Advertisement
Canadian Journal of Cardiology

Development and Internal Validation of a Risk Prediction Model for Acute Cardiovascular Morbidity in Preeclampsia

  • Isabelle Malhamé
    Correspondence
    Corresponding author: Dr Isabelle Malhamé, Assistant Professor, Department of Medicine, McGill University Health Centre, 1001, Boulevard Décarie, D05.5839.3, Montréal, Québec H4A 3J1, Canada. Tel.: +1-514-934-1934 ext 36125; fax: +1-514-843-1582.
    Affiliations
    Department of Medicine, McGill University, McGill University Health Centre, Montréal, Québec, Canada

    Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
    Search for articles by this author
  • Christina A. Raker
    Affiliations
    Department of Obstetrics and Gynecology, Warren Alpert Medical School of Brown University, Women and Infants Hospital, Providence, Rhode Island, USA
    Search for articles by this author
  • Erica J. Hardy
    Affiliations
    Department of Obstetrics and Gynecology, Warren Alpert Medical School of Brown University, Women and Infants Hospital, Providence, Rhode Island, USA

    Department of Medicine, Warren Alpert Medical School of Brown University, Women and Infants Hospital, Providence, Rhode Island, USA
    Search for articles by this author
  • Hannah Spalding
    Affiliations
    Department of Medicine, Warren Alpert Medical School of Brown University, Women and Infants Hospital, Providence, Rhode Island, USA
    Search for articles by this author
  • Benjamin A. Bouvier
    Affiliations
    Department of Medicine, Warren Alpert Medical School of Brown University, Women and Infants Hospital, Providence, Rhode Island, USA
    Search for articles by this author
  • Heather Hurlburt
    Affiliations
    Department of Medicine, Warren Alpert Medical School of Brown University, Women and Infants Hospital, Providence, Rhode Island, USA

    Department of Medicine, Harvard Medical School, Brigham and Women’s Cardiovascular Associates of Care New England, Boston, Massachusetts, USA
    Search for articles by this author
  • Roxanne Vrees
    Affiliations
    Department of Obstetrics and Gynecology, Warren Alpert Medical School of Brown University, Women and Infants Hospital, Providence, Rhode Island, USA
    Search for articles by this author
  • Stella S. Daskalopoulou
    Affiliations
    Department of Medicine, McGill University, McGill University Health Centre, Montréal, Québec, Canada

    Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
    Search for articles by this author
  • Kara Nerenberg
    Affiliations
    Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada

    Department of Obstetrics and Gynaecology, University of Calgary, Calgary, Alberta, Canada

    Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
    Search for articles by this author
  • David A. Savitz
    Affiliations
    Department of Obstetrics and Gynecology, Warren Alpert Medical School of Brown University, Women and Infants Hospital, Providence, Rhode Island, USA

    Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island, USA
    Search for articles by this author
  • Niharika Mehta
    Affiliations
    Department of Medicine, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island, USA
    Search for articles by this author
  • Valery A. Danilack
    Affiliations
    Department of Obstetrics and Gynecology, Warren Alpert Medical School of Brown University, Women and Infants Hospital, Providence, Rhode Island, USA

    Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island, USA
    Search for articles by this author

      Abstract

      Background

      Women with preeclampsia are at increased short-term risk of adverse cardiovascular outcomes during pregnancy and the early postpartum period. We aimed to develop and internally validate a risk assessment tool to predict acute cardiovascular morbidity in preeclampsia.

      Methods

      The study was conducted at an academic obstetrics hospital. Participants with preeclampsia at delivery from 2007 to 2017 were included. A model to predict acute cardiovascular morbidity at delivery and within 6 weeks after delivery was developed and evaluated. The primary composite outcome included pulmonary edema/acute heart failure, myocardial infarction, aneurysm, cardiac arrest/ventricular fibrillation, heart failure/arrest during surgery or procedure, cerebrovascular disorders, cardiogenic shock, conversion of cardiac rhythm, and difficult-to-control severe hypertension. We assessed model discrimination and calibration. We used bootstrapping for internal validation.

      Results

      A total of 4171 participants with preeclampsia were included. The final model comprised 8 variables. Predictors positively associated with acute cardiovascular morbidity (presented as odds ratio with 95% confidence interval) were: gestational age at delivery (20-36 weeks: 5.36 [3.67-7.82]; 37-38 weeks: 1.75 [1.16-2.64]), maternal age (≥ 40 years: 1.65 [1.00-2.72]; 35-39 years: 1.49 [1.07-2.09]), and previous caesarean delivery (1.47 [1.01-2.13]). The model had an area under the receiver operating characteristic curve of 0.72 (95% CI 0.69-0.74). Moreover, it was adequately calibrated and performed well on internal validation.

      Conclusions

      This risk prediction tool identified women with preeclampsia at highest risk of acute cardiovascular morbidity. If externally validated, this tool may facilitate early interventions aimed at preventing adverse cardiovascular outcomes in pregnancy and postpartum.

      Résumé

      Contexte

      Les femmes atteintes de prééclampsie présentent un risque accru à court terme de conséquences cardiovasculaires indésirables durant la grossesse et le début de la période post-partum. Notre objectif était de développer et de valider en interne un outil d'évaluation du risque pour prédire la morbidité cardiovasculaire aiguë en cas de prééclampsie.

      Méthodes

      L'étude a été menée dans un hôpital universitaire d'obstétrique. Les participantes présentant une prééclampsie à l'accouchement entre 2007 et 2017 ont été incluses. Un modèle permettant de prédire la morbidité cardiovasculaire aiguë lors de l'accouchement et dans les six semaines qui s'ensuivent a été développé et évalué. Le critère composite principal d'évaluation comprenait l'œdème pulmonaire/insuffisance cardiaque aiguë, l'infarctus du myocarde, l'anévrisme, l'arrêt cardiaque/fibrillation ventriculaire, l'insuffisance cardiaque/arrêt pendant une chirurgie ou une autre procédure, les troubles cérébrovasculaires, le choc cardiogénique, la conversion du rythme cardiaque et l'hypertension sévère difficile à contrôler. Nous avons évalué la capacité de discrimination et la calibration du modèle. Nous avons utilisé la méthode d'auto-amorçage pour la validation interne.

      Résultats

      Un total de 4 171 participantes atteintes de prééclampsie ont été incluses. Le modèle final comprenait huit variables. Les variables prédictives positivement associées à la morbidité cardiovasculaire aiguë (présentées sous forme de rapport de cotes avec un intervalle de confiance [IC] à 95 %) étaient : l'âge gestationnel à l'accouchement (20-36 semaines : 5,36 [3,67-7,82]; 37-38 semaines : 1,75 [1,16-2,64]), l'âge maternel (≥ 40 ans : 1,65 [1,00-2,72]; 35-39 ans : 1,49 [1,07-2,09]) et un accouchement antérieur par césarienne (1,47 [1,01-2,13]). Le modèle avait une aire sous la courbe de la fonction d'efficacité du récepteur de 0,72 (IC à 95 % : 0,69-0,74). En outre, le modèle a été correctement calibré et de bons résultats ont été obtenus lors de la validation interne.

      Conclusions

      Cet outil de prédiction du risque a permis d'identifier les femmes atteintes de prééclampsie présentant le risque le plus élevé de morbidité cardiovasculaire aiguë. S'il fait l'objet d'une validation externe, cet outil pourrait faciliter les interventions précoces visant à prévenir les conséquences cardiovasculaires indésirables pendant la grossesse et la période post-partum.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ray J.G.
        • Vermeulen M.J.
        • Schull M.J.
        • Redelmeier D.A.
        Cardiovascular Health After Maternal Placental Syndromes (CHAMPS): population-based retrospective cohort study.
        Lancet. 2005; 366: 1797-1803
        • Grandi S.M.
        • Filion K.B.
        • Yoon S.
        • et al.
        Cardiovascular disease-related morbidity and mortality in women with a history of pregnancy complications.
        Circulation. 2019; 139: 1069-1079
        • Ditisheim A.
        • Wuerzner G.
        • Ponte B.
        • et al.
        Prevalence of hypertensive phenotypes after preeclampsia: a prospective cohort study.
        Hypertension. 2018; 71: 103-109
        • Sliwa K.
        • Hilfiker-Kleiner D.
        • Petrie M.C.
        • et al.
        Current state of knowledge on etiology, diagnosis, management, and therapy of peripartum cardiomyopathy: a position statement from the Heart Failure Association of the European Society of Cardiology Working Group on peripartum cardiomyopathy.
        Eur J Heart Fail. 2010; 12: 767-778
        • Behrens I.
        • Basit S.
        • Lykke J.A.
        • et al.
        Hypertensive disorders of pregnancy and peripartum cardiomyopathy: a nationwide cohort study.
        PLoS One. 2019; 14e0211857
        • Arany Z.
        • Elkayam U.
        Peripartum cardiomyopathy.
        Circulation. 2016; 133: 1397-1409
        • Magee L.A.
        • Pels A.
        • Helewa M.
        • Rey E.
        • von Dadelszen P.
        Diagnosis, evaluation, and management of the hypertensive disorders of pregnancy.
        Pregnancy Hypertens. 2014; 4: 105-145
      1. ACOG practice bulletin no. 202 summary: gestational hypertension and preeclampsia.
        Obstet Gynecol. 2019; 133: 211-214
        • Ackerman C.M.
        • Platner M.H.
        • Spatz E.S.
        • et al.
        Severe cardiovascular morbidity in women with hypertensive diseases during delivery hospitalisation.
        Am J Obstet Gynecol. 2019; 220 (582.e1-e11)
        • Clapp M.A.
        • Little S.E.
        • Zheng J.
        • Kaimal A.J.
        • Robinson J.N.
        Hospital-level variation in postpartum readmissions.
        JAMA. 2017; 317: 2128-2129
        • Brousseau E.C.
        • Danilack V.
        • Cai F.
        • Matteson K.A.
        Emergency department visits for postpartum complications.
        J Womens Health (Larchmt). 2018; 27: 253-257
        • Clapp M.A.
        • Little S.E.
        • Zheng J.
        • Robinson J.N.
        • Kaimal A.J.
        The relative effects of patient and hospital factors on postpartum readmissions.
        J Perinatol. 2018; 38: 804-812
        • Mogos M.F.
        • Salemi J.L.
        • Spooner K.K.
        • McFarlin B.L.
        • Salihu H.H.
        Hypertensive disorders of pregnancy and postpartum readmission in the United States: national surveillance of the revolving door.
        J Hypertens. 2018; 36: 608-618
        • Too G.
        • Wen T.
        • Boehme A.K.
        • et al.
        Timing and risk factors of postpartum stroke.
        Obstet Gynecol. 2018; 131: 70-78
        • Keepanasseril A.
        • Pfaller B.
        • Metcalfe A.
        • et al.
        Cardiovascular deaths in pregnancy: growing concerns and preventive strategies.
        Can J Cardiol. 2021; 37: 1969-1978
      2. Knight M, Bunch K, Tuffnell D, et al. (eds.). Saving lives, improving mothers’ care: lessons learned to inform maternity care from the UK and Ireland confidential enquiries into maternal deaths and morbidity 2016-18. December 2020. Available at: https://www.npeu.ox.ac.uk/assets/downloads/mbrrace-uk/reports/maternal-report-2020/MBRRACE-UK_Maternal_Report_Dec_2020_v10_ONLINE_VERSION_1404.pdf. Accessed June 10, 2021.

        • Petersen E.E.
        • Davis N.L.
        • Goodman D.
        • et al.
        Vital signs: pregnancy-related deaths, United States 2011-2015, and strategies for prevention, 13 states 2013-2017.
        MMWR Morb Mortal Wkly Rep. 2019; 68: 423-429
      3. Pregnancy-related mortality rate. In: Canadian Perinatal Surveillance System. Perinatal Health Indicators for Canada. Public Health Agency of Canada, June 2017, chapter 5. Available at: http://publications.gc.ca/collections/collection_2018/aspc-phac/HP7-1-2017-eng.pdf. Accessed June 17, 2019.

        • Creanga A.A.
        • Berg C.J.
        • Ko J.Y.
        • et al.
        Maternal mortality and morbidity in the United States: where are we now?.
        J Womens Health (Larchmt). 2014; 23: 3-9
        • Windram J.
        • Grewal J.
        • Bottega N.
        • et al.
        Canadian Cardiovascular Society: clinical practice update on cardiovascular management of the pregnant patient.
        Can J Cardiol. 2021; 37: 1886-1901
        • Malhame I.
        • Danilack V.A.
        • Raker C.A.
        • et al.
        Cardiovascular severe maternal morbidity in pregnant and postpartum women: development and internal validation of risk prediction models.
        BJOG. 2021; 128: 922-932
        • Chan P.
        • Brown M.
        • Simpson J.M.
        • Davis G.
        Proteinuria in pre-eclampsia: how much matters?.
        BJOG. 2005; 112: 280-285
        • Payne B.A.
        • Hutcheon J.A.
        • Ansermino J.M.
        • et al.
        A risk prediction model for the assessment and triage of women with hypertensive disorders of pregnancy in low-resourced settings: the miniPIERS (Pre-eclampsia Integrated Estimate of Risk) multi-country prospective cohort study.
        PLoS Med. 2014; 11e1001589
        • Payne B.A.
        • Hutcheon J.A.
        • Dunsmuir D.
        • et al.
        Assessing the incremental value of blood oxygen saturation (SpO2) in the miniPIERS (Pre-eclampsia Integrated Estimate of Risk) risk prediction model.
        J Obstet Gynaecol Can. 2015; 37: 16-24
        • Payne B.
        • Hodgson S.
        • Hutcheon J.A.
        • et al.
        Performance of the fullPIERS model in predicting adverse maternal outcomes in pre-eclampsia using patient data from the PIERS (Pre-eclampsia Integrated Estimate of Risk) cohort, collected on admission.
        BJOG. 2013; 120: 113-118
        • Millman A.L.
        • Payne B.
        • Qu Z.
        • et al.
        Oxygen saturation as a predictor of adverse maternal outcomes in women with preeclampsia.
        J Obstet Gynaecol Can. 2011; 33: 705-714
        • von Dadelszen P.
        • Payne B.
        • Li J.
        • et al.
        Prediction of adverse maternal outcomes in pre-eclampsia: development and validation of the fullPIERS model.
        Lancet. 2011; 377: 219-227
        • Bourjeily G.
        • Danilack V.A.
        • Bublitz M.H.
        • et al.
        Obstructive sleep apnea in pregnancy is associated with adverse maternal outcomes: a national cohort.
        Sleep Med. 2017; 38: 50-57
        • Centers for Disease Control and Prevention
        Trends in severe maternal morbidity, 1993-2014.
        (Available at:)
        • Malhame I.
        • Mehta N.
        • Raker C.A.
        • et al.
        Identifying cardiovascular severe maternal morbidity in epidemiologic studies.
        Paediatr Perinat Epidemiol. 2020; 34: 452-459
        • Kilpatrick S.K.
        • Ecker J.L.
        Severe maternal morbidity: screening and review.
        Am J Obstet Gynecol. 2016; 215: B17-22
        • Magee L.A.
        • von Dadelszen P.
        • Singer J.
        • et al.
        The CHIPS randomised controlled trial (Control of Hypertension in Pregnancy Study): is severe hypertension just an elevated blood pressure?.
        Hypertension. 2016; 68: 1153-1159
        • Judy A.E.
        • McCain C.L.
        • Lawton E.S.
        • et al.
        Systolic hypertension, preeclampsia-related mortality, and stroke in California.
        Obstet Gynecol. 2019; 133: 1151-1159
        • Kilpatrick S.J.
        • Abreo A.
        • Greene N.
        • et al.
        Severe maternal morbidity in a large cohort of women with acute severe intrapartum hypertension.
        Am J Obstet Gynecol. 2016; 215 (91.e1-7)
        • Vyas D.A.
        • Eisenstein L.G.
        • Jones D.S.
        Hidden in plain sight—reconsidering the use of race correction in clinical algorithms.
        N Engl J Med. 2020; 383: 874-882
        • Grobman W.A.
        • Sandoval G.
        • Rice M.M.
        • et al.
        Prediction of vaginal birth after cesarean delivery in term gestations: a calculator without race and ethnicity.
        Am J Obstet Gynecol. 2021; 225: 664.e1-664.e7
        • Johnson J.D.
        • Louis J.M.
        Does race or ethnicity play a role in the origin, pathophysiology, and outcomes of preeclampsia? An expert review of the literature.
        Am J Obstet Gynecol. 2020; 226: S876-S885
        • Pigott T.D.
        A review of methods for missing data.
        Educ Res Eval. 2001; 7: 353-383
        • Hanley J.A.
        • McNeil B.J.
        The meaning and use of the area under a receiver operating characteristic (ROC) curve.
        Radiology. 1982; 143: 29-36
        • Harris P.A.
        • Taylor R.
        • Thielke R.
        • et al.
        Research Electronic Data Capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support.
        J Biomed Inform. 2009; 42: 377-381
        • Moons K.G.
        • Altman D.G.
        • Reitsma J.B.
        • et al.
        Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration.
        Ann Intern Med. 2015; 162: W1-73
        • Afshani N.
        • Moustaqim-Barrette A.
        • Biccard B.M.
        • Rodseth R.N.
        • Dyer R.A.
        Utility of B-type natriuretic peptides in preeclampsia: a systematic review.
        Int J Obstet Anaesth. 2013; 22: 96-103
        • Magee L.A.
        • von Dadelszen P.
        • Rey E.
        • et al.
        Less-tight versus tight control of hypertension in pregnancy.
        N Engl J Med. 2015; 372: 407-417
        • Bouter A.R.
        • Duvekot J.J.
        Evaluation of the clinical impact of the revised ISSHP and ACOG definitions on preeclampsia.
        Pregnancy Hypertens. 2020; 19: 206-211
        • Salemi J.L.
        • Hansen M.A.
        • Modak S.
        • et al.
        Estimating the obstetric co-morbidity burden using administrative data: the impact of the pregnancy-related assessment window.
        Paediatr Perinat Epidemiol. 2020;
        • Maric-Bilkan C.
        • Abrahams V.M.
        • Arteaga S.S.
        • et al.
        Research recommendations from the National Institutes of Health Workshop on Predicting, Preventing, and Treating Preeclampsia.
        Hypertension. 2019; 73: 757-766
        • Butalia S.
        • Audibert F.
        • Cote A.M.
        • et al.
        Hypertension Canada’s 2018 guidelines for the management of hypertension in pregnancy.
        Can J Cardiol. 2018; 34: 526-531
        • Brown H.L.
        • Warner J.J.
        • Gianos E.
        • et al.
        Promoting risk identification and reduction of cardiovascular disease in women through collaboration with obstetricians and gynecologists: a presidential advisory from the American Heart Association and the American College of Obstetricians and Gynecologists.
        Circulation. 2018; 137: e843-e852
        • Dayan N.
        • Udell J.A.
        Moving toward sex-specific cardiovascular risk estimation.
        Can J Cardiol. 2020; 36: 13-15