Advertisement
Canadian Journal of Cardiology

A Continuous Pacing and Recording Technique for Differentiating Left Bundle Branch Pacing From Left Ventricular Septal Pacing: Electrophysiologic Evidence From an Intrapatient-Controlled Study

Published:September 13, 2022DOI:https://doi.org/10.1016/j.cjca.2022.09.008

      Abstract

      Background

      Left bundle branch pacing (LBBP) is a promising approach for achieving near-physiologic pacing. However, differentiating LBBP from left ventricular septal endocardial pacing (LVS(e)P) remains a challenge. This study aimed to establish a simple and effective method for differentiating LBBP from LVS(e)P and to evaluate their electrophysiologic characteristics.

      Methods

      LBBP, using continuous uninterrupted pacing and real-time monitoring of electrocardiograms along with intracardiac electrograms, was performed in 97 consecutive patients. We evaluated the electrophysiologic characteristics observed during LBBP using 6 modalities: right ventricular septal pacing (RVSP), intraventricular septal pacing (IVSP 1 and 2), LVS(e)P, nonselective LBBP (NSLBBP), and selective LBBP (SLBBP).

      Results

      Of the 97 patients, 87 (89.7%) met the criteria (abrupt change in paced QRS morphology with a transition from Qr to QR/qR in lead V1 and shortening of stimulus to V6 R-wave peak time [Stim-V6RWPT] of ≥ 10 ms with constant output while rather than after lead screwing) for nonselective left bundle branch (LBB) capture. Selective LBB capture was observed in 82 patients (84.5%). The Stim-V6RWPT of NSLBBP and SLBBP were significantly shorter than LVS(e)P (respectively, 67.1 ± 8.7 ms, 67.0 ± 9.3 ms, and 82.1 ± 10.9 ms). Stim-QRSend was the narrowest in IVSP2 (136.6 ± 15.2 ms) instead of NSLBBP (140.0 ± 17.1 ms).

      Conclusions

      The uninterrupted pacing technique for differentiating LBBP from LVS(e)P in the same group of patients is feasible. Electrophysiologic evidence from our intrapatient-controlled study shows that LBBP and LVS(e)P differ in ventricular electrical synchronization.

      Résumé

      Contexte

      La stimulation de la branche gauche (SBG) est une approche prometteuse pour obtenir une stimulation quasi. Toutefois, il reste difficile de différencier la SBG et la endocardique du ventricule gauche par voie transseptale (S(e)VGTS). Notre étude visait à établir une méthode simple et efficace pour différencier la SBG de la S(e)VGTS et à évaluer leurs caractéristiques électrophysiologiques.

      Méthodologie

      Une SBG avec une stimulation sans interruption accompagnée d’une surveillance des électrocardiogrammes en temps réel et des électrogrammes intracardiaques a été réalisée auprès de 97 patients consécutifs. Nous avons évalué les caractéristiques électrophysiologiques au cours de la SBG selon six modalités : la stimulation septale du ventricule droit (SSVD), la stimulation septale intraventriculaire (SIVS1 et 2), la S(e)VGTS, la SBG sélective (SBGS) et la SBG non sélective (SBGNS).

      Résultats

      Sur les 97 patients ayant participé à l’étude, 87 (89,7 %) ont répondu au critère pour un enregistrement correspondant à une SBG non sélective (c’est-à-dire un changement brusque de la morphologie du QRS stimulé, avec une transition de Qr à QR/qR dans la dérivation V1 et un raccourcissement de ≥ 10 ms de l’intervalle entre le stimulus et le sommet de l’onde R dans la dérivation V6 [Stim-V6RWPT pour stimulus to V6 R-wave peak time] pour une stimulation constante, pendant que la sonde était vissée plutôt qu’au terme de l’intervention). Une SBG sélective a été observée chez 82 patients (84,5 %). L’intervalle Stim-V6RWPT était significativement plus court pour les SBGNS et les SBGS que pour les S(e)VGTS (67,1 ± 8,7 ms, 67,0 ± 9,3 ms et 82,1 ± 10,9 ms, respectivement). L’intervalle entre le stimulus et la fin du QRS était le plus court pour la SIVS2 (136,6 ± 15,2 ms) plutôt que pour la SBGNS (140,0 ± 17,1 ms).

      Conclusions

      La technique de stimulation sans interruption est réalisable pour distinguer la SBG de la S(e)VGTS dans un même groupe de patients. Les données électrophysiologiques de notre étude avec comparaison intrapatient démontrent que la synchronisation électrique ventriculaire diffère entre la SBG et la S(e)VGTS.

      Graphical abstract

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Huang W.
        • Su L.
        • Wu S.
        • et al.
        A novel pacing strategy with low and stable output: pacing the left bundle branch immediately beyond the conduction block.
        Can J Cardiol. 2017; 33: 1736.e1-1736.e3
        • Wu S.
        • Su L.
        • Vijayaraman P.
        • Zheng R.
        • et al.
        Left bundle branch pacing for cardiac resynchronization therapy: nonrandomised on-treatment comparison with His bundle pacing and biventricular pacing.
        Can J Cardiol. 2021; 37: 319-328
        • Vijayaraman P.
        • Nayak H.M.
        • Ellenbogen K.A.
        Left ventricular septal vs left bundle branch pacing: a new beginning in cardiac resynchronization therapy?.
        J Am Coll Cardiol. 2020; 75: 360-362
        • Heckman L.I.B.
        • Luermans J.
        • Curila K.
        • et al.
        Comparing ventricular synchrony in left bundle branch and left ventricular septal pacing in pacemaker patients.
        J Clin Med. 2021 17; : 822
        • Hou X.
        • Qian Z.
        • Wang Y.
        • et al.
        Feasibility and cardiac synchrony of permanent left bundle branch pacing through the interventricular septum.
        Europace. 2019; 21: 1694-1702
        • Wu S.
        • Sharma P.S.
        • Huang W.
        Novel left ventricular cardiac synchronization: left ventricular septal pacing or left bundle branch pacing?.
        Europace. 2020; 22: ii10-ii18
        • Jastrzębski M.
        • Kiełbasa G.
        • Curila K.
        • et al.
        Physiology-based electrocardiographic criteria for left bundle branch capture.
        Heart Rhythm. 2021; 18: 935-943
        • Jastrzębski M.
        • Burri H.
        • Kiełbasa G.
        • et al.
        The V6-V1 interpeak interval: a novel criterion for the diagnosis of left bundle branch capture.
        Europace. 2022; 24: 40-47
        • Wu S.
        • Chen X.
        • Wang S.
        • et al.
        Evaluation of the criteria to distinguish left bundle branch pacing from left ventricular septal pacing.
        JACC Clin Electrophysiol. 2021; 7: 1166-1177
        • Chen X.
        • Qian Z.
        • Zou F.
        • et al.
        Differentiating left bundle branch pacing and left ventricular septal pacing: an algorithm based on intracardiac electrophysiology.
        J Cardiovasc Electrophysiol. 2022; 33: 448-457
      1. Shen J, Jiang L, Jiang F, et al. Premature beat of selective left bundle branch: a novel marker for reaching and capturing the left bundle branch [e-pub ahead of print]. J Interv Card Electrophysiol. doi:10.1007/s10840-022-01203-2

        • Jastrzębski M.
        • Kiełbasa G.
        • Moskal P.
        • et al.
        Fixation beats: a novel marker for reaching the left bundle branch area during deep septal lead implantation.
        Heart Rhythm. 2021; 18: 562-569
        • Shen J.
        • Jiang L.
        • Pan L.
        Direct and indirect capture of the left bundle branch: dynamic retrograde atrial potential abrupt and gradual decrease.
        HeartRhythm Case Rep. 2022; 8: 425-427
        • Zhang S.
        • Zhou X.
        • Gold M.R.
        Left bundle branch pacing: JACC review topic of the week.
        J Am Coll Cardiol. 2019; 74: 3039-3049
        • Shen J.
        • Jiang L.
        • Cai X.
        • et al.
        Left bundle branch pacing guided by continuous pacing technique that can monitor electrocardiograms and electrograms in real time: a technical report.
        Can J Cardiol. 2022; 38: 1315-1317
        • Wu H.
        • Jiang L.
        • Shen J.
        Recording an isoelectric interval as an end point of left bundle branch pacing with continuous paced intracardiac electrogram monitoring.
        Kardiol Pol. 2022; 80: 664-671
        • Mafi-Rad M.
        • Luermans J.G.L.M.
        • Blaauw Y.
        • et al.
        Feasibility and acute hemodynamic effect of left ventricular septal pacing by transvenous approach through the interventricular septum.
        Circ Arrhythm Electrophysiol. 2016; 9e003344
        • Huang W.
        • Chen X.
        • Su L.
        • et al.
        A beginner’s guide to permanent left bundle branch pacing.
        Heart Rhythm. 2019; 16: 1791-1796
        • Jastrzębski M.
        • Moskal P.
        Reaching the left bundle branch pacing area within 36 heartbeats.
        Kardiol Pol. 2021; 79: 587-588
        • Liu X.
        • Niu H.X.
        • Gu M.
        • et al.
        Contrast-enhanced image-guided lead deployment for left bundle branch pacing.
        Heart Rhythm. 2021; 18: 1318-1325
        • Zhang J.
        • Wang Z.
        • Zu L.
        • et al.
        Simplifying physiological left bundle branch area pacing using a new nine-partition method.
        Can J Cardiol. 2021; 37: 329-338
        • Curila K.
        • Jurak P.
        • Jastrzebski M.
        • et al.
        Left bundle branch pacing compared to left ventricular septal myocardial pacing increases interventricular dyssynchrony but accelerates left ventricular lateral wall depolarisation.
        Heart Rhythm. 2021; 18: 1281-1289
        • Tung R.
        • Upadhyay G.A.
        The burden of proof in defining conduction pacing criteria: back to fundamental electrophysiology.
        JACC Clin Electrophysiol. 2021; 7: 1178-1181
        • Wu S.
        • Zhou X.
        • Huang W.
        Physiological pacing with conduction system capture: how to confirm bundle capture in clinical practice.
        J Cardiovasc Electrophysiol. 2022; 33: 1332-1335
        • Wu H.
        • Jiang L.
        • Shen J.
        Characteristics and proposed meaning of intrinsic intracardiac electrogram morphology observed during the left bundle branch pacing procedure: a case report.
        HeartRhythm Case Rep. 2022; 8: 485-487
        • Jastrzębski M.
        • Moskal P.
        • Bednarek A.
        • et al.
        Programmed deep septal stimulation: a novel manoeuvre for the diagnosis of left bundle branch capture during permanent pacing.
        J Cardiovasc Electrophysiol. 2020; 31: 485-493
        • Vijayaraman P.
        • Patel N.
        • Colburn S.
        • et al.
        His-Purkinje conduction system pacing in atrioventricular block: new insights into site of conduction block.
        JACC Clin Electrophysiol. 2022; 8: 73-85
        • Shimeno K.
        • Tamura S.
        • Nakatsuji K.
        • et al.
        Characteristics and proposed mechanisms of QRS morphology observed during the left bundle branch pacing procedure.
        Pacing Clin Electrophysiol. 2021; 44: 1987-1994
        • Shali S.
        • Wu W.
        • Bai J.
        • et al.
        Current of injury is an indicator of lead depth and performance during left bundle branch pacing lead implantation.
        Heart Rhythm. 2022; 19: 1281-1288
        • Mills R.W.
        • Cornelussen R.N.
        • Mulligan L.J.
        • et al.
        Left ventricular septal and left ventricular apical pacing chronically maintain cardiac contractile coordination, pump function and efficiency.
        Circ Arrhythm Electrophysiol. 2009; 2: 571-579
        • Sweeney M.O.
        • Hellkamp A.S.
        • Ellenbogen K.A.
        • et al.
        Adverse effect of ventricular pacing on heart failure and atrial fibrillation among patients with normal baseline QRS duration in a clinical trial of pacemaker therapy for sinus node dysfunction.
        Circulation. 2003; 107: 2932-2937
        • Andersen H.R.
        • Nielsen J.C.
        • Thomsen P.E.
        • et al.
        Long-term follow-up of patients from a randomised trial of atrial vs ventricular pacing for sick-sinus syndrome.
        Lancet. 1997; 350: 1210-1216