Advertisement
Canadian Journal of Cardiology

Sports-Related Sudden Cardiac Death Attributable to Myocarditis: A Systematic Review and Meta-analysis

      Abstract

      Background

      The incidence of sports-related sudden cardiac death (SrSCD) attributable to myocarditis is unknown. With the known association between SARS-CoV-2 (COVID-19) and myocarditis, an understanding of pre-pandemic rates of SrSCD due to myocarditis will be important in assessing a change of risk in the future. The objective was to ascertain the incidence of SrSCD or aborted sudden cardiac death (SCD) attributable to myocarditis in the general population.

      Methods

      A literature search through PubMed/Medline and Ovid/Embase was completed. Studies of SrSCD with autopsy data or clear-cause aborted SrSCD were included. SrSCD was defined as SCD which occurred within 1 hour of exercise. Data were abstracted by 2 independent reviewers using the MOOSE guidelines. Risk assessment was performed with the Joanna Briggs Institute Critical Appraisal Checklist for Prevalence Studies. Random-effects models were used to report the incidence and 95% CIs. The primary outcome was the incidence of SrSCD attributable to myocarditis, and the secondary outcome was SrSCD overall.

      Results

      Fifteen studies were included comprising 347,092,437 person-years (PY). There were 1955 SrSCD or aborted SrSCD overall with an incidence of 0.93 (95% CI 0.47-1.82) per 100,000 PY. Fifty-three SrSCD were attributed to myocarditis with an incidence of 0.047 (95% CI 0.018-0.123) per 100,000 PY, or 1 death attributable to myocarditis in 2.13 million PY.

      Conclusions

      In this meta-analysis, the overall incidence of SrSCD was low. Furthermore, SrSCD attributed to myocarditis is exceedingly rare.

      Résumé

      Contexte

      L’incidence de l’arrêt cardiaque subit lié à la pratique sportive (ACSs) et attribuable à une myocardite reste inconnue. Avec l’association connue entre le SRAS-CoV-2 (COVID-19) et la myocardite, il serait important de connaître le taux prépandémique d’ACSs attribuables à une myocardite pour évaluer l’évolution du risque. L’objectif était de vérifier l’incidence de l’ACSs ou de l’arrêt cardiaque subit (ACS) avorté attribuable à une myocardite dans la population générale.

      Méthodologie

      Une recherche documentaire dans PubMed/Medline et Ovid/Embase a été réalisée. Elle comprenait les études portant sur les ACSs et leurs rapports d’autopsie ou les ACSs avortés et de cause évidente. L’ACSs y était défini comme un ACS survenant dans la première heure d’une activité physique. Deux examinateurs indépendants ont recueilli les données selon les lignes directrices MOOSE. Une évaluation du risque a été réalisée à partir de la liste de vérification du Joanna Briggs Institute pour l’évaluation critique des études sur la prévalence. Des modèles à effets aléatoires ont servi à calculer l’incidence et les intervalles de confiance (IC) à 95 %. L’incidence de l’ACSs attribuable à une myocardite constituait le critère principal et l’ACSs en général, le critère secondaire.

      Résultats

      L’analyse portait sur quinze études regroupant 347 092 437 années-personnes (AP). Elle a permis de recenser un total de 1 955 ACSs ou ACSs avortés, soit une incidence de 0,93 (IC à 95 %; 0,47-1,82) pour 100 000 AP. Cinquante-trois ACSs ont été attribués à une myocardite, soit une incidence de 0,047 (IC à 95 %; 0,018-0,123) pour 100 000 AP, ce qui représente une mort attribuable à la myocardite pour 2,13 millions d’AP.

      Conclusions

      Il ressort de cette méta-analyse que l’incidence de l’ACSs est faible. De plus, les cas d’ACSs attribuables à une myocardite sont extrêmement rares.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Malholtra A.
        • Dhutia H.
        • Finocchiaro G.
        • et al.
        Outcomes of cardiac screening in adolescent soccer players.
        N Engl J Med. 2018; 379: 524-534
        • Marijon E.
        • Tafflet M.
        • Celermajer D.S.
        • Dumas F.
        Sports-related sudden death in the general population.
        Circulation. 2011; 124: 672-681
        • Mohananey D.
        • Masri A.
        • Desai R.
        • Dalal S.
        • Phelan D.
        Global incidence of sports-related sudden cardiac death.
        J Am Coll Cardiol. 2017; 69: 2672-2673
        • Siripanthong B.
        • Cantab B.A.
        • Nazarian S.
        • et al.
        Recognising COVID-19–related myocarditis: the possible pathophysiology and proposed guideline for diagnosis and management.
        Heart Rhythm. 2020; 17: 1463-1471
        • Harris K.M.
        • Mackey-Bojack S.
        • Bennett M.
        • et al.
        Sudden unexpected death due to myocarditis in young people, including athletes.
        Am J Cardiol. 2020; 143: 131-134
        • Daniels C.J.
        • Rajpal S.
        • Greenshields J.T.
        • et al.
        Prevalence of clinical and subclinical myocarditis in competitive athletes with recent SARS-CoV-2 infection results From the Big Ten COVID-19 Cardiac Registry.
        JAMA Cardiol. 2021; 6: 1078-1087
        • Moulson N.
        • Petek B.J.
        • Drezner J.A.
        • et al.
        SARS-CoV-2 cardiac involvement in young competitive athletes.
        Circulation. 2021; 144: 256-266
        • Martinez M.W.
        • Tucker A.M.
        • Bloom O.J.
        • et al.
        Prevalence of inflammatory heart disease among professional athletes with prior COVID-19 infection who received systematic return-to-play cardiac screening.
        JAMA Cardiol. 2021; 6: 745-752
        • Inciardi R.M.
        • Lupi L.
        • Zaccone G.
        • et al.
        Cardiac involvement in a patient with coronavirus disease 2019 (COVID-19).
        JAMA Cardiol. 2020; 5: 819-824
        • Corrado D.
        • Basso C.
        • Pavai A.
        • Michieli P.
        Trends in sudden cardiovascular death in young competitive athletes after implementation of a preparticipation screening program.
        J Am Med Assoc. 2006; 296: 1593-1601
        • Stroup D.F.
        • Berlin J.A.
        • Morton S.C.
        • et al.
        Meta-analysis of observational studies in epidemiology.
        JAMA. 2021; 285: 2008-2012
        • Harmon K.G.
        • Asif I.M.
        • Maleszewski J.J.
        • et al.
        Incidence and etiology of sudden cardiac arrest and death in high school athletes in the United States.
        Mayo Clin Proc. 2016; 91: 1493-1502
        • Landry C.
        • Allan K.
        • Connelly K.
        • et al.
        Sudden cardiac arrest during participation in competitive sports.
        N Engl J Med. 2017; 377: 1943-1953
        • Drezner J.A.
        • Rao A.L.
        • Heistand J.
        • Bloomingdale M.K.
        • Harmon K.G.
        Effectiveness of emergency response planning for sudden cardiac arrest in United States high schools with automated external defibrillators.
        Circulation. 2009; 120: 518-525
        • Joanna Briggs Institute
        The Joanna Briggs Institute critical appraisal tools for use in JBI systematic reviews: checklist for prevalence studies.
        (Available at:)
        • Borenstein M.
        • Hedges L.V.
        • Higgins J.P.T.
        • Rothstein H.R.
        A basic introduction to fixed-effect and random-effects models for meta-analysis.
        Res Synth Methods. 2010; : 97-111
        • Riley R.D.
        • Higgins J.P.T.
        • Deeks J.J.
        Interpretation of random effects meta-analyses.
        BMJ. 2011; 342: 964-967
        • Higgins J.P.T.
        • Thompson S.G.
        • Deeks J.J.
        • Altman D.G.
        Measuring inconsistency in meta-analyses.
        Br Med J. 2003; 327: 557-560
        • Balduzzi S.
        • Rücker G.
        • Schwarzer G.
        How to perform a meta-analysis with R: a practical tutorial.
        Evid Based Ment Heal. 2019; 22: 153-160
        • Viechtbauer W.
        Conducting meta-analyses in R with the metafor package.
        J Stat Softw. 2010; 36: 1-47
        • Team R.C.
        R: a language and environment for statistical computing.
        (2013;201)
        Date: 2013
        • Eckart R.E.
        • Shry E.A.
        • Burke A.P.
        • et al.
        Sudden death in young adults: an autopsy-based series of a population undergoing active surveillance.
        J Am Coll Cardiol. 2011; 58: 1254-1261
        • Grani C.
        • Chappex N.
        • Fracasso T.
        • et al.
        Sports-related sudden cardiac death in Switzerland classified by static and dynamic components of exercise.
        Eur J Prev Cardiol. 2016; 23: 1228-1236
        • Harmon K.G.
        • Asif I.M.
        • Maleszewski J.J.
        • et al.
        Incidence, cause, and comparative frequency of sudden cardiac death in National Collegiate Athletic Association athletes. A decade in review.
        Circulation. 2015; 132: 10-19
        • Holst A.G.
        • Winkel B.G.
        • Theilade J.
        • et al.
        Incidence and etiology of sports-related sudden cardiac death in Denmark—implications for preparticipation screening.
        Heart Rhythm. 2010; 7: 1365-1371
        • Maron B.J.
        • Haas T.S.
        • Ahluwalia A.
        • Rutten-ramos S.C.
        Incidence of cardiovascular sudden deaths in Minnesota high school athletes.
        Heart Rhythm. 2013; 10: 374-377
        • Morentin B.
        • Suarez-Mier P.
        • Monzo A.
        • et al.
        Sports-related sudden cardiac death in Spain. A multicentre, population-based, forensic study of 288 cases.
        Rev Esp Cadiologia. 2021; 74: 225-232
        • Phillips M.
        • Robinowitz M.
        • Higgins J.R.
        • et al.
        Sudden cardiac death in Air Force recruits: a 20-year review.
        JAMA. 2021; 256: 1-4
        • Risgaard B.
        • Winkel B.G.
        • Jabbari R.
        • Thomsen J.L.
        • Ottesen G.L.
        Sports-related sudden cardiac death in a competitive and a noncompetitive athlete population aged 12 to 49 years: data from an unselected nationwide study in Denmark.
        Heart Rhythm. 2014; 11: 1673-1681
        • Van Camp S.
        • Bloor C.
        • Mueller F.
        • Cantu R.
        • Olson H.
        Nontraumatic sports death in high school and college athletes.
        Med Sci Sports Exerc. 1995; : 641-647
        • Waller B.
        • Hawley D.
        • Clark M.
        • Pless J.
        Incidence of sudden athletic deaths between 1985 and 1990 in Marion County, Indiana.
        Clin Cardiol. 1992; 15: 851-858
        • Finocchiaro G.
        • Papadakis M.
        • Robertus J.
        • et al.
        Etiology of sudden death in sports.
        insights from a United Kingdom regional registry. J Am Coll Cardiol. 2016; 67: 2108-2115
        • Pelliccia A.
        • Sharma S.
        • Gati S.
        • et al.
        2020 ESC guidelines on sports cardiology and exercise in patients with cardiovascular disease.
        Eur Heart J. 2021; 42: 17-96
      1. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013.
        Lancet. 2015; 386: 743-800
        • McKinney J.
        • Connelly K.A.
        • Dorian P.
        • et al.
        COVID-19–myocarditis and return to play: reflections and recommendations from a Canadian working group.
        Can J Cardiol. 2021; 37: 1165-1174
        • Kim J.
        • Levine B.
        • Phelan D.
        • Emery M.
        Coronavirus disease 2019 and the athletic heart: emerging perspectives on pathology, risks, and return to play.
        JAMA Cardiol. 2021; 6: 219-227
        • Udelson J.E.
        • Rowin E.J.
        • Maron B.J.
        Return to play for athletes after COVID-19 infection: the fog begins to clear.
        JAMA Cardiol. 2021; 6: 997-999
        • Pesce M.
        • Agostoni P.
        • Bøtker H.
        • et al.
        COVID-19–related cardiac complications from clinical evidences to basic mechanisms: opinion paper of the ESC Working Group on Cellular Biology of the Heart.
        Cardiovasc Res. 2021; 117: 2148-2160
        • Tschope C.
        • Ammirati E.
        • Bozkurt B.
        • et al.
        Myocarditis and inflammatory cardiomyopathy: current evidence and future directions.
        Nat Rev Cardiol. 2021; 18: 169-193

      Linked Article