Advertisement
Canadian Journal of Cardiology

Combining Aortic Size With Arterial Hemodynamics Enhances Assessment of Future Thoracic Aortic Aneurysm Expansion

Published:September 19, 2022DOI:https://doi.org/10.1016/j.cjca.2022.09.010

      Abstract

      Background

      Thoracic aortic aneurysm (TAA) is a deadly disease whose current method for risk stratification (aneurysm size) is imperfect. We sought to evaluate whether combining aortic size with hemodynamic measures that reflect the aorta’s function was superior to aortic size alone in the assessment of TAA expansion.

      Methods

      One hundred thirty-seven nonoperated participants with TAA were followed prospectively. Aortic stiffness and pulsatile hemodynamics were noninvasively assessed at baseline with a combination of arterial tonometry with echocardiography using validated methodology. Aneurysm growth was calculated from standard imaging modalities. Multivariable linear regression models adjusted for potential confounders evaluated the association of aneurysm size and arterial hemodynamics, alone and in combination, with TAA growth.

      Results

      Sixty-nine percent of participants were male. Mean ± SD age, baseline aneurysm size, follow-up, and aneurysm expansion were, respectively, 62.2 ± 11.4 years, 45.9 ± 4.0 mm, 4.5 ± 1.9 years, and 0.41 ± 0.46 mm/year. In the linear regression models, the standardised β (β∗) for the association of aneurysm size with aneurysm expansion was 0.178 (P = 0.044). This was improved by combining aortic size with most measures of aortic function, with β∗ ranging from 0.192 (for aneurysm size combined with central diastolic blood pressure) to 0.484 (for aneurysm size combined with carotid-femoral pulse-wave velocity) (P ≤ 0.05 for each).

      Conclusions

      Combining aneurysm size with measures of arterial function improves assessment of aneurysm growth over TAA size alone, which is the standard for clinical decisions in TAA. Thus, combining aneurysm size with measures of aortic function provides a clinical advantage in the assessment of TAA disease activity.

      Résumé

      Contexte

      L’anévrisme de l’aorte thoracique (AAT) est une maladie mortelle pour laquelle la méthode actuelle de stratification du risque (la taille de l’anévrisme) demeure imparfaite. Nous avons entrepris d’évaluer si l’on pouvait mieux mesurer la dilatation de l’AAT en utilisant, en plus de la taille de l’aorte, des mesures hémodynamiques reflétant la fonction aortique.

      Méthodologie

      Cent trente-sept patients présentant un AAT et n’ayant pas subi d’opération ont été l’objet d’un suivi prospectif. Une évaluation initiale non invasive de la rigidité aortique et de la pulsatilité hémodynamique a été réalisée en conjuguant la tonométrie artérielle et l’échocardiographie, selon une méthodologie validée. La dilatation de l’anévrisme a été calculée à partir des techniques d’imagerie habituelles. Des modèles de régression linéaire multivariée, avec correction pour tenir compte des facteurs de confusion possibles, ont permis d’évaluer la corrélation entre la taille de l’anévrisme, les mesures artérielles hémodynamiques (séparément et ensemble) et la dilatation de l’AAT.

      Résultats

      Soixante-neuf pour cent des participants étaient des hommes. Les valeurs moyennes ± l’écart-type pour l’âge, la taille initiale de l’anévrisme, la taille de l’anévrisme au suivi et la dilatation de l’anévrisme étaient respectivement de 62,2 ± 11,4 ans, 45,9 ± 4,0 mm, 4,5 ± 1,9 ans et 0,41 ± 0,46 mm/an. Dans les modèles de régression linéaire, la valeur normalisée du coefficient β (β∗) de l’association entre la taille de l’anévrisme et la dilatation de l’anévrisme était de 0,178 (P = 0,044). On obtenait une amélioration en combinant la taille de l’aorte avec la plupart des mesures de la fonction aortique, avec une valeur β∗ allant de 0,192 (taille de l’anévrisme combinée à la pression centrale diastolique) à 0,484 (taille de l’anévrisme combinée à la vitesse de l’onde de pouls carotido-fémorale) (P ≤ 0,05 dans les deux cas).

      Conclusions

      Combiner la taille de l’anévrisme avec des mesures de la fonction artérielle permet une meilleure évaluation de la dilatation de l’anévrisme que celle obtenue en considérant uniquement la taille de l’AAT, comme on le fait habituellement pour la prise de décision clinique dans les cas d’AAT. Ainsi, il existe des avantages cliniques à l’utilisation conjointe de la taille de l’anévrisme et des mesures de la fonction aortique pour évaluer l’activité de la maladie en contexte d’AAT.

      Graphical abstract

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Juvonen T.
        • Ergin M.A.
        • Galla J.D.
        • et al.
        Prospective study of the natural history of thoracic aortic aneurysms.
        Ann Thorac Surg. 1997; 63: 1533-1545
        • Olsson C.
        • Thelin S.
        • Stahle E.
        • Ekbom A.
        • Granath F.
        Thoracic aortic aneurysm and dissection: increasing prevalence and improved outcomes reported in a nationwide population-based study of more than 14,000 cases from 1987 to 2002.
        Circulation. 2006; 114: 2611-2618
        • Clouse W.D.
        • Hallett Jr., J.W.
        • Schaff H.V.
        • et al.
        Improved prognosis of thoracic aortic aneurysms: a population-based study.
        J Am Med Associat. 1998; 280: 1926-1929
        • Pressler V.
        • McNamara J.J.
        Aneurysm of the thoracic aorta. Review of 260 cases.
        J Thorac Cardiovasc Surg. 1985; 89: 50-54
        • Hiratzka L.F.
        • Bakris G.L.
        • Beckman J.A.
        • et al.
        2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with thoracic aortic disease: executive summary.
        Catheter Cardiovasc Interv. 2010; 76: e43-e86
        • Boodhwani M.
        • Andelfinger G.
        • Leipsic J.
        • et al.
        Canadian Cardiovascular Society position statement on the management of thoracic aortic disease.
        Can J Cardiol. 2014; 30: 577-589
        • Pape L.A.
        • Tsai T.T.
        • Isselbacher E.M.
        • et al.
        Aortic diameter ≥ 5.5 cm is not a good predictor of type A aortic dissection: observations from the International Registry of Acute Aortic Dissection (IRAD).
        Circulation. 2007; 116: 1120-1127
        • Kim E.K.
        • Choi S.H.
        • Sung K.
        • et al.
        Aortic diameter predicts acute type A aortic dissection in patients with Marfan syndrome but not in patients without Marfan syndrome.
        J Thorac Cardiovasc Surg. 2014; 147: 1505-1510
        • Humphrey J.D.
        • Tellides G.
        Central artery stiffness and thoracic aortopathy.
        Am J Physiol Heart Circ Physiol. 2019; 316: H169-H182
        • Landenhed M.
        • Engstrom G.
        • Gottsater A.
        • et al.
        Risk profiles for aortic dissection and ruptured or surgically treated aneurysms: a prospective cohort study.
        J Am Heart Assoc. 2015; 4e001513
        • Boczar K.E.
        • Cheung K.
        • Boodhwani M.
        • et al.
        Sex differences in thoracic aortic aneurysm growth.
        Hypertension. 2019; 73: 190-196
        • Coutinho T.
        • Borlaug B.A.
        • Pellikka P.A.
        • Turner S.T.
        • Kullo I.J.
        Sex differences in arterial stiffness and ventricular-arterial interactions.
        J Am Coll Cardiol. 2013; 61: 96-103
        • Rooprai J.
        • Boodhwani M.
        • Beauchesne L.
        • et al.
        Thoracic aortic aneurysm growth in bicuspid aortic valve patients: role of aortic stiffness and pulsatile hemodynamics.
        J Am Heart Assoc. 2019; 8e010885
        • Mitchell G.F.
        • Wang N.
        • Palmisano J.N.
        • et al.
        Hemodynamic correlates of blood pressure across the adult age spectrum: noninvasive evaluation in the Framingham Heart Study.
        Circulation. 2010; 122: 1379-1386
        • Cheung K.
        • Boodhwani M.
        • Chan K.L.
        • et al.
        Thoracic aortic aneurysm growth: role of sex and aneurysm etiology.
        J Am Heart Assoc. 2017; 6e003792
        • Goldstein S.A.
        • Evangelista A.
        • Abbara S.
        • et al.
        Multimodality imaging of diseases of the thoracic aorta in adults: from the American Society of Echocardiography and the European Association of Cardiovascular Imaging: endorsed by the Society of Cardiovascular Computed Tomography and Society for Cardiovascular Magnetic Resonance.
        J Am Soc Echocardiogr. 2015; 28: 119-182
        • Vlachopoulos C.
        • Aznaouridis K.
        • O‘Rourke M.F.
        • et al.
        Prediction of cardiovascular events and all-cause mortality with central haemodynamics: a systematic review and meta-analysis.
        Eur Heart J. 2010; 31: 1865-1871
        • Vlachopoulos C.
        • Aznaouridis K.
        • Stefanadis C.
        Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis.
        J Am Coll Cardiol. 2010; 55: 1318-1327
        • Scuteri A.
        • Najjar S.S.
        • Muller D.C.
        • et al.
        Metabolic syndrome amplifies the age-associated increases in vascular thickness and stiffness.
        J Am Coll Cardiol. 2004; 43: 1388-1395
        • Lakatta E.G.
        • Levy D.
        Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: part II: the aging heart in health: links to heart disease.
        Circulation. 2003; 107: 346-354
        • Laurent S.
        • Boutouyrie P.
        The structural factor of hypertension: large and small artery alterations.
        Circ Res. 2015; 116: 1007-1021
        • Humphrey J.D.
        • Schwartz M.A.
        • Tellides G.
        • Milewicz D.M.
        Role of mechanotransduction in vascular biology: focus on thoracic aortic aneurysms and dissections.
        Circ Res. 2015; 116: 1448-1461
        • Garcia-Herrera C.M.
        • Atienza J.M.
        • Rojo F.J.
        • et al.
        Mechanical behaviour and rupture of normal and pathological human ascending aortic wall.
        Med Biol Eng Comput. 2012; 50: 559-566
        • Shang E.K.
        • Nathan D.P.
        • Sprinkle S.R.
        • et al.
        Peak wall stress predicts expansion rate in descending thoracic aortic aneurysms.
        Ann Thorac Surg. 2013; 95: 593-598
        • Guzzardi D.G.
        • Barker A.J.
        • van Ooij P.
        • et al.
        Valve-related hemodynamics mediate human bicuspid aortopathy: insights from wall shear stress mapping.
        J Am Coll Cardiol. 2015; 66: 892-900
        • Mahadevia R.
        • Barker A.J.
        • Schnell S.
        • et al.
        Bicuspid aortic cusp fusion morphology alters aortic three-dimensional outflow patterns, wall shear stress, and expression of aortopathy.
        Circulation. 2014; 129: 673-682
        • Kang J.W.
        • Song H.G.
        • Yang D.H.
        • et al.
        Association between bicuspid aortic valve phenotype and patterns of valvular dysfunction and bicuspid aortopathy: comprehensive evaluation using MDCT and echocardiography.
        J Am Coll Cardiol Img. 2013; 6: 150-161
        • Guala A.
        • Teixido-Tura G.
        • Rodriguez-Palomares J.
        • et al.
        Proximal aorta longitudinal strain predicts aortic root dilation rate and aortic events in Marfan syndrome.
        Eur Heart J. 2019; 40: 2047-2055
        • Evangelista A.
        • Isselbacher E.M.
        • Bossone E.
        • et al.
        Insights from the International Registry of Acute Aortic Dissection: a 20-year experience of collaborative clinical research.
        Circulation. 2018; 137: 1846-1860
        • Lobato A.C.
        • Puech-Leao P.
        Predictive factors for rupture of thoracoabdominal aortic aneurysm.
        J Vasc Surg. 1998; 27: 446-453
        • Shores J.
        • Berger K.R.
        • Murphy E.A.
        • Pyeritz R.E.
        Progression of aortic dilatation and the benefit of long-term beta-adrenergic blockade in Marfan‘s syndrome.
        New Engl J Med. 1994; 330: 1335-1341
        • Lacro R.V.
        • Dietz H.C.
        • Sleeper L.A.
        • et al.
        Atenolol vs losartan in children and young adults with Marfan‘s syndrome.
        N Engl J Med. 2014; 371: 2061-2071
        • Rothman K.J.
        No adjustments are needed for multiple comparisons.
        Epidemiology. 1990; 1: 43-46
        • Saville D.J.
        Multiple comparison procedures: the practical solution.
        Am Stat. 1990; 44: 174-180