Advertisement
Canadian Journal of Cardiology

The Ongoing Saga of the Evolution of Percutaneous Coronary Intervention: From Balloon Angioplasty to Recent Innovations to Future Prospects

      Abstract

      The advances in percutaneous coronary intervention (PCI) have been, above all, dependent on the work of pioneers in surgery, radiology, and interventional cardiology. From Grüntzig’s first balloon angioplasty, PCI has expanded through technology development, improved protocols, and dissemination of best-practice techniques. We can nowadays treat more complex lesions in higher-risk patients with favourable results. Guide wires, balloon types and profiles, debulking techniques such as atherectomy or lithotripsy, stents, and scaffolds all represent evolutions that have allowed us to tackle complex lesions such as an unprotected left main coronary artery, complex bifurcations, or chronic total occlusions. Best-practice PCI, including physiology assessment, imaging, and optimal lesion preparation are now the gold standard when performing PCI for sound indications, and new technologies such as intravascular lithotripsy for lesion preparation, or artificial intelligence, are innovations in the steps of 4 decades of pioneers to improve patient care in interventional cardiology. In the present review major innovations in PCI since the first balloon angioplasty and also uncertainties and obstacles inherent to such medical advances are described.

      Résumé

      Les avancées dans le domaine de l’intervention coronarienne percutanée (ICP) sont le résultat du travail de pionniers en chirurgie, en radiologie et en cardiologie interventionnelle. Depuis la première angioplastie par ballonnet du Dr Grüntzig, l’ICP a progressé grâce à la mise au point de nouvelles technologies et de protocoles améliorés, et par la diffusion des techniques exemplaires. Il est désormais possible de traiter des lésions plus complexes chez des patients présentant des risques plus élevés et d’obtenir des résultats favorables. L’avènement des fils-guides, des nouveaux types et profils de ballonnets, des techniques de réduction du volume, comme l’athérectomie et la lithotripsie, des endoprothèses et des échafaudages nous permet maintenant de nous attaquer à des lésions complexes, telles que la sténose du tronc commun gauche non protégé, les bifurcations complexes et les occlusions totales chroniques. L’ICP faisant appel aux meilleures pratiques, notamment l’évaluation physiologique, les examens d’imagerie et la préparation optimale des lésions, est maintenant l’approche de référence lorsqu’une ICP est indiquée, et de nouvelles technologies, comme la lithotripsie intravasculaire pour préparer les lésions ou le recours à l’intelligence artificielle, s’inscrivent dans la continuité de quatre décennies de travaux pionniers dans la recherche de meilleurs soins en cardiologie interventionnelle. Notre article de synthèse présente les innovations principales dans le domaine de l’ICP depuis la première angioplastie par ballonnet, ainsi que les incertitudes et les obstacles propres à de telles avancées médicales.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Grüntzig A.R.
        • Senning A.
        • Siegenthaler W.E.
        Nonoperative dilatation of coronary-artery stenosis: percutaneous transluminal coronary angioplasty.
        N Engl J Med. 1979; 301: 61-68
        • Seldinger S.I.
        Catheter replacement of the needle in percutaneous arteriography; a new technique.
        Acta Radiol. 1953; 39: 368-376
        • Bourassa M.G.
        • Lespérance J.
        • Campeau L.
        • Bois M.A.
        • Saltiel J.
        Selective coronary angiography using a percutaneous femoral technique.
        Can Med Assoc J. 1970; 102: 170-173
        • Campeau L.
        • Bourassa M.G.
        • Bois M.A.
        • et al.
        Clinical significance of selective coronary cinearteriography.
        Can Med Assoc J. 1968; 99: 1063-1068
        • Guiteras Val P.
        • Bourassa M.G.
        • David P.R.
        • et al.
        Restenosis after successful percutaneous transluminal coronary angioplasty: the Montreal Heart Institute experience.
        Am J Cardiol. 1987; 60 (5B): 50B
        • Lambert M.
        • Bonan R.
        • Cote G.
        • et al.
        Early results, complications and restenosis rates after multilesion and multivessel percutaneous transluminal coronary angioplasty.
        Am J Cardiol. 1987; 60: 788-791
        • Simpson J.B.
        • Baim D.S.
        • Robert E.W.
        • Harrison D.C.
        A new catheter system for coronary angioplasty.
        Am J Cardiol. 1982; 49: 1216-1222
        • Kaltenbach M.
        New technic for guidable balloon dilatation of coronary vessel stenoses [in German].
        Z Kardiol. 1984; 73: 669-673
        • Bonzel T.
        • Wollschläger H.
        • Kasper W.
        • Meinertz T.
        • Just H.
        The sliding rail system (monorail): description of a new technique for intravascular instrumentation and its application to coronary angioplasty.
        Z Kardiol. 1987; 76: 119-122
        • Rensing B.J.
        • Hermans W.R.
        • Beatt K.J.
        • et al.
        Quantitative angiographic assessment of elastic recoil after percutaneous transluminal coronary angioplasty.
        Am J Cardiol. 1990; 66: 1039-1044
        • Barragan P.
        • Pietri P.
        • Villain P.
        • Silvestri M.
        • Roquebert P.O.
        Antiplatelet therapy during coronary endoprosthesis placement [in French].
        Arch Mal Coeur Vaiss. 1996; 89: 1515-1520
        • Rogacka R.
        • Latib A.
        • Colombo A.
        IVUS-guided stent implantation to improve outcome: a promise waiting to be fulfilled.
        Curr Cardiol Rev. 2009; 5: 78-86
        • Iakovou I.
        • Schmidt T.
        • Bonizzoni E.
        • et al.
        Incidence, predictors, and outcome of thrombosis after successful implantation of drug-eluting stents.
        JAMA. 2005; 293: 2126-2130
        • Hoffmann R.
        • Mintz G.S.
        • Dussaillant G.R.
        • et al.
        Patterns and mechanisms of in-stent restenosis. A serial intravascular ultrasound study.
        Circulation. 1996; 94: 1247-1254
        • Serruys P.W.
        • Unger F.
        • Sousa J.E.
        • et al.
        Comparison of coronary-artery bypass surgery and stenting for the treatment of multivessel disease.
        N Engl J Med. 2001; 344: 1117-1124
        • Condado J.A.
        • Waksman R.
        • Gurdiel O.
        • et al.
        Long-term angiographic and clinical outcome after percutaneous transluminal coronary angioplasty and intracoronary radiation therapy in humans.
        Circulation. 1997; 96: 727-732
        • Meerkin D.
        • Tardif J.C.
        • Bertrand O.F.
        • Vincent J.
        • Harel F.
        • Bonan R.
        The effects of intracoronary brachytherapy on the natural history of postangioplasty dissections.
        J Am Coll Cardiol. 2000; 36: 59-64
        • Verin V.
        • Popowski Y.
        • De Bruyne B.
        • et al.
        Endoluminal beta-radiation therapy for the prevention of coronary restenosis after balloon angioplasty. The Dose-Finding Study Group.
        N Engl J Med. 2001; 344: 243-249
        • Suntharalingam M.
        • Laskey W.
        • Lansky A.J.
        • et al.
        Clinical and angiographic outcomes after use of 90Strontium/90Yttrium beta radiation for the treatment of in-stent restenosis: results from the Stents and Radiation Therapy 40 (START 40) registry.
        Int J Radiat Oncol Biol Phys. 2002; 52: 1075-1082
        • Urban P.
        • Serruys P.
        • Baumgart D.
        • et al.
        A multicentre European registry of intraluminal coronary beta brachytherapy.
        Eur Heart J. 2003; 24: 604-612
        • Morice M.C.
        • Serruys P.W.
        • Sousa J.E.
        • et al.
        A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization.
        N Engl J Med. 2002; 346: 1773-1780
        • Torii S.
        • Jinnouchi H.
        • Sakamoto A.
        • et al.
        Drug-eluting coronary stents: insights from preclinical and pathology studies.
        Nat Rev Cardiol. 2020; 17: 37-51
        • Pfisterer M.
        • Brunner-La Rocca H.P.
        • Buser P.T.
        • et al.
        Late clinical events after clopidogrel discontinuation may limit the benefit of drug-eluting stents: an observational study of drug-eluting versus bare-metal stents.
        J Am Coll Cardiol. 2006; 48: 2584-2591
        • Serruys P.W.
        • Daemen J.
        Are drug-eluting stents associated with a higher rate of late thrombosis than bare metal stents? Late stent thrombosis: a nuisance in both bare metal and drug-eluting stents.
        Circulation. 2007; 115 ([discussion: 1439]): 1433-1439
        • Palmerini T.
        • Biondi-Zoccai G.
        • Riva Della D.
        • et al.
        Stent thrombosis with drug-eluting and bare-metal stents: evidence from a comprehensive network meta-analysis.
        Lancet. 2012; 379: 1393-1402
        • Madhavan M.V.
        • Howard J.P.
        • Naqvi A.
        • et al.
        Long-term follow-up after ultrathin vs. conventional 2nd-generation drug-eluting stents: a systematic review and meta-analysis of randomized controlled trials.
        Eur Heart J. 2021; 42: 2643-2654
        • Picard F.
        • Pighi M.
        • de Hemptinne Q.
        • et al.
        Comparison of the biodegradable polymer everolimus-eluting stent with contemporary drug-eluting stents: a systematic review and meta-analysis.
        Int J Cardiol. 2019; 278: 51-56
        • Pham V.
        • Hemptinne Q.
        • Grinda J.M.
        • Duboc D.
        • Varenne O.
        • Picard F.
        Giant coronary aneurysms, from diagnosis to treatment: a literature review.
        Arch Cardiovasc Dis. 2020; 113: 59-69
        • Picard F.
        • Doucet S.
        • Asgar A.W.
        Contemporary use of drug-coated balloons in coronary artery disease: where are we now?.
        Arch Cardiovasc Dis. 2017; 110: 259-272
        • Neumann F.J.
        • Sousa Uva M.
        • Ahlsson A.
        • et al.
        2018 ESC/EACTS guidelines on myocardial revascularization.
        Eur Heart J. 2019; 40: 87-165
        • Jeger R.V.
        • Farah A.
        • Ohlow M.A.
        • et al.
        Drug-coated balloons for small coronary artery disease (BASKET-SMALL 2): an open-label randomised non-inferiority trial.
        Lancet. 2018; 392: 849-856
        • Cremers B.
        • Toner J.L.
        • Schwartz L.B.
        • et al.
        Inhibition of neointimal hyperplasia with a novel zotarolimus coated balloon catheter.
        Clin Res Cardiol. 2012; 101: 469-476
        • Lemos P.A.
        • Farooq V.
        • Takimura C.K.
        • et al.
        Emerging technologies: polymer-free phospholipid encapsulated sirolimus nanocarriers for the controlled release of drug from a stent-plus-balloon or a stand-alone balloon catheter.
        EuroIntervention. 2013; 9: 148-156
        • Johnson D.E.
        • Braden L.
        • Simpson J.B.
        Mechanism of directed transluminal atherectomy.
        Am J Cardiol. 1990; 65: 389-391
        • Topol E.J.
        • Leya F.
        • Pinkerton C.A.
        • et al.
        A comparison of directional atherectomy with coronary angioplasty in patients with coronary artery disease. The CAVEAT Study Group.
        N Engl J Med. 1993; 329: 221-227
        • Adelman A.G.
        • Cohen E.A.
        • Kimball B.P.
        • et al.
        A comparison of directional atherectomy with balloon angioplasty for lesions of the left anterior descending coronary artery.
        N Engl J Med. 1993; 329: 228-233
        • Reifart N.
        • Vandormael M.
        • Krajcar M.
        • et al.
        Randomized comparison of angioplasty of complex coronary lesions at a single center. Excimer Laser, Rotational Atherectomy, and Balloon Angioplasty Comparison (ERBAC) Study.
        Circulation. 1997; 96: 91-98
        • Dill T.
        • Dietz U.
        • Hamm C.W.
        • et al.
        A randomized comparison of balloon angioplasty versus rotational atherectomy in complex coronary lesions (COBRA study).
        Eur Heart J. 2000; 21: 1759-1766
        • Sharma S.K.
        • Tomey M.I.
        • Teirstein P.S.
        • et al.
        North American expert review of rotational atherectomy.
        Circ Cardiovasc Interv. 2019; 12e007448
        • Abdel-Wahab M.
        • Richardt G.
        • Joachim Büttner H.
        • et al.
        High-speed rotational atherectomy before paclitaxel-eluting stent implantation in complex calcified coronary lesions: the randomized ROTAXUS (Rotational Atherectomy Prior to Taxus Stent Treatment for Complex Native Coronary Artery Disease) trial.
        JACC Cardiovasc Interv. 2013; 6: 10-19
        • Abdel-Wahab M.
        • Toelg R.
        • Byrne R.A.
        • et al.
        High-speed rotational atherectomy versus modified balloons prior to drug-eluting stent implantation in severely calcified coronary lesions.
        Circ Cardiovasc Interv. 2018; 11e007415
        • Whitlow P.L.
        • Bass T.A.
        • Kipperman R.M.
        • et al.
        Results of the Study To Determine Rotablator And Transluminal Angioplasty Strategy (STRATAS).
        Am J Cardiol. 2001; 87: 699-705
        • Safian R.D.
        • Feldman T.
        • Muller D.W.
        • et al.
        Coronary Angioplasty and Rotablator Atherectomy Trial (CARAT): immediate and late results of a prospective multicenter randomized trial.
        Catheter Cardiovasc Interv. 2001; 53: 213-220
        • Bhatt P.
        • Parikh P.
        • Patel A.
        • et al.
        Orbital atherectomy system in treating calcified coronary lesions: 3-year follow-up in first human use study (ORBIT I trial).
        Cardiovasc Revasc Med. 2014; 15: 204-208
        • Chambers J.W.
        • Feldman R.L.
        • Himmelstein S.I.
        • et al.
        Pivotal trial to evaluate the safety and efficacy of the orbital atherectomy system in treating de novo, severely calcified coronary lesions (ORBIT II).
        JACC Cardiovasc Interv. 2014; 7: 510-518
        • Aggarwal D.
        • Seth M.
        • Perdoncin E.
        • et al.
        Trends in utilization, and comparative safety and effectiveness of orbital and rotational atherectomy.
        JACC Cardiovasc Interv. 2020; 13: 146-148
        • Choy D.S.
        Laser revascularization, 1985: state of the art.
        Lasers Surg Med. 1986; 6: 408-411
        • Litvack F.
        • Eigler N.
        • Margolis J.
        • et al.
        Percutaneous excimer laser coronary angioplasty: results in the first consecutive 3,000 patients. The ELCA Investigators.
        J Am Coll Cardiol. 1994; 23: 323-329
        • Appelman Y.E.
        • Piek J.J.
        • Strikwerda S.
        • et al.
        Randomised trial of excimer laser angioplasty versus balloon angioplasty for treatment of obstructive coronary artery disease.
        Lancet. 1996; 347: 79-84
        • Secco G.G.
        • Ghione M.
        • Mattesini A.
        • et al.
        Very high-pressure dilatation for undilatable coronary lesions: indications and results with a new dedicated balloon.
        EuroIntervention. 2016; 12: 359-365
        • Secco G.G.
        • Buettner A.
        • Parisi R.
        • et al.
        Clinical experience with very high-pressure dilatation for resistant coronary lesions.
        Cardiovasc Revasc Med. 2019; 20: 1083-1087
        • Brinton T.J.
        • Ali Z.A.
        • Hill J.M.
        • et al.
        Feasibility of Shockwave coronary intravascular lithotripsy for the treatment of calcified coronary stenoses.
        Circulation. 2019; 139: 834-836
        • Ali Z.A.
        • Nef H.
        • Escaned J.
        • et al.
        Safety and effectiveness of coronary intravascular lithotripsy for treatment of severely calcified coronary stenoses: the Disrupt CAD II study.
        Circ Cardiovasc Interv. 2019; 12e008434
        • Kereiakes D.J.
        • Di Mario C.
        • Riley R.F.
        • et al.
        Intravascular lithotripsy for treatment of calcified coronary lesions: patient-level pooled analysis of the Disrupt CAD studies.
        JACC Cardiovasc Interv. 2021; 14: 1337-1348
      1. Pham V, Bonnet M, Varenne O, et al. In-stent use of intravascular coronary lithotripsy for restenosis and stent underexpansion, a multicenter experience [e-pub ahead of print]. Can J Cardiol doi: 10.1016/j.cjca.2022.05.020.

        • Pinkerton C.A.
        • Slack J.D.
        • Van Tassel J.W.
        • Orr C.M.
        Angioplasty for dilatation of complex coronary artery bifurcation stenoses.
        Am J Cardiol. 1985; 55: 1626-1628
        • Di Gioia G.
        • Sonck J.
        • Ferenc M.
        • et al.
        Clinical outcomes following coronary bifurcation PCI techniques: a systematic review and network meta-analysis comprising 5,711 patients.
        JACC Cardiovasc Interv. 2020; 13: 1432-1444
        • Collins N.
        • Džavík V.
        A modified balloon crush approach improves side branch access and side branch stent apposition during crush stenting of coronary bifurcation lesions.
        Catheter Cardiovasc Interv. 2006; 68: 365-371
        • Džavík V.
        • Kharbanda R.
        • Ivanov J.
        • et al.
        Predictors of long-term outcome after crush stenting of coronary bifurcation lesions: importance of the bifurcation angle.
        Am Heart J. 2006; 152: 762-769
        • Yamashita T.
        • Nishida T.
        • Adamian M.G.
        • et al.
        Bifurcation lesions: two stents versus one stent--immediate and follow-up results.
        J Am Coll Cardiol. 2000; 35: 1145-1151
        • Suwaidi Al J.
        • Berger P.B.
        • Rihal C.S.
        • et al.
        Immediate and long-term outcome of intracoronary stent implantation for true bifurcation lesions.
        J Am Coll Cardiol. 2000; 35: 929-936
        • Lefèvre T.
        • Morice M.C.
        • Sengottuvel G.
        • et al.
        Influence of technical strategies on the outcome of coronary bifurcation stenting.
        EuroIntervention. 2005; 1: 31-37
        • Chen S.L.
        • Sheiban I.
        • Xu B.
        • et al.
        Impact of the complexity of bifurcation lesions treated with drug-eluting stents: the DEFINITION study (Definitions and impact of complEx biFurcation lesIons on clinical outcomes after percutaNeous coronary IntervenTIOn using drug-eluting steNts).
        JACC Cardiovasc Interv. 2014; 7: 1266-1276
        • Klein L.W.
        • Tra Y.
        • Garratt K.N.
        • et al.
        Occupational health hazards of interventional cardiologists in the current decade: results of the 2014 SCAI membership survey.
        Catheter Cardiovasc Interv. 2015; 86: 913-924
        • Beyar R.
        • Gruberg L.
        • Deleanu D.
        • et al.
        Remote-control percutaneous coronary interventions: concept, validation, and first-in-humans pilot clinical trial.
        J Am Coll Cardiol. 2006; 47: 296-300
        • Mahmud E.
        • Naghi J.
        • Ang L.
        • et al.
        Demonstration of the safety and feasibility of robotically assisted percutaneous coronary intervention in complex coronary lesions: results of the CORA-PCI Study (Complex Robotically Assisted Percutaneous Coronary Intervention).
        JACC Cardiovasc Interv. 2017; 10: 1320-1327
        • Sardar P.
        • Abbott J.D.
        • Kundu A.
        • Aronow H.D.
        • Granada J.F.
        • Giri J.
        Impact of artificial intelligence on interventional cardiology: from decision-making aid to advanced interventional procedure assistance.
        JACC Cardiovasc Interv. 2019; 12: 1293-1303