Advertisement
Canadian Journal of Cardiology

Sports-related sudden cardiac death attributable to myocarditis: A systematic review and meta-analysis

      ABSTRACT

      BACKGROUND

      The incidence of sports-related sudden cardiac death (SrSCD) attributable to myocarditis is unknown. With the known association between SARS-CoV-2 (COVID-19) and myocarditis, an understanding of pre-pandemic rates of SrSCD due to myocarditis will be important in assessing a change of risk in the future. The objective was to ascertain the incidence of SrSCD or aborted sudden cardiac death (SCD) attributable to myocarditis in the general population.

      METHODS

      A literature search through PubMed/Medline and Ovid/EMBASE was completed. Studies of SrSCD with autopsy data or clear cause aborted SrSCD were included. SrSCD was defined as SCD which occurred within 1 hour of exercise. Data were abstracted by two independent reviewers using the MOOSE guidelines. Risk assessment was performed using the Joanna Briggs Institute Critical Appraisal Checklist for Prevalence Studies. Random effects models were used to report the incidence and 95% confidence intervals (CIs). The primary outcome was the incidence of SrSCD attributable to myocarditis, and the secondary outcome was SrSCD overall.

      RESULTS

      Fifteen studies were included comprising 347,092,437 person-years (PY). There were 1955 SrSCD or aborted SrSCD overall with an incidence of 0.93 (95% CI: 0.47 to 1.82) per 100,000 PY. Fifty-three SrSCD were attributed to myocarditis with an incidence of 0.047 (95% CI: 0.018 to 0.123) per 100,000 PY or 1 death attributable to myocarditis in 2.13 million PY.

      CONCLUSIONS

      In this meta-analysis, the overall incidence of SrSCD is low. Furthermore, SrSCD attributed to myocarditis is exceedingly rare.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      REFERENCES

        • Malholtra A.
        • Dhutia H.
        • Finocchiaro G.
        • et al.
        Outcomes of Cardiac Screening in Adolescent Soccer Players.
        N Engl J Med. 2018; 379: 524-534https://doi.org/10.1056/NEJMoa1714719
        • Marijon E.
        • Tafflet M.
        • Celermajer D.S.
        • Dumas F.
        Sports-Related Sudden Death in the General Population.
        Circulation. 2011; 124: 672-681https://doi.org/10.1161/CIRCULATIONAHA.110.008979
        • Mohananey D.
        • Masri A.
        • Desai R.
        • Dalal S.
        • Phelan D.
        Global Incidence of Sports-Related Sudden Cardiac Death.
        J Am Coll Cardiol. 2017; 69: 2672-2673
        • Siripanthong B.
        • Cantab B.A.
        • Nazarian S.
        • et al.
        Recognizing COVID-19 – related myocarditis : The possible pathophysiology and proposed guideline for diagnosis and management.
        Hear Rhythm. 2020; 17: 1463-1471https://doi.org/10.1016/j.hrthm.2020.05.001
        • Harris K.M.
        • Mackey-Bojack S.
        • Bennett M.
        • Nwaudo D.
        • Duncanson E.
        • Maron B.J.
        Sudden Unexpected Death Due to Myocarditis in Young People, Including Athletes.
        Am J Cardiol. 2020; 143: 131-134https://doi.org/10.1016/j.amjcard.2020.12.028
        • Daniels C.J.
        • Rajpal S.
        • Greenshields J.T.
        • et al.
        Prevalence of Clinical and Subclinical Myocarditis in Competitive Athletes With Recent SARS-CoV-2 Infection Results From the Big Ten COVID-19 Cardiac Registry.
        JAMA Cardiol. 2021; https://doi.org/10.1001/jamacardio.2021.2065
        • Moulson N.
        • Petek B.J.
        • Drezner J.A.
        • et al.
        SARS-CoV-2 Cardiac Involvement in Young Competitive Athletes.
        Circulation. 2021; 144: 256-266https://doi.org/10.1161/CIRCULATIONAHA.121.054824
        • Martinez M.W.
        • Tucker A.M.
        • Bloom O.J.
        • et al.
        Prevalence of Inflammatory Heart Disease Among Professional Athletes With Prior COVID-19 Infection Who Received Systematic Return-to-Play Cardiac Screening.
        JAMA Cardiol. 2021; 6: 745-752https://doi.org/10.1001/jamacardio.2021.0565
        • Inciardi R.M.
        • Lupi L.
        • Zaccone G.
        • et al.
        Cardiac Involvement in a Patient With Coronavirus Disease 2019 (COVID-19).
        JAMA Cardiol. 2020; 2019: 819-824https://doi.org/10.1001/jamacardio.2020.1096
        • Corrado D.
        • Basso C.
        • Pavai A.
        • Michieli P.
        Trends in Sudden Cardiovascular Death in Young Competitive Athletes After Implementation of a Preparticipation Screening Program.
        J Am Med Assoc. 2006; 296: 1593-1601
        • Stroup D.F.
        • Berlin J.A.
        • Morton S.C.
        • et al.
        Meta-analysis of Observational Studies In Epidemiology.
        JAMA. 2021; 285: 2008-2012
        • Harmon K.G.
        • Asif I.M.
        • Maleszewski J.J.
        • et al.
        Incidence and Etiology of Sudden Cardiac Arrest and Death in High School Athletes in the United States.
        Mayo Clin Proc. 2016; 91: 1493-1502https://doi.org/10.1016/j.mayocp.2016.07.021
        • Landry C.
        • Allan K.
        • Connelly K.
        • Cunningham K.
        • Morrison L.J.
        • Dorian P.
        Sudden Cardiac Arrest during Participation in Competitive Sports.
        N Engl J Med. 2017; 377: 1943-1953https://doi.org/10.1056/NEJMoa1615710
        • Drezner J.A.
        • Rao A.L.
        • Heistand J.
        • Bloomingdale M.K.
        • Harmon K.G.
        Effectiveness of Emergency Response Planning for Sudden Cardiac Arrest in United States High Schools With Automated External Defibrillators.
        Circulation. 2009; 120: 518-525https://doi.org/10.1161/CIRCULATIONAHA.109.855890
      1. The Joanna Briggs Institute. The Joanna Briggs Institute Critical Appraisal tools for use in JBI Systematic Reviews: Checklist for Prevalence Studies. 2017.

        • Borenstein M.
        • Hedges L.V.
        • Higgins J.P.T.
        • Rothstein H.R.
        A basic introduction to fixed-effect and random-effects models for meta-analysis.
        Res Synth Methods. 2010; : 97-111https://doi.org/10.1002/jrsm.12
        • Riley R.D.
        • Higgins J.P.T.
        • Deeks J.J.
        Interpretation of random effects meta-analyses.
        BMJ. 2011; 342: 964-967https://doi.org/10.1136/bmj.d549
        • Higgins J.P.T.
        • Thompson S.G.
        • Deeks J.J.
        • Altman D.G.
        Measuring inconsistency in meta-analyses.
        Br Med J. 2003; 327: 557-560
        • Balduzzi S.
        • Rücker G.
        • Schwarzer G.
        How to perform a meta-analysis with R : a practical tutorial.
        Evid Based Ment Heal. 2019; 22: 153-160https://doi.org/10.1136/ebmental-2019-300117
        • Viechtbauer W.
        Conducting Meta-Analyses in R with the metafor Package.
        J Stat Softw. 2010; 36: 1-47
      2. Team RC. R: A language and environment for statistical computing. 2013;201.

        • Harmon K.G.
        • Asif I.M.
        • Maleszewski J.J.
        • et al.
        Incidence , Cause , and Comparative Frequency of Sudden Cardiac Death in National Collegiate Athletic Association Athletes. A Decade in Review.
        Circulation. 2015; 132: 10-19https://doi.org/10.1161/CIRCULATIONAHA.115.015431
        • Maron B.J.
        • Haas T.S.
        • Ahluwalia A.
        • Rutten-ramos S.C.
        Incidence of cardiovascular sudden deaths in Minnesota high school athletes.
        Hear Rhythm. 2013; 10: 374-377https://doi.org/10.1016/j.hrthm.2012.11.024
        • Risgaard B.
        • Winkel B.G.
        • Jabbari R.
        • Thomsen J.L.
        • Ottesen G.L.
        Sports-related sudden cardiac death in a competitive and a noncompetitive athlete population aged 12 to 49 years: Data from an unselected nationwide study in Denmark.
        Hear Rhythm. 2014; 11: 1673-1681https://doi.org/10.1016/j.hrthm.2014.05.026
        • Waller B.
        • Hawley D.
        • Clark M.
        • Pless J.
        Incidence of Sudden Athletic Deaths Between 1985 and 1990 in Marion County , Indiana.
        Clin Pathol Correl. 1992; 15: 851-858
        • Phillips M.
        • Robinowitz M.
        • Higgins J.R.
        • Boran K.J.
        • Reed T.
        • Virmani R.
        Sudden Cardiac Death in Air Force Recruits: A 20-Year Review.
        JAMA. 2021; 256: 1-4
        • Holst A.G.
        • Winkel B.G.
        • Theilade J.
        • et al.
        Incidence and etiology of sports-related sudden cardiac death in Denmark — Implications for preparticipation screening.
        Hear Rhythm. 2010; 7: 1365-1371https://doi.org/10.1016/j.hrthm.2010.05.021
      3. Finocchiaro G, Papadakis M, Robertus J, et al. Etiology of Sudden Death in Sports. Insights from a United Kingdom Regional Registry. 2016;67(18):2108-2015. doi:10.1016/j.jacc.2016.02.062

        • Pelliccia A.
        • Sharma S.
        • Gati S.
        • et al.
        2020 ESC Guidelines on sports cardiology and exercise in patients with cardiovascular disease The Task Force on sports cardiology and exercise in patients with.
        Eur Heart J. 2020; 00: 1-80https://doi.org/10.1093/eurheartj/ehaa605
      4. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990 – 2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;386:743-800. doi:10.1016/S0140-6736(15)60692-4

        • Mckinney J.
        • Connelly K.A.
        • Dorian P.
        • et al.
        COVID-19 - Myocarditis and Return to Play: Reflections and Recommendations From a Canadian Working Group.
        Can J Cardiol. 2021; : 1-10https://doi.org/10.1016/j.cjca.2020.11.007
        • Kim J.
        • Levine B.
        • Phelan D.
        • Emery M.
        Coronavirus Disease 2019 and the Athletic Heart. Emerging Perspectives on Pathology, Risks, and Return to Play.
        JAMA Cardiol. 2021; 6: 219-227https://doi.org/10.1001/jamacardio.2020.5890
        • Udelson J.E.
        • Rowin E.J.
        • Maron B.J.
        Return to Play for Athletes After COVID-19 Infection. The Fog Begins to Clear.
        JAMA Cardiol. 2021; 6: 997-999https://doi.org/10.1001/jamacardio.2021.2079
        • Pesce M.
        • Agostoni P.
        • Bøtker H.
        • et al.
        COVID-19-related cardiac complications from clinical evidences to basic mechanisms: opinion paper of the ESC Working Group on Cellular Biology of the Heart.
        Cardiovasc Res. 2021; 117: 2148-2160https://doi.org/10.1093/cvr/cvab201
        • Tschope C.
        • Ammirati E.
        • Bozkurt B.
        • et al.
        Myocarditis and inflammatory cardiomyopathy : current evidence and future directions.
        Nat Rev Cardiol. 2021; 18: 169-193https://doi.org/10.1038/s41569-020-00435-x
        • Eckart R.E.
        • Shry E.A.
        • Burke A.P.
        • et al.
        Sudden Death in Young Adults: An Autopsy-Based Series of a Population Undergoing Active Surveillance.
        J Am Coll Cardiol. 2011; 58: 1254-1261https://doi.org/10.1016/j.jacc.2011.01.049
        • Grani C.
        • Chappex N.
        • Fracasso T.
        • et al.
        Sports-related sudden cardiac death in Switzerland classified by static and dynamic components of exercise.
        Eur J Prev Cardiol. 2016; 23: 1228-1236https://doi.org/10.1177/2047487316632967
        • Morentin B.
        • Suarez-Mier P.
        • Monzo A.
        • et al.
        Sports-related sudden cardiac death in Spain. A multicenter, population-based, forensic study of 288 cases.
        Rev Esp Cadiologia. 2021; 74: 225-232https://doi.org/10.1016/j.rec.2020.05.044
        • Van Camp S.
        • Bloor C.
        • Mueller F.
        • Cantu R.
        • Olson H.
        Nontraumatic spots death in high school and college athletes.
        Med Sci Sports Exerc. 1995; : 641-647