Clinical Research

Alirocumab and Cardiovascular Outcomes in Patients With Previous Myocardial Infarction: Prespecified Subanalysis From ODYSSEY OUTCOMES*

Chern-En Chiang, MD, PhD,a Gregory G. Schwartz, MD, PhD,b Yedid Elbez, MSc,c Michael Szarek, PhD, d,e Deepak L. Bhatt, MD, MPH, f,g Vera A. Bittner, MD, MSPH,h Rafael Diaz, MD,i Andrejs Erglis, MD,j Shaun G. Goodman, MD, MSc,k,l Emil Hagström, MD, PhD,m J. Wouter Jukema, MD, PhD,n Evangelos Liberopoulos, MD,o Megan Loy, BAppSc,p Robert Pordy, MD,q Harvey D. White, DSc,r Tabassome Simon, MD, PhD,s and Philippe Gabriel Steg, MD;t,u,v,w,x for the ODYSSEY OUTCOMES Investigators

a General Clinical Research Center, Division of Cardiology, Taipei Veterans General Hospital and National Yang Ming Chiao Tung University, Taipei, Taiwan; b University of Colorado School of Medicine, Aurora, Colorado, USA; c Deepscover, Puteaux, France; d State University of New York, Downstate School of Public Health, Brooklyn, New York, USA; e CPC Clinical Research and Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado, USA; f Brigham and Women’s Hospital Heart & Vascular Center, Boston, Massachusetts, USA; g Harvard Medical School, Boston, Massachusetts, USA; h Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama, USA; i Estudios Cardiologicos Latino America, Instituto Cardiovascular de Rosario, Rosario, Argentina; j Pauls Stradins Clinical University Hospital, University of Latvia, Riga, Latvia; k St. Michael’s Hospital, University of Toronto, Toronto, Ontario, Canada; l Canadian VIGOUR Centre, University of Alberta, Edmonton, Alberta, Canada; m Department of Medical Sciences, and Uppsala Clinical Research Centre, Uppsala University, Uppsala, Sweden;n Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands; o Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece; p Sanofi, Bridgewater Township, New Jersey, USA; q Regeneron Pharmaceuticals, Tarrytown, New York, USA; r Green Lane Cardiovascular Services, Auckland City Hospital, Auckland, New Zealand; s Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Hôpital Saint Antoine, Paris, France; t Department of Cardiology, Université de Paris, Paris, France; u Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Paris, France; v FACT (French Alliance for Cardiovascular Trials), Paris, France; w INSERM U1148, Paris, France; x Imperial College, Royal Brompton Hospital, London, United Kingdom

ABSTRACT

Background: After acute coronary syndrome (ACS), patients with a previous myocardial infarction (MI) may be at particularly high risk for major adverse cardiovascular events (MACE) and death. We studied the effects of the PCSK9 inhibitor alirocumab in patients with recent ACS.

Among patients hospitalized with acute coronary syndrome (ACS), the event is not the first for 18% to 22%.1-3 Patients with previous myocardial infarction (MI) have higher subsequent events than those with stable coronary disease or patients with multiple risk factors.4 The risk of recurrent events in patients who have experienced previous MI continues for several years without evidence of decreasing risk.5 The heightened risk of recurrent events is largely attributable to frequent coexistence of nonobstructive lesion with high-risk characteristics.6 Therefore, management of patients with recurrent ACS after previous MI presents a particular challenge for clinicians: What additional medical therapies may help to prevent these recurrent events?

Received for publication May 4, 2022. Accepted May 22, 2022.

*A limited set of these data was presented at the Annual Scientific Session of the American College of Cardiology, held in May 2021.

A complete list of the ODYSSEY OUTCOMES committee members, investigators, and contributors is provided in Supplemental Appendix S1.

https://doi.org/10.1016/j.cjca.2022.05.021
0828-282X/© 2022 The Authors. Published by Elsevier Inc. on behalf of the Canadian Cardiovascular Society. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
ACS according to previous history of MI.

Methods: The ODYSSEY OUTCOMES trial compared alirocumab with placebo, beginning 1 to 12 months after ACS with median 2.8-year follow-up. The primary MACE outcome comprised death from coronary heart disease, nonfatal MI, fatal or nonfatal ischemic stroke, and hospitalization for unstable angina. Of 18,924 patients, 3633 (19.2%) had previous MI.

Results: Patients with previous MI were older, more likely male, with more cardiovascular risk factors and previous events. With placebo, 4-year risks of MACE and death were higher among those with vs without previous MI (20.5% vs 8.9%, P < 0.001; 7.4% vs 3.4%, P < 0.001, respectively). Alirocumab reduced the risk of events regardless of the presence or absence of a history of MI (MACE, adjusted hazard ratio [aHR] 0.90, 95% confidence interval [CI], 0.78-1.05 vs 0.82, 0.73-0.92; Pinteraction = 0.34; death, aHR 0.84; 95% CI, 0.64-1.08 vs 0.87, 0.72-1.05; Pinteraction = 0.81). Estimated absolute risk reductions with alirocumab were numerically greater with vs without previous MI (MACE, 1.91% vs 1.42%; death, 1.35% vs 0.41%).

Conclusions: A previous history of MI places patients with recent ACS at high risk for recurrent MACE and death. Alirocumab reduced the relative risks of these events consistently in patients with or without previous MI but with numerically greater absolute benefit in the former subgroup. (ODYSSEY OUTCOMES: NCT01663402)

Lipid lowering with high-intensity statin therapy is a cornerstone of management in ACS.1,2 Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, added to statins, have the potential to lower atherogenic lipoproteins below levels achievable with statins and have been shown to improve clinical outcomes after ACS in patients with low-density lipoprotein cholesterol (LDL-C) above goal on optimized statin therapy.3 In this prespecified analysis of the ODYSSEY OUTCOMES trial, we investigated the relative and absolute benefits of treatment with the PCSK9 inhibitor alirocumab in patients with ACS who had or did not have previous MI.

Material and Methods

Study population

ODYSSEY Outcomes (ClinicalTrials.gov; NCT01663402) was a randomized double-blind placebo-controlled trial that enrolled 18,924 patients ≥ 40 years of age who had been hospitalized with ACS (acute MI or unstable angina) 1 to 12 months before randomization.4 The study conformed to the principles of the Declaration of Helsinki and was approved by the institutional review board at each site. All patients gave written informed consent to participate.

To be eligible, patients had to have LDL-C values ≥ 70 mg/dL (1.81 mmol/L) or non–high-density lipoprotein cholesterol (HDL-C) value ≥ 100 mg/dL (2.59 mmol/L), or apolipoprotein B value ≥ 80 mg/dL, measured after a minimum of 2 weeks on stable treatment with intensive LDL-C–lowering drugs (atorvastatin 40 to 80 mg daily, rosuvastatin 20 to 40 mg daily, or the maximum-tolerated dose of either statin, including no statin in the case of documented unacceptable side effects). Full inclusion and exclusion criteria have been published.5

Patients were randomly assigned (in a 1:1 ratio), stratified by country, to receive treatment with alirocumab 75 mg subcutaneously every 2 weeks or matching placebo. In the event of a persistent LDL-C value ≥ 50 mg/dL, the alirocumab dose was uptitrated to 150 mg. In patients who had 2 consecutive measurements of LDL-C < 25 mg/dL, the alirocumab dose was reduced to 75 mg (for measurements made on the 150-mg dose), and safety was monitored by an independent physician blinded to treatment allocation. In the case of 2 consecutive measurements of LDL-C < 15 mg/dL on alirocumab 75 mg, alirocumab was discontinued, with blinded substitution of placebo for the remainder of the trial. Occurrence of MI before the index ACS was a prespecified subgroup of interest, with the data collected at enrollment.6

Trial outcomes

The primary composite outcome was a composite of major adverse cardiovascular events (MACE: death from coronary heart disease, nonfatal MI, fatal or nonfatal ischemic stroke, or unstable angina requiring hospitalization). Secondary
outcomes included all-cause death. All primary and secondary outcomes were adjudicated by physicians who were unaware of the trial-group assignments.

Statistical analyses

Categorical variables were compared with χ^2 tests and continuous variables by Student’s t-test. A Cox proportional hazards model was used to determine hazard ratios (HRs) and 95% confidence intervals (CIs) for MACE and death in patients with and without previous MI in the placebo group, adjusted for the following baseline variables: age (≥65 years vs <65 years), sex, race, geographic region, diabetes mellitus, smoking; history of heart failure, ischemic stroke, and peripheral artery disease; intensive statin treatment; LDL-C and lipoprotein(a) concentrations; and systolic blood pressure. A Cox proportional hazards model was used to compare the treatment effect in the subgroups of patients with and without previous MI. Heterogeneity between patients with and without a previous MI was analyzed with a test for treatment-by-subgroup interaction. The Gail-Simon test was used to analyze the quantitative interaction for absolute risk reduction. The cumulative incidence rates of MACE and death were estimated by the Kaplan-Meier method. P values were estimated by a log rank test over the previous MI status subgroups. The analysis was performed in SAS version 9.4 (IBM, Armonk, NY).

Results

Patient characteristics

Among 18,924 patients in the trial, 3633 (19.2%) had histories of MI before the qualifying ACS. The baseline characteristics of the patients are shown in Table 1. Compared with patients without previous MI, those with a previous MI were older; more likely to be male, white; and to have more underlying cardiovascular conditions, previous cardiovascular events and procedures including stroke, peripheral artery disease, heart failure, impaired renal function, percutaneous coronary intervention, and coronary artery bypass graft surgery. In patients with previous MI, the qualifying ACS was more often non-ST elevation MI, and they had higher baseline levels of LDL-C, non−HDL-C, triglycerides, apolipoprotein B, lipoprotein(a), and hemoglobin A1c, but lower HDL-C. Other baseline characteristics are shown in Supplemental Table S1. Findings were similar when patients with and without previous MI were compared in each randomization arm (alirocumab or placebo) (Supplemental Table S2).

Risks of mace and death in the placebo group stratified by previous MI status at baseline

In the placebo group, the incidence of MACE (20.5% vs 8.9%; adjusted HR [aHR], 1.85; 95% CI, 1.62-2.11; P <
Effect of alirocumab on outcomes stratified by timing of previous MI

In patients with previous MI, the median time from the last MI to the index ACS was 4.5 years. The effect of alirocumab vs placebo on MACE in patients with MI that occurred ≤ 2 years before the qualifying ACS (20.5% vs 19.9%; HR, 1.02; 95% CI, 0.78-1.34) did not differ from that in patients with MI that occurred > 2 years before the qualifying ACS (17.8% vs 20.9%; HR, 0.85; 95% CI, 0.71-1.03; PInteraction = 0.16) (Fig. 3).

Safety outcomes

Adverse events and laboratory abnormalities were, in general, similar for alirocumab vs placebo when stratified by previous MI status at baseline (Supplemental Table S3).

Discussion

Among patients with recent ACS who did not receive alirocumab, those with vs without previous MI had higher risks of MACE and all-cause death. Alirocumab was associated with consistent relative risk reductions in both patients with and without previous MI, with numerically greater absolute benefit in patients with previous MI.

On the basis of multiple major atherosclerotic cardiovascular disease events, the subgroup with previous MI would be classified as very high risk according to the US guidelines.10 Approximately 18% to 22% of patients with ACS have histories of previous MI.1-3,7 Indeed, the adjusted risks for MACE and all-cause death were higher for patients with vs without previous MI. The management of patients with recurrent ACS presents a particular challenge for clinicians. Alirocumab reduced risk of MACE and all-cause death in patients with previous MI.

Table 2. Event rates and HR of outcomes stratified by MI status at baseline: placebo arm

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Previous MI n (%)</th>
<th>No previous MI n (%)</th>
<th>Unadjusted HR (95% CI)</th>
<th>P value</th>
<th>Adjusted HR (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary composite outcome*</td>
<td>378 (20.5)</td>
<td>674 (8.9)</td>
<td>2.41 (2.12-2.73)</td>
<td>< 0.001</td>
<td>1.85 (1.62-2.11)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Any coronary heart disease event†</td>
<td>440 (23.9)</td>
<td>909 (11.9)</td>
<td>2.08 (1.86-2.34)</td>
<td>< 0.001</td>
<td>1.67 (1.48-1.88)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Major coronary heart disease event‡</td>
<td>336 (18.2)</td>
<td>563 (7.4)</td>
<td>2.56 (2.23-2.93)</td>
<td>< 0.001</td>
<td>1.97 (1.71-2.28)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Any cardiovascular event§</td>
<td>477 (25.9)</td>
<td>997 (13.1)</td>
<td>2.07 (1.85-2.30)</td>
<td>< 0.001</td>
<td>1.63 (1.45-1.83)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Composite of death from any cause, nonfatal MI, or nonfatal ischemic stroke</td>
<td>398 (21.6)</td>
<td>728 (9.6)</td>
<td>2.35 (2.08-2.66)</td>
<td>< 0.001</td>
<td>1.81 (1.59-2.06)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Death from coronary heart disease</td>
<td>87 (4.7)</td>
<td>135 (1.8)</td>
<td>2.62 (2.00-3.43)</td>
<td>< 0.001</td>
<td>1.87 (1.40-2.50)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Death from cardiovascular causes</td>
<td>102 (5.5)</td>
<td>169 (2.2)</td>
<td>2.45 (1.92-3.13)</td>
<td>< 0.001</td>
<td>1.70 (1.31-2.21)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Death from any cause</td>
<td>136 (7.4)</td>
<td>256 (3.4)</td>
<td>2.15 (1.75-2.65)</td>
<td>< 0.001</td>
<td>1.56 (1.25-1.95)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Nonfatal MI</td>
<td>273 (14.8)</td>
<td>449 (5.9)</td>
<td>2.61 (2.24-3.03)</td>
<td>< 0.001</td>
<td>2.03 (1.73-2.38)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Fatal or nonfatal ischemic stroke</td>
<td>50 (2.7)</td>
<td>102 (1.3)</td>
<td>2.01 (1.44-2.83)</td>
<td>< 0.001</td>
<td>1.33 (0.92-1.92)</td>
<td>0.13</td>
</tr>
<tr>
<td>Unstable angina requiring hospitalization</td>
<td>20 (1.1)</td>
<td>40 (0.5)</td>
<td>2.05 (1.20-3.51)</td>
<td>0.009</td>
<td>1.73 (0.99-3.04)</td>
<td>0.06</td>
</tr>
<tr>
<td>Ischemia-driven coronary revascularization procedure</td>
<td>260 (14.1)</td>
<td>568 (7.5)</td>
<td>1.93 (1.67-2.24)</td>
<td>< 0.001</td>
<td>1.62 (1.38-1.90)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Hospitalization for congestive heart failure</td>
<td>73 (4.9)</td>
<td>106 (1.4)</td>
<td>2.85 (2.11-3.83)</td>
<td>< 0.001</td>
<td>1.66 (1.21-2.28)</td>
<td>0.002</td>
</tr>
</tbody>
</table>

CI, confidence interval; HR, hazard ratio; MI, myocardial infarction.

*Death from coronary heart disease, nonfatal MI, fatal or nonfatal ischemic stroke, or unstable angina requiring revascularization.

†Death from coronary heart disease, nonfatal MI, unstable angina requiring hospitalization, or ischemia-driven coronary revascularization.

‡Death from coronary heart disease or nonfatal MI.

§Death from cardiovascular cause, nonfatal MI, unstable angina requiring hospitalization, ischemia-driven coronary revascularization procedure, or nonfatal ischemic stroke.
patients receiving maximum tolerated (including ~90% high-intensity) statins with a numerically greater absolute effect in patients with previous MI, supporting recent guideline recommendations.10-12 The lack of statistical significance of alirocumab on MACE and all-cause death in the subgroup of patients receiving maximum tolerated (including those with type 2 diabetes, 15 polycystic ovary syndrome, 16 previous coronary artery bypass graft surgery, 17 higher lipoprotein(a) concentration, 18 and high genome-wide polygenic risk scores. 19 Although the primary analysis of the current study did not reach statistical significance, the numerically greater benefits in patients with previous MI might suggest a true effect if the sample size could be enlarged.

The effects of alirocumab on MACE in patients with previous MI seemed to occur earlier, with the MACE curves separated at approximately 1 year after randomization compared with approximately 2 years for patients without previous MI. Similar findings have also been observed in the FOURIER trial in which the MACE curves separated at approximately 180 days in patients with recent MI (≤ 12 months), compared with approximately 540 days in patients with remote MI (> 12 months). 20 Although we did not collect systematic angiographic information at baseline, it is likely that patients who have had > 1 ACS event have a greater burden of coronary atherosclerosis. More pronounced atherosclerotic lesions are susceptible to be modified by LDL-C lowering. Therefore, intensive LDL-C lowering with alirocumab has a favourable effect on plaque stabilization. 21 More recently, the addition of subcutaneous biweekly alirocumab, compared with placebo, to high-intensity statin therapy in patients with acute MI resulted in significantly improved clinical outcomes.

This analysis from the ODYSSEY OUTCOMES trial indicates that previous MI is a marker of higher risk of MACE and death following ACS and, accordingly, that such patients might derive a larger absolute benefit from alirocumab treatment. Previously, effects of alirocumab in patients at very high-risk vs not, according to the US guidelines, 10-12 have been reported in the ODYSSEY OUTCOMES trial, showing similar findings that patients at very high risk derived a larger absolute benefit from treatment with alirocumab. 22 Similarly, analyses from this trial have identified several subgroups of post-ACS patients at high risk for recurrent cardiovascular events who derive a greater absolute benefit from alirocumab treatment, including those with type 2 diabetes, 13 polyvascular disease, 23 previous coronary artery bypass graft surgery, 24 higher lipoprotein(a) concentration, 25 and high genome-wide polygenic risk scores. 26 Although the primary analysis of the current study did not reach statistical significance, the numerically greater benefits in patients with previous MI might suggest a true effect if the sample size could be enlarged.

The effects of alirocumab on MACE in patients with previous MI seemed to occur earlier, with the MACE curves separated at approximately 1 year after randomization compared with approximately 2 years for patients without previous MI. Similar findings have also been observed in the FOURIER trial in which the MACE curves separated at approximately 180 days in patients with recent MI (<12 months), compared with approximately 540 days in patients with remote MI (>12 months). Although we did not collect systematic angiographic information at baseline, it is likely that patients who have had >1 ACS event have a greater burden of coronary atherosclerosis. More pronounced atherosclerotic lesions are susceptible to be modified by LDL-C lowering. Therefore, intensive LDL-C lowering with alirocumab has a favourable effect on plaque stabilization. More recently, the addition of subcutaneous biweekly alirocumab, compared with placebo, to high-intensity statin therapy in patients with acute MI resulted in significantly improved clinical outcomes.

This analysis from the ODYSSEY OUTCOMES trial indicates that previous MI is a marker of higher risk of MACE and death following ACS and, accordingly, that such patients might derive a larger absolute benefit from alirocumab treatment. Previously, effects of alirocumab in patients at very high-risk vs not, according to the US guidelines, have been reported in the ODYSSEY OUTCOMES trial, showing similar findings that patients at very high risk derived a larger absolute benefit from treatment with alirocumab. Similarly, analyses from this trial have identified several subgroups of post-ACS patients at high risk for recurrent cardiovascular events who derive a greater absolute benefit from alirocumab treatment, including those with type 2 diabetes, polyvascular disease, previous coronary artery bypass graft surgery, higher lipoprotein(a) concentration, and high genome-wide polygenic risk scores. Although the primary analysis of the current study did not reach statistical significance, the numerically greater benefits in patients with previous MI might suggest a true effect if the sample size could be enlarged.

The effects of alirocumab on MACE in patients with previous MI seemed to occur earlier, with the MACE curves separated at approximately 1 year after randomization compared with approximately 2 years for patients without previous MI. Similar findings have also been observed in the FOURIER trial in which the MACE curves separated at approximately 180 days in patients with recent MI (<12 months), compared with approximately 540 days in patients with remote MI (>12 months). Although we did not collect systematic angiographic information at baseline, it is likely that patients who have had >1 ACS event have a greater burden of coronary atherosclerosis. More pronounced atherosclerotic lesions are susceptible to be modified by LDL-C lowering. Therefore, intensive LDL-C lowering with alirocumab has a favourable effect on plaque stabilization. More recently, the addition of subcutaneous biweekly alirocumab, compared with placebo, to high-intensity statin therapy in patients with acute MI resulted in significantly improved clinical outcomes.
greater coronary plaque regression in noninfarct-related arteries after 52 weeks. Whether earlier initiation of treatment (ie, before hospital discharge after ACS) would magnify an early treatment benefit is a hypothesis worthy of testing prospectively.

Limitations

First, analyses in subgroups are limited by sample size and power, and the confidence interval of the relative risk reduction in patients with previous MI crossed the line of unity. Second, number of MIs was not recorded, and details on previous MI were based on medical history rather than systematic review of laboratory data and electrocardiographic tracings. Third, we did not investigate the impact of previous atherosclerotic cardiovascular disease events other than MI, such as stroke or peripheral artery disease events, on the clinical efficacy of alirocumab.

Conclusions

Patients with recent ACS and previous MI were at higher risk for MACE and death than those without previous MI. Alirocumab reduced the relative risks of these events consistently in patients with or without previous MI but with numerically greater absolute benefit in the former subgroup.

Acknowledgements

The authors thank the patients, study coordinators and investigators who participated in this trial. Sophie Rushton-Smith (MedLink Healthcare Communications, London) provided editorial assistance in the preparation of the manuscript (limited to editing for style, referencing, and figure and table editing) and was funded by Sanofi.

Funding Sources

The trial was funded by Sanofi and Regeneron Pharmaceuticals, Inc. The sponsors participated in the selection of the trial sites, the monitoring of the trial, and the supervision of data collection.

Disclosures

Dr Chiang has received honoraria from Sanofi, Pfizer, Novartis, Merck Sharp Dohme, AstraZeneca, Daiichi Sankyo, Bayer, and Boehringer Ingelheim. Dr Schwartz has received grants to his institution (University of Colorado) from Sanofi, AstraZeneca, Resverlogix, Roche, and The Medicines Company. Dr Elbez has received research grants from Sanofi and Bristol-Myers Squibb. Dr Szarek has received grants from Sanofi and Regeneron Pharmaceuticals; personal fees from CiVi and Esperion; and grants from Lexicon, Resverlogix, Baxter, and Janssen. Dr Bhatt has served on advisory boards for Cardax, CellProthera, Cerenzo Scientific, Elsevier Practice Update Cardiology, Janssen, Level Ex, Medscape Cardiology, MyoKardia, Novo Nordisk, PhaseBio, PLx Pharma, and Regado Biosciences and has served on the board of directors for Boston VA Research Institute, Society of Cardiovascular Patient Care, and TobeSoft. He has received research funding for...
from Abbott, Afimmune, Amarin, Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, Bristol-Myers Squibb, Cardax, Chiesi, CSL Behring, Eisai, Ethicon, Ferring Pharmaceuticals, Forest Laboratories, Fractyl, HLS Therapeutics, Idorsia, Ironwood, Ischemix, Jansen, Lexicon, Lilly, Medtronic, MyoKardia, Novo Nordisk, Owkin, Pfizer, PhaseBio, PLx Pharma, Regeneron, Roche, Sanofi, Synaptic, The Medicines Company and has received royalties from Elsevier (Editor, *Cardiovascular Intervention: A Companion to Braunwald’s Heart Disease*); served as site co-investigator for Abbott, Biotronik, Boston Scientific, CSI, St. Jude Medical (now Abbott), and Svelte and has served as Trustee for American College of Cardiology and has participated in unfunded research for FlowCo, Merck, and Takeda. Dr Bittner has received grant support from Sanofi, Astra Zeneca, DalCor, Esperion, Bayer, The Medicines Company, and Amgen, all paid direct to her institution, and she has received personal fees from Sanofi. Dr Diaz has received research grants from Sanofi, DalCor Pharmaceuticals, Population Health Research Institute, Duke Clinical Research Institute, the TIMI group, Amgen, Cirius, Montreal Health Innovations Coordinating Center, and Lepetit and personal fees as a member of the Executive Steering Committee from Amgen and Cirius. Dr Goodman has received research grants from Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, Bristol Myers Squibb, CSL Behring, Eli Lilly, Merck, Novartis, Pfizer, Regeneron, and Sanofi; honoraria from Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, Bristol Myers Squibb, CSL Behring, Daiichi-Sankyo/American Regent, Eli Lilly, Esperion, Ferring Pharmaceuticals, GlaxoSmithKline, HLS Therapeutics, Janssen/Johnson & Johnson, Merck, Novartis, and grants, personal fees, and nonfinancial support from AstraZeneca. He has received personal fees from Novo Nordisk, MSD, Lilly, Servier, Boehringer-Ingelheim, and Novartis and personal fees and nonfinancial support from Bayer and Viatris. Ms Loy is an employee of Sanofi and may hold shares and/or stock options in the company. Dr Pordy is an employee of Regeneron Pharmaceuticals. Dr White has received grant support paid to the institution and fees from Sanofi-Aventis and Regeneron Pharmaceuticals, Eli Lilly, Omthera Pharmaceuticals, Pfizer USA, Eisai Inc, DalCor Pharma UK Inc, Sanofi-Aventis Australia Pty Ltd, and Esperion Therapeutics Inc. Dr White was on the advisory boards for Genentech, Inc. (an affiliate of

<table>
<thead>
<tr>
<th>Primary composite endpoints</th>
<th>Alirocumab n (%)</th>
<th>Placebo n (%)</th>
<th>HR (95% CI)</th>
<th>P</th>
<th>P interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full study cohort</td>
<td>902 (9.5%)</td>
<td>1052 (11.1%)</td>
<td>0.85 (0.77–0.93)</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>All patients with previous MI</td>
<td>332 (18.6%)</td>
<td>378 (20.6%)</td>
<td>0.90 (0.77–1.05)</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>Time since previous MI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤2 years</td>
<td>113 (20.5%)</td>
<td>117 (19.9%)</td>
<td>1.02 (0.78–1.34)</td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td>>2 years</td>
<td>219 (17.8%)</td>
<td>261 (20.9%)</td>
<td>0.85 (0.71–1.03)</td>
<td>0.09</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3. Adjusted risk of major adverse cardiovascular event (MACE) stratified by timing of previous myocardial infarction (MI). *Adjusted for the following independent variables: age (≥ 65 vs < 65 years), sex, race, diabetes mellitus, geographic region, history of heart failure, baseline LDL-C, lipoprotein(a), intensive statin use, systolic blood pressure at baseline, smoking, history of ischemic stroke, and history of peripheral artery disease. CI, confidence interval; HR, hazard ratio; LDL-C, low-density lipoprotein-cholesterol.
F. Hoffmann-La Roche Ltd, “Roche,” Lyics Post-PCI Advisory Board at European Society of Cardiology) and has received lecture fees from AstraZeneca. Dr Zeiher has been a scientific advisor for Sanofi, Amgen, Pfizer, and Boehringer and speaker for Bayer, Novartis, and Viﬁor. Dr Simon has received grants from Programme de Recherche Medico Economique and from Instituto de Salud Carlos III, Grant number PI15/01543; personal fees from Astra Zeneca, Novartis, Sanofi, Astellas, and MSD; and grants from Astra Zeneca, Bayer, Boehringer, Daiichi-Sankyo, Eli Lilly, GSK, Novartis, and Sanofi. Dr Steg has received grants and personal fees from Sanofi and Regeneron Pharmaceuticals (as co-chair of the ODYSSEY OUTCOMES trial); grants and personal fees from Amarin (executive steering committee REDUCE IT, consulting, speaking), Bayer (speaking), Servier (Chair CLARIFY registry, DMC); personal fees from Amgen, Bristol Myers Squibb (Steering Committee NAXOS and PAROS studies, speaking), Boehringer Ingelheim (executive steering committee, REDUAL PCI trial), Idorsia (Steering Committee SOS AMI trial), Novartis (consulting, executive steering committee PARADIGM MI trial, Speaking), Novo Nordisk (consulting, speaking), Pfizer (Critical Event Committee), Sanofi/Lexicon (executive steering committee, SCORED and SOLOIST trials), and Myokardia; personal fees and nonﬁnancial support from AstraZeneca (co-chair THEMIS trial; consulting, speaking); in addition, Dr Steg has a patent assigned to Sanofi issued. Dr Erglis has no conﬂicts of interest to disclose. For detailed author disclosure please see the Declaration of Interest Form (Supplemental Appendix S2).

References

Supplementary Material

To access the supplementary material accompanying this article, visit the online version of the Canadian Journal of Cardiology at www.onlinecjc.ca and at https://doi.org/10.1016/j.cjca.2022.05.021.