        • Blauth C.
        • Rosenthal E.
        • Rinaldi C.A.
        Completely epicardial implantable cardioverter/defibrillator (ICD) and CRT-D systems: a case series and systematic literature review.
        Pacing Clin Electrophysiol. 2021; 44: 1616-1630
        • Aleksic I.
        • Kottenberg-Assenmacher E.
        • Kienbaum P.
        • et al.
        The innominate vein as alternative venous access for complicated implantable cardioverter defibrillator revisions.
        Pacing Clin Electrophysiol. 2007; 30: 957-960
        • Bhakta M.
        • Obioha C.C.
        • Sorajja D.
        • et al.
        Nontraditional implantable cardioverter defibrillator placement in adult patients with limited venous access: a case series.
        Pacing Clin Electrophysiol. 2010; 33: 217-225
        • Jaroszewski D.E.
        • Altemose G.T.
        • Scott L.R.
        • et al.
        Nontraditional surgical approaches for implantation of pacemaker and cardioverter defibrillator systems in patients with limited venous access.
        Ann Thorac Surg. 2009; 88: 112-116
        • Nery P.B.
        • Green M.S.
        • Khairy P.
        • Alhebaishi Y.
        • Hendry P.
        • Birnie D.H.
        Implantable cardioverter-defibrillator insertion in congenital heart disease without transvenous access to the heart.
        Can J Cardiol. 2013; 29 (254.e1-3)
        • Padanilam M.S.
        • Ahmed A.S.
        • Clark B.A.
        • Mozes J.I.
        • Steinberg L.A.
        Novel approach to intracardiac defibrillator placement in patients with atriopulmonary Fontan: ventricular defibrillation with an atrial positioned ICD lead.
        J Cardiovasc Electrophysiol. 2021; 32: 3275-3278
        • Cannon B.C.
        • Friedman R.A.
        • Fenrich A.L.
        • Fraser C.D.
        • McKenzie E.D.
        • Kertesz N.J.
        Innovative techniques for placement of implantable cardioverter-defibrillator leads in patients with limited venous access to the heart.
        Pacing Clin Electrophysiol. 2006; 29: 181-187
        • Krause U.
        • Müller M.J.
        • Wilberg Y.
        • et al.
        Transvenous and non-transvenous implantable cardioverter-defibrillators in children, adolescents, and adults with congenital heart disease: who is at risk for appropriate and inappropriate shocks?.
        Europace. 2019; 21: 106-113
        • Bardy G.H.
        • Smith W.M.
        • Hood M.A.
        • et al.
        An entirely subcutaneousimplantable cardioverter-defibrillator.
        N Engl J Med. 2010; 363: 36-44
        • Burke M.C.
        • Gold M.R.
        • Knight B.P.
        • et al.
        Safety and efficacy of the totally subcutaneous implantable defibrillator: 2-year results from a pooled analysis of the IDE study and EFFORTLESS registry.
        J Am Coll Cardiol. 2015; 65: 1605-1615
        • Knops R.E.
        • Olde Nordkamp L.R.A.
        • Delnoy P.H.M.
        • et al.
        PRAETORIAN Investigators. Subcutaneous or transvenous defibrillator therapy.
        N Engl J Med. 2020; 383: 526-536
        • Zeb M.
        • Curzen N.
        • Veldtman G.
        • et al.
        Potential eligibility of congenital heart disease patients for subcutaneous implantable cardioverter-defibrillator based on surface electrocardiogram mapping.
        Europace. 2015; 17: 1059-1067
        • Garside H.
        • Leyva F.
        • Hudsmith L.
        • Marshall H.
        • de Bono J.
        Eligibility for subcutaneous implantable cardioverter defibrillators in the adult congenital heart disease population.
        Pacing Clin Electrophysiol. 2019; 42: 65-70
        • Wang L.
        • Javadekar N.
        • Rajagopalan A.
        • et al.
        Eligibility for subcutaneous implantable cardioverter-defibrillator in congenital heart disease.
        Heart Rhythm. 2020; 17: 860-869
        • Zormpas C.
        • Silber-Peest A.S.
        • Eiringhaus J.
        • et al.
        Eligibility for subcutaneous implantable cardioverter-defibrillator in adults with congenital heart disease.
        ESC Heart Fail. 2021; 8: 1502-1508
        • Moore J.P.
        • Mondésert B.
        • Lloyd M.S.
        • et al.
        Alliance for Adult Research in Congenital Cardiology (AARCC). Clinical experience with the subcutaneous implantable cardioverter-defibrillator in adults with congenital heart disease.
        Circ Arrhythm Electrophysiol. 2016; 9e004338
        • D'Souza B.A.
        • Epstein A.E.
        • Garcia F.C.
        • et al.
        Outcomes in patients with congenital heart disease receiving the subcutaneous implantable-cardioverter defibrillator: results from a pooled analysis from the IDE study and the EFFORTLESS S-ICD registry.
        JACC Clin Electrophysiol. 2016; 2: 615-622
        • Huang J.
        • Patton K.K.
        • Prutkin J.M.
        concomitant use of the subcutaneous implantable cardioverter defibrillator and a permanent pacemaker.
        Pacing Clin Electrophysiol. 2016; 39: 1240-1245
        • Paterson D.I.
        • White J.A.
        • Butler C.R.
        • et al.
        2021 update on safety of magnetic resonance imaging: joint statement from Canadian Cardiovascular Society/Canadian Society for Cardiovascular Magnetic Resonance/Canadian Heart Rhythm Society.
        Can J Cardiol. 2021; 37: 835-847
        • Balmer C.
        • Gass M.
        • Dave H.
        • Duru F.
        • Luechinger R.
        Magnetic resonance imaging of patients with epicardial leads: in vitro evaluation of temperature changes at the lead tip.
        J Interv Card Electrophysiol. 2019; 56: 321-326
        • Vuorinen A.M.
        • Paakkanen R.
        • Karvonen J.
        • et al.
        Magnetic resonance imaging safety in patients with abandoned or functioning epicardial pacing leads.
        Eur Radiol. 2022; 32: 3830-3838
        • Bireley M.
        • Kovach J.R.
        • Morton C.
        • et al.
        Cardiac magnetic resonance imaging (MRI) in children is safe with most pacemaker systems, including those with epicardial leads.
        Pediatr Cardiol. 2020; 41: 801-808
        • Gakenheimer-Smith L.
        • Etheridge S.P.
        • Niu M.C.
        • et al.
        MRI in pediatric and congenital heart disease patients with CIEDs and epicardial or abandoned leads.
        Pacing Clin Electrophysiol. 2020; 43: 797-804
        • Vatterott P.J.
        • Eggen M.D.
        • Hilpisch K.E.
        • et al.
        Implant, performance, and retrieval of an atrial leadless pacemaker in sheep.
        Heart Rhythm. 2021; 18: 288-296
        • Okabe T.
        • Hummel J.D.
        • Bank A.J.
        • et al.
        Leadless left ventricular stimulation with WiSE-CRT System: initial experience and results from phase I of SOLVE-CRT study (nonrandomized, roll-in phase).
        Heart Rhythm. 2022; 19: 22-29