Advertisement
Canadian Journal of Cardiology

Acute Cardiovascular Toxicity of Cocaine

  • Scott N. Lucyk
    Correspondence
    Corresponding author: Dr Scott Lucyk, Poison and Drug Information Service, 805, 1409 29 ST NW, Calgary, Alberta T2N 2T9, Canada. Tel.: +1-403-944-6951; fax: +1-403-944-1472.
    Affiliations
    Poison and Drug Information Service, Alberta Health Services, Calgary, Alberta, Canada
    Department of Emergency Medicine, University of Calgary, Calgary, Alberta, Canada
    Section of Clinical Pharmacology and Toxicology, Alberta Health Services, Calgary, Alberta, Canada
    Search for articles by this author

      Abstract

      Cocaine is one of the most commonly abused drugs and represents a major public health concern. Cocaine users frequently present to the emergency department, with chest pain being the most common presenting complaint. The incidence of acute myocardial infarction in patients with cocaine-associated chest pain is often quoted as 6%, but it is highly variable depending on the included population. Risk assessment can be challenging in these patients; serial assessment of electrocardiograms and troponins is often required. This review focuses on the assessment and management of patients presenting with cocaine-associated chest pain and cardiotoxicity. Specific treatments are discussed, including benzodiazepines, nitroglycerin, calcium channel blockers, and phentolamine, and how treatment priorities differ from patients with noncocaine presentations. The use of beta-blockers in this population remains controversial, and the literature around its use is reviewed. The most recent literature and recommendations for the use of percutaneous coronary intervention and fibrinolytics in cocaine-associated myocardial infarction is discussed as well. Cocaine-associated dysrhythmias are suggested to be the cause of sudden cardiac death in some users. The pathophysiology and evidence-based treatments for dysrhythmias are reviewed. This review provides evidence-based recommendations for the assessment and management of patients presenting with cocaine-associated cardiovascular toxicity.

      Résumé

      La cocaïne, l’une des substances addictives les plus répandues, constitue une préoccupation majeure en santé publique. Les consommateurs de cocaïne se présentent fréquemment aux urgences généralement pour des douleurs thoraciques. L’incidence de l’infarctus aigu du myocarde chez les patients souffrant de douleurs thoraciques associées à la cocaïne serait de 6 % selon des estimations souvent citées, mais elle est très variable selon la population. L’évaluation des risques peut se révéler difficile chez ces patients; elle nécessite souvent une série d’électrocardiogrammes et de dosages de la troponine. Le présent article de synthèse porte sur l’évaluation et la prise en charge des patients qui éprouvent des douleurs thoraciques et des manifestations de cardiotoxicité associées à la cocaïne. Nous y abordons certains traitements, comme les benzodiazépines, la nitroglycérine, les inhibiteurs calciques et la phentolamine, ainsi que les priorités thérapeutiques, qui diffèrent de celles appliquées pour les non-consommateurs de cocaïne. L’utilisation de bêtabloquants chez les patients cocaïnomanes demeure controversée et nous passons en revue la littérature à ce sujet. Nous examinons aussi les publications et les recommandations les plus récentes concernant le recours à une intervention coronarienne percutanée et aux fibrinolytiques dans les cas d’infarctus du myocarde associé à la cocaïne. D’aucuns ont avancé l’hypothèse que les dysrythmies associées à la cocaïne causeraient la mort subite par arrêt cardiaque de certains consommateurs. Dans ce contexte, nous nous penchons sur la physiopathologie des dysrythmies ainsi que sur les modalités de traitement à la lumière des données probantes. Le lecteur trouvera dans notre article des recommandations fondées sur des données probantes pour l’évaluation et la prise en charge des patients présentant des manifestations de toxicité cardiovasculaire associée à la cocaïne.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • National Institute on Drug Abuse
        Cocaine.
        (Available at:)
        https://www.drugabuse.gov/drug-topics/cocaine
        Date accessed: November 25, 2021
        • Redman M.
        Cocaine: what is the crack? A brief history of the use of cocaine as an anaesthetic.
        Anaesth Pain Med. 2011; 1: 95-97
        • Grinspoon L.
        • Bakalar J.B.
        Coca and cocaine as medicines: an historical review.
        J Ethnopharmacol. 1981; 3: 149-159
        • Government of Canada
        Canadian Tobacco, Alcohol and Drugs Survey (CTADS): summary of results for 2017.
        (Available at:)
        • Canadian Institute for Health Information
        Hospital stays for harm caused by substance use, 2019-2020: breakdown by substance and age.
        (Available at:)
        • Foltin R.W.
        • Ward A.S.
        • Haney M.
        • Hart C.L.
        • Collins E.D.
        The effects of escalating doses of smoked cocaine in humans.
        Drug Alcohol Depend. 2003; 70: 149-157
        • Boehrer J.D.
        • Moliterno D.J.
        • Willard J.E.
        • et al.
        Hemodynamic effects of intranasal cocaine in humans.
        J Am Coll Cardiol. 1992; 20: 90-93
        • Fischman M.W.
        • Schuster C.R.
        • Resnekov L.
        • et al.
        Cardiovascular and subjective effects of intravenous cocaine administration in humans.
        Arch Gen Psychiatry. 1976; 33: 983-989
        • Fischman M.W.
        • Schuster C.R.
        • Javaid J.
        • Hatano Y.
        • Davis J.
        Acute tolerance development to the cardiovascular and subjective effects of cocaine.
        J Pharmacol Exp Ther. 1985; 235: 677-682
        • Cone E.J.
        Pharmacokinetics and pharmacodynamics of cocaine.
        J Anal Toxicol. 1995; 19: 459-478
        • Lange R.A.
        • Cigarroa R.G.
        • Yancy Jr., C.W.
        • et al.
        Cocaine-induced coronary-artery vasoconstriction.
        N Engl J Med. 1989; 321: 1557-1562
        • Lange R.A.
        • Cigarroa R.G.
        • Flores E.D.
        • et al.
        Potentiation of cocaine-induced coronary vasoconstriction by beta-adrenergic blockade.
        Ann Intern Med. 1990; 112: 897-903
        • Boehrer J.D.
        • Moliterno D.J.
        • Willard J.E.
        • Hillis L.D.
        • Lange R.A.
        Influence of labetalol on cocaine-induced coronary vasoconstriction in humans.
        Am J Med. 1993; 94: 608-610
        • Flores E.D.
        • Lange R.A.
        • Cigarroa R.G.
        • Hillis L.D.
        Effect of cocaine on coronary artery dimensions in atherosclerotic coronary artery disease: enhanced vasoconstriction at sites of significant stenoses.
        J Am Coll Cardiol. 1990; 16: 74-79
        • Brogan 3rd, W.C.
        • Lange R.A.
        • Kim A.S.
        • Moliterno D.J.
        • Hillis L.D.
        Alleviation of cocaine-induced coronary vasoconstriction by nitroglycerin.
        J Am Coll Cardiol. 1991; 18: 581-586
        • Kolodgie F.D.
        • Virmani R.
        • Cornhill J.F.
        • Herderick E.E.
        • Smialek J.
        Increase in atherosclerosis and adventitial mast cells in cocaine abusers: an alternative mechanism of cocaine-associated coronary vasospasm and thrombosis.
        J Am Coll Cardiol. 1991; 17: 1553-1560
        • Dressler F.A.
        • Malekzadeh S.
        • Roberts W.C.
        Quantitative analysis of amounts of coronary arterial narrowing in cocaine addicts.
        Am J Cardiol. 1990; 65: 303-308
        • Patrizi R.
        • Pasceri V.
        • Sciahbasi A.
        • et al.
        Evidence of cocaine-related coronary atherosclerosis in young patients with myocardial infarction.
        J Am Coll Cardiol. 2006; 47: 2120-2122
        • Rezkalla S.H.
        • Mazza J.J.
        • Kloner R.A.
        • Tillema V.
        • Chang S.H.
        Effects of cocaine on human platelets in healthy subjects.
        Am J Cardiol. 1993; 72: 243-246
        • Moliterno D.J.
        • Lange R.A.
        • Gerard R.D.
        • et al.
        Influence of intranasal cocaine on plasma constituents associated with endogenous thrombosis and thrombolysis.
        Am J Med. 1994; 96: 492-496
        • Heesch C.M.
        • Wilhelm C.R.
        • Ristich J.
        • et al.
        Cocaine activates platelets and increases the formation of circulating platelet containing microaggregates in humans.
        Heart. 2000; 83: 688-695
        • Mo W.
        • Singh A.K.
        • Arruda J.A.
        • Dunea G.
        Role of nitric oxide in cocaine-induced acute hypertension.
        Am J Hypertens. 1998; 11: 708-714
        • Wilbert-Lampen U.
        • Seliger C.
        • Zilker T.
        • Arendt R.M.
        Cocaine increases the endothelial release of immunoreactive endothelin and its concentrations in human plasma and urine: reversal by coincubation with sigma-receptor antagonists.
        Circulation. 1998; 98: 385-390
        • Peng S.K.
        • French W.J.
        • Pelikan P.C.
        Direct cocaine cardiotoxicity demonstrated by endomyocardial biopsy.
        Arch Pathol Lab Med. 1989; 113: 842-845
        • Iacobellis G.
        • Kemp W.
        Cardiomyocyte apoptosis in cocaine-induced myocarditis with involvement of bundle of His and left bundle branch.
        Int J Cardiol. 2006; 112: 116-118
        • Satran A.
        • Bart B.A.
        • Henry C.R.
        • et al.
        Increased prevalence of coronary artery aneurysms among cocaine users.
        Circulation. 2005; 111: 2424-2429
        • Brickner M.E.
        • Willard J.E.
        • Eichhorn E.J.
        • Black J.
        • Greyburn P.A.
        Left ventricular hypertrophy associated with chronic cocaine abuse.
        Circulation. 1991; 84: 1130-1135
        • Frishman W.H.
        • Del Vecchio A.
        • Sanal S.
        • Ismail A.
        Cardiovascular manifestations of substance abuse part 1: cocaine.
        Heart Dis. 2003; 5: 187-201
        • Kozor R.
        • Grieve S.M.
        • Buchholz S.
        • et al.
        Regular cocaine use is associated with increased systolic blood pressure, aortic stiffness and left ventricular mass in young otherwise healthy individuals.
        PLoS One. 2014; 9e89710
        • Su J.
        • Li J.
        • Li W.
        • Altura B.
        • Altura B.
        Cocaine induces apoptosis in primary cultured rat aortic vascular smooth muscle cells: possible relationship to aortic dissection, atherosclerosis, and hypertension.
        Int J Toxicol. 2004; 23: 233-237
        • Schwartz B.G.
        • Rezkalla S.
        • Kloner R.A.
        Cardiovascular effects of cocaine.
        Circulation. 2010; 122: 2558-2569
        • Stankowski R.V.
        • Kloner R.A.
        • Rezkalla S.H.
        Cardiovascular consequences of cocaine use.
        Trends Cardiovasc Med. 2015; 25: 517-526
        • Crumb Jr., W.J.
        • Clarkson C.W.
        Characterisation of cocaine-induced block of cardiac sodium channels.
        Biophys J. 1990; 57: 589-599
        • Crumb Jr., W.J.
        • Clarkson C.W.
        Characterisation of the sodium channel blocking properties of the major metabolites of cocaine in single cardiac myocytes.
        J Pharmacol Exp Ther. 1992; 261: 910-917
        • Bauman J.L.
        • DiDomenico R.J.
        Cocaine-induced channelopathies: emerging evidence on the multiple mechanisms of sudden death.
        J Cardiovasc Pharmacol Ther. 2002; 7: 195-202
        • Sadanaga T.
        • Ogawa S.
        Ischemia enhances use-dependent sodium channel blockade by pilsicainide, a class IC antiarrhythmic agent.
        J Am Coll Cardiol. 1994; 23: 1378-1381
        • Bauman J.L.
        • Grawe J.J.
        • Winecoff A.P.
        • Hariman R.J.
        Cocaine-related sudden cardiac death: a hypothesis correlating basic science and clinical observations.
        J Clin Pharmacol. 1994; 34: 902-911
        • Tisdale J.E.
        • Shimoyama H.
        • Sabbah H.N.
        • Webb C.R.
        The effect of cocaine on ventricular fibrillation threshold in the normal canine heart.
        Pharmacotherapy. 1996; 16: 429-437
        • Billman G.E.
        • Hoskins R.S.
        Cocaine-induced ventricular fibrillation: protection afforded by the calcium antagonist verapamil.
        FASEB J. 1988; 2: 2990-2995
        • Carrillo X.
        • Curós A.
        • Muga R.
        • et al.
        Acute coronary syndrome and cocaine use: 8-year prevalence and inhospital outcomes.
        Eur Heart J. 2011; 32: 1244-1250
        • Wood D.M.
        • Dargan P.I.
        • Hoffman R.S.
        Management of cocaine-induced cardiac arrhythmias due to cardiac ion channel dysfunction.
        Clin Toxicol (Phila). 2009; 47: 14-23
        • Echt D.S.
        • Liebson P.R.
        • Mitchell L.B.
        • et al.
        Mortality and morbidity in patients receiving encainide, flecainide, or placebo. The Cardiac Arrhythmia Suppression Trial.
        N Engl J Med. 1991; 324: 781-788
        • CASTI Investigators
        Effect of the antiarrhythmic agent moricizine on survival after myocardial infarction.
        N Engl J Med. 1992; 327: 227-233
        • Crumb Jr., W.J.
        • Clarkson C.W.
        The pH dependence of cocaine interaction with cardiac sodium channels.
        J Pharmacol Exp Ther. 1995; 274: 1228-1237
        • Jonsson S.
        • O’Meara M.
        • Young J.B.
        Acute cocaine poisoning. Importance of treating seizures and acidosis.
        Am J Med. 1983; 75: 1061-1064
        • Fabiato A.
        • Fabiato F.
        Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from cardiac and skeletal muscles.
        J Physiol. 1978; 276: 233-255
        • Ford G.D.
        • Cline Jr., W.H.
        • Fleming W.W.
        Influence of lactic acidosis on cardiovascular response to sympathomimetic amines.
        Am J Physiol. 1968; 215: 1123-1129
        • Brody S.L.
        • Slovis C.M.
        • Wrenn K.D.
        Cocaine-related medical problems: consecutive series of 233 patients.
        Am J Med. 1990; 88: 325-331
        • Hollander J.E.
        • Hoffman R.S.
        • Gennis P.
        • et al.
        Cocaine-Associated Chest Pain (COCHPA) Study Group. Prospective multicentre evaluation of cocaine-associated chest pain.
        Acad Emerg Med. 1994; 1: 330-339
        • Hollander J.E.
        • Hoffman R.S.
        Cocaine-induced myocardial infarction: an analysis and review of the literature.
        J Emerg Med. 1992; 10: 169-177
        • Mittleman M.A.
        • Mintzer D.
        • Maclure M.
        • et al.
        Triggering of myocardial infarction by cocaine.
        Circulation. 1999; 99: 2737-2741
        • Amin M.
        • Gabelman G.
        • Karpel J.
        • Buttrick P.
        Acute myocardial infarction and chest pain syndromes after cocaine use.
        Am J Cardiol. 1990; 66: 1434-1437
        • Brogan 3rd, W.C.
        • Lange R.A.
        • Glamann D.B.
        • Hillis L.D.
        Recurrent coronary vasoconstriction caused by intranasal cocaine: possible role for metabolites.
        Ann Intern Med. 1992; 116: 556-561
        • Baumann B.M.
        • Perrone J.
        • Hornig S.E.
        • Shofer F.S.
        • Hollander J.E.
        Cardiac and hemodynamic assessment of patients with cocaine-associated chest pain syndromes.
        J Toxicol Clin Toxicol. 2000; 38: 283-290
        • Baumann B.M.
        • Perrone J.
        • Hornig S.E.
        • Shofer F.S.
        • Hollander J.E.
        Randomised, double-blind, placebo-controlled trial of diazepam, nitroglycerin, or both for treatment of patients with potential cocaine-associated acute coronary syndromes.
        Acad Emerg Med. 2000; 7: 878-885
        • Moliterno D.J.
        • Willard J.E.
        • Lange R.A.
        • et al.
        Coronary-artery vasoconstriction induced by cocaine, cigarette smoking, or both.
        N Engl J Med. 1994; 330: 454-459
        • Qureshi A.I.
        • Suri M.F.
        • Guterman L.R.
        • Hopkins L.N.
        Cocaine use and the likelihood of nonfatal myocardial infarction and stroke: data from the Third National Health and Nutrition Examination Survey.
        Circulation. 2001; 103: 502-506
        • Zimmerman J.L.
        • Dellinger R.P.
        • Majid P.A.
        Cocaine-associated chest pain.
        Ann Emerg Med. 1991; 20: 611-615
        • Hollander J.E.
        • Hoffman R.S.
        • Burstein J.L.
        • Shih R.D.
        • Thode Jr., H.C.
        Cocaine-Associated Myocardial Infarction Study Group. Cocaine-associated myocardial infarction. Mortality and complications.
        Arch Intern Med. 1995; 155: 1081-1086
        • Wang J.
        • Patel P.S.
        • Andhavarapu S.
        • et al.
        Prevalence of myocardial infarction among patients with chest pain and cocaine use: a systematic review and meta-analysis.
        Am J Emerg Med. 2021; 50: 428-436
        • Coleman D.L.
        • Ross T.F.
        • Naughton J.L.
        Myocardial ischemia and infarction related to recreational cocaine use.
        West J Med. 1982; 136: 444-446
        • Isner J.M.
        • Estes 3rd, N.A.
        • Thompson P.D.
        • et al.
        Acute cardiac events temporally related to cocaine abuse.
        N Engl J Med. 1986; 315: 1438-1443
        • Weber J.E.
        • Chudnofsky C.R.
        • Boczar M.
        • et al.
        Cocaine-associated chest pain: how common is myocardial infarction?.
        Acad Emerg Med. 2000; 7: 873-877
        • Tokarski G.F.
        • Paganussi P.
        • Urbanski R.
        • et al.
        An evaluation of cocaine-induced chest pain.
        Ann Emerg Med. 1990; 19: 1088-1092
        • Kontos M.C.
        • Schmidt K.L.
        • Nicholson C.S.
        • et al.
        Myocardial perfusion imaging with technetium-99m sestamibi in patients with cocaine-associated chest pain.
        Ann Emerg Med. 1999; 33: 639-645
        • Honderick T.
        • Williams D.
        • Seaberg D.
        • Wears R.
        A prospective, randomised, controlled trial of benzodiazepines and nitroglycerine or nitroglycerine alone in the treatment of cocaine-associated acute coronary syndromes.
        Am J Emerg Med. 2003; 21: 39-42
        • Feldman J.A.
        • Fish S.S.
        • Beshansky J.R.
        • et al.
        Acute cardiac ischemia in patients with cocaine-associated complaints: results of a multicentre trial.
        Ann Emerg Med. 2000; 36: 469-476
        • Gitter M.J.
        • Goldsmith S.R.
        • Dunbar D.N.
        • Sharkey S.W.
        Cocaine and chest pain: clinical features and outcome of patients hospitalised to rule out myocardial infarction.
        Ann Intern Med. 1991; 115: 277-282
        • Smith 3rd, H.W.
        • Liberman H.A.
        • Brody S.L.
        • et al.
        Acute myocardial infarction temporally related to cocaine use. Clinical, angiographic, and pathophysiologic observations.
        Ann Intern Med. 1987; 107: 13-18
        • Zimmerman F.H.
        • Gustafson G.M.
        • Kemp Jr., H.G.
        Recurrent myocardial infarction associated with cocaine abuse in a young man with normal coronary arteries: evidence for coronary artery spasm culminating in thrombosis.
        J Am Coll Cardiol. 1987; 9: 964-968
        • Minor Jr., R.L.
        • Scott B.D.
        • Brown D.D.
        • Winniford M.D.
        Cocaine-induced myocardial infarction in patients with normal coronary arteries.
        Ann Intern Med. 1991; 115: 797-806
        • Hadjimiltiades S.
        • Covalesky V.
        • Manno B.V.
        • Haaz W.S.
        • Mintz G.S.
        Coronary arteriographic findings in cocaine abuse-induced myocardial infarction.
        Cathet Cardiovasc Diagn. 1988; 14: 33-36
        • Ascher E.K.
        • Stauffer J.C.
        • Gaasch W.H.
        Coronary artery spasm, cardiac arrest, transient electrocardiographic Q waves and stunned myocardium in cocaine-associated acute myocardial infarction.
        Am J Cardiol. 1988; 61: 939-941
        • Hollander J.E.
        • Hoffman R.S.
        • Gennis P.
        • et al.
        Cocaine-associated chest pain: one-year follow-up.
        Acad Emerg Med. 1995; 2: 179-184
        • Rashid J.
        • Eisenberg M.J.
        • Topol E.J.
        Cocaine-induced aortic dissection.
        Am Heart J. 1996; 132: 1301-1304
        • Hsue P.Y.
        • Salinas C.L.
        • Bolger A.F.
        • Benowitz N.L.
        • Waters D.D.
        Acute aortic dissection related to crack cocaine.
        Circulation. 2002; 105: 1592-1595
        • Dean J.H.
        • Woznicki E.M.
        • O’Gara P.
        • et al.
        Cocaine-related aortic dissection: lessons from the International Registry of Acute Aortic Dissection.
        Am J Med. 2014; 127: 878-885
        • McNagny S.E.
        • Parker R.M.
        High prevalence of recent cocaine use and the unreliability of patient self-report in an inner-city walk-in clinic.
        JAMA. 1992; 267: 1106-1108
        • Moeller K.E.
        • Kissack J.C.
        • Atayee R.S.
        • Lee K.C.
        Clinical interpretation of urine drug tests: what clinicians need to know about urine drug screens.
        Mayo Clin Proc. 2017; 92: 774-796
        • Weiss R.D.
        • Gawin F.H.
        Protracted elimination of cocaine metabolites in long-term high-dose cocaine abusers.
        Am J Med. 1988; 85: 879-880
        • Chase M.
        • Brown A.M.
        • Robey J.L.
        • et al.
        Application of the TIMI risk score in ED patients with cocaine-associated chest pain.
        Am J Emerg Med. 2007; 25: 1015-1018
        • Faramand Z.
        • Martin-Gill C.
        • Frisch S.O.
        • Callaway C.
        • Al-Zaiti S.
        The prognostic value of HEART score in patients with cocaine-associated chest pain: an age- and sex-matched cohort study.
        Am J Emerg Med. 2021; 45: 303-308
        • Faramand Z.
        • Martin-Gill C.
        • Callaway C.
        • Al-Zaiti S.
        Modified HEART score to optimise risk stratification in cocaine-associated chest pain.
        Am J Emerg Med. 2021; 47: 307-308
        • Hollander J.E.
        • Lozano M.
        • Fairweather P.
        • et al.
        “Abnormal” electrocardiograms in patients with cocaine-associated chest pain are due to “normal” variants.
        J Emerg Med. 1994; 12: 199-205
        • McLaurin M.
        • Apple F.S.
        • Henry T.D.
        • Sharkey S.W.
        Cardiac troponin I and T concentrations in patients with cocaine-associated chest pain.
        Ann Clin Biochem. 1996; 33: 183-186
        • Hollander J.E.
        • Levitt M.A.
        • Young G.P.
        • et al.
        Effect of recent cocaine use on the specificity of cardiac markers for diagnosis of acute myocardial infarction.
        Am Heart J. 1998; 135: 245-252
        • Korley F.K.
        • Schulman S.P.
        • Sokoll L.J.
        • et al.
        Troponin elevations only detected with a high-sensitivity assay: clinical correlations and prognostic significance.
        Acad Emerg Med. 2014; 21: 727-735
        • Jordan C.D.
        • Korley F.K.
        • Stolbach A.I.
        Self-reported cocaine use is not associated with elevations in high-sensitivity troponin I.
        Clin Toxicol (Phila). 2017; 55: 332-337
        • McCord J.
        • Jneid H.
        • Hollander J.E.
        • et al.
        Management of cocaine-associated chest pain and myocardial infarction: a scientific statement from the American Heart Association Acute Cardiac Care Committee of the Council on Clinical Cardiology.
        Circulation. 2008; 117: 1897-1907
        • Dribben W.H.
        • Kirk M.A.
        • Trippi J.A.
        • Cordell W.H.
        A pilot study to assess the safety of dobutamine stress echocardiography in the emergency department evaluation of cocaine-associated chest pain.
        Ann Emerg Med. 2001; 38: 42-48
        • Hendel R.C.
        • Ruthazer R.
        • Chaparro S.
        • et al.
        Cocaine-using patients with a normal or nondiagnostic electrocardiogram: single-photon emission computed tomography myocardial perfusion imaging and outcome.
        Clin Cardiol. 2012; 35: 354-358
        • Paraschin K.
        • Guerra De Andrade A.
        • Rodrigues Parga J.
        Assessment of myocardial infarction by CT angiography and cardiovascular MRI in patients with cocaine-associated chest pain: a pilot study.
        Br J Radiol. 2012; 85: e274-e278
        • Walsh K.
        • Chang A.M.
        • Perrone J.
        • et al.
        Coronary computerized tomography angiography for rapid discharge of low-risk patients with cocaine-associated chest pain.
        J Med Toxicol. 2009; 5: 111-119
        • Chang A.M.
        • Walsh K.M.
        • Shofer F.S.
        • et al.
        Relationship between cocaine use and coronary artery disease in patients with symptoms consistent with an acute coronary syndrome.
        Acad Emerg Med. 2011; 18: 1-9
        • Kushman S.O.
        • Storrow A.B.
        • Liu T.
        • Gibler W.B.
        Cocaine-associated chest pain in a chest pain centre.
        Am J Cardiol. 2000; 85 (a10): 394-396
        • Weber J.E.
        • Shofer F.S.
        • Larkin G.L.
        • Kalaria A.S.
        • Hollander J.E.
        Validation of a brief observation period for patients with cocaine-associated chest pain.
        N Engl J Med. 2003; 348: 510-517
        • Cunningham R.
        • Walton M.A.
        • Weber J.E.
        • et al.
        One-year medical outcomes and emergency department recidivism after emergency department observation for cocaine-associated chest pain.
        Ann Emerg Med. 2009; 53: 310-320
        • Amsterdam E.A.
        • Wenger N.K.
        • Brindis R.G.
        • et al.
        2014 AHA/ACC guideline for the management of patients with non–ST-elevation acute coronary syndromes: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines.
        Circulation. 2014; 130: e344-426
        • O’Gara P.T.
        • Kushner F.G.
        • Ascheim D.D.
        • et al.
        2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines.
        Circulation. 2013; 127: e362-425
        • Richards J.R.
        • Derlet R.W.
        • Duncan D.R.
        Chemical restraint for the agitated patient in the emergency department: lorazepam versus droperidol.
        J Emerg Med. 1998; 16: 567-573
        • Seubert C.N.
        • Morey T.E.
        • Martynyuk A.E.
        • Cucchiara R.F.
        • Dennis D.M.
        Midazolam selectively potentiates the A2A- but not A1-receptor–mediated effects of adenosine: role of nucleoside transport inhibition and clinical implications.
        Anaesthesiology. 2000; 92: 567-577
        • Catravas J.D.
        • Waters I.W.
        Acute cocaine intoxication in the conscious dog: studies on the mechanism of lethality.
        J Pharmacol Exp Ther. 1981; 217: 350-356
        • Derlet R.W.
        • Albertson T.E.
        Diazepam in the prevention of seizures and death in cocaine-intoxicated rats.
        Ann Emerg Med. 1989; 18: 542-546
        • Albertson T.E.
        • Dawson A.
        • de Latorre F.
        • et al.
        TOX-ACLS: toxicologic-oriented advanced cardiac life support.
        Ann Emerg Med. 2001; 37: S78-90
        • Babapoor-Farrokhran S.
        • Kalla A.
        • Gill D.
        • et al.
        Peripheral administration of nitroglycerin in pulseless ventricular tachycardia due to cocaine-induced coronary vasospasm.
        Cardiovasc Toxicol. 2021; 21: 490-493
        • Hollander J.E.
        • Carter W.A.
        • Hoffman R.S.
        Use of phentolamine for cocaine-induced myocardial ischemia.
        N Engl J Med. 1992; 327: 361
        • Negus B.H.
        • Willard J.E.
        • Hillis L.D.
        • et al.
        Alleviation of cocaine-induced coronary vasoconstriction with intravenous verapamil.
        Am J Cardiol. 1994; 73: 510-513
        • Richards J.R.
        • Garber D.
        • Laurin E.G.
        • et al.
        Treatment of cocaine cardiovascular toxicity: a systematic review.
        Clin Toxicol (Phila). 2016; 54: 345-364
        • Wright R.S.
        • Anderson J.L.
        • Adams C.D.
        • et al.
        2011 ACCF/AHA focused update incorporated into the ACC/AHA 2007 guidelines for the management of patients with unstable angina/non–ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines developed in collaboration with the American Academy of Family Physicians, Society for Cardiovascular Angiography and Interventions, and the Society of Thoracic Surgeons.
        J Am Coll Cardiol. 2011; 57: e215-367
        • Richards J.R.
        • Hollander J.E.
        • Ramoska E.A.
        • et al.
        β-Blockers, cocaine, and the unopposed α-stimulation phenomenon.
        J Cardiovasc Pharmacol Ther. 2017; 22: 239-249
        • Lapoint J.
        Cocaine and beta blockers—that dogmalysis won’t hunt. The Tox and the Hound, April 9, 2018.
        (Available at:)
        • Guinn M.M.
        • Bedford J.A.
        • Wilson M.C.
        Antagonism of intravenous cocaine lethality in nonhuman primates.
        Clin Toxicol. 1980; 16: 499-508
        • Rangel C.
        • Shu R.G.
        • Lazar L.D.
        • et al.
        Beta-blockers for chest pain associated with recent cocaine use.
        Arch Intern Med. 2010; 170: 874-879
        • Dattilo P.B.
        • Hailpern S.M.
        • Fearon K.
        • Sohal D.
        • Nordin C.
        Beta-blockers are associated with reduced risk of myocardial infarction after cocaine use.
        Ann Emerg Med. 2008; 51: 117-125
        • Ramoska E.
        • Sacchetti A.D.
        Propranolol-induced hypertension in treatment of cocaine intoxication.
        Ann Emerg Med. 1985; 14: 1112-1113
        • Fareed F.N.
        • Chan G.
        • Hoffman R.S.
        Death temporally related to the use of a beta adrenergic receptor antagonist in cocaine-associated myocardial infarction.
        J Med Toxicol. 2007; 3: 169-172
        • Sand I.C.
        • Brody S.L.
        • Wrenn K.D.
        • Slovis C.M.
        Experience with esmolol for the treatment of cocaine-associated cardiovascular complications.
        Am J Emerg Med. 1991; 9: 161-163
        • McKee S.A.
        • Applegate R.J.
        • Hoyle J.R.
        • et al.
        Cocaine use is associated with an increased risk of stent thrombosis after percutaneous coronary intervention.
        Am Heart J. 2007; 154: 159-164
        • Singh S.
        • Arora R.
        • Khraisat A.
        • et al.
        Increased incidence of in-stent thrombosis related to cocaine use: case series and review of literature.
        J Cardiovasc Pharmacol Ther. 2007; 12: 298-303
        • Karlsson G.
        • Rehman J.
        • Kalaria V.
        • Breall J.A.
        Increased incidence of stent thrombosis in patients with cocaine use.
        Catheter Cardiovasc Interv. 2007; 69: 955-958
        • Arora S.
        • Jaswaney R.
        • Jani C.
        • et al.
        Invasive approaches in the management of cocaine-associated non–ST-segment elevation myocardial infarction.
        JACC Cardiovasc Interv. 2021; 14: 623-636
        • LoVecchio F.
        • Nelson L.
        Intraventricular bleeding after the use of thrombolytics in a cocaine user.
        Am J Emerg Med. 1996; 14: 663-664
        • Bush H.S.
        Cocaine-associated myocardial infarction. A word of caution about thrombolytic therapy.
        Chest. 1988; 94: 878
        • Sasyniuk B.I.
        • Jhamandas V.
        • Valois M.
        Experimental amitriptyline intoxication: treatment of cardiac toxicity with sodium bicarbonate.
        Ann Emerg Med. 1986; 15: 1052-1059
        • Bruccoleri R.E.
        • Burns M.M.
        A literature review of the use of sodium bicarbonate for the treatment of QRS widening.
        J Med Toxicol. 2016; 12: 121-129
        • Beckman K.J.
        • Parker R.B.
        • Hariman R.J.
        • et al.
        Hemodynamic and electrophysiological actions of cocaine. Effects of sodium bicarbonate as an antidote in dogs.
        Circulation. 1991; 83: 1799-1807
        • Kalimullah E.A.
        • Bryant S.M.
        Case files of the medical toxicology fellowship at the Toxikon consortium in Chicago: cocaine-associated wide-complex dysrhythmias and cardiac arrest—treatment nuances and controversies.
        J Med Toxicol. 2008; 4: 277-283
        • Wang R.Y.
        pH-Dependent cocaine-induced cardiotoxicity.
        Am J Emerg Med. 1999; 17: 364-369
        • Kerns 2nd, W.
        • Garvey L.
        • Owens J.
        Cocaine-induced wide complex dysrhythmia.
        J Emerg Med. 1997; 15: 321-329
        • Parker R.B.
        • Perry G.Y.
        • Horan L.G.
        • Flowers N.C.
        Comparative effects of sodium bicarbonate and sodium chloride on reversing cocaine-induced changes in the electrocardiogram.
        J Cardiovasc Pharmacol. 1999; 34: 864-869
        • Hondeghem L.M.
        • Katzung B.G.
        Antiarrhythmic agents: the modulated receptor mechanism of action of sodium and calcium channel-blocking drugs.
        Annu Rev Pharmacol Toxicol. 1984; 24: 387-423
        • Liu D.
        • Hariman R.J.
        • Bauman J.L.
        Cocaine concentration-effect relationship in the presence and absence of lidocaine: evidence of competitive binding between cocaine and lidocaine.
        J Pharmacol Exp Ther. 1996; 276: 568-577
        • Grawe J.J.
        • Hariman R.J.
        • Winecoff A.P.
        • Fischer J.H.
        • Bauman J.L.
        Reversal of the electrocardiographic effects of cocaine by lidocaine. Part 2. Concentration-effect relationships.
        Pharmacotherapy. 1994; 14: 704-711
        • Winecoff A.P.
        • Hariman R.J.
        • Grawe J.J.
        • Wang Y.
        • Bauman J.L.
        Reversal of the electrocardiographic effects of cocaine by lidocaine. Part 1. Comparison with sodium bicarbonate and quinidine.
        Pharmacotherapy. 1994; 14: 698-703
        • Barat S.A.
        • Abdel-Rahman M.S.
        Cocaine and lidocaine in combination are synergistic convulsants.
        Brain Res. 1996; 742: 157-162
        • Derlet R.W.
        • Albertson T.E.
        • Tharratt R.S.
        Lidocaine potentiation of cocaine toxicity.
        Ann Emerg Med. 1991; 20: 135-138
        • Shih R.D.
        • Hollander J.E.
        • Burstein J.L.
        • et al.
        Clinical safety of lidocaine in patients with cocaine-associated myocardial infarction.
        Ann Emerg Med. 1995; 26: 702-706
        • Mukherjee D.
        • Lange R.A.
        Management of cocaine-associated non-ST-segment elevation myocardial infarction: is an invasive approach beneficial?.
        JACC Cardiovasc Interv. 2021; 14: 637-638