Advertisement
Canadian Journal of Cardiology

Sex-dependent mechanisms of cell death modalities in cardiovascular disease

Published:September 21, 2022DOI:https://doi.org/10.1016/j.cjca.2022.09.015

      Abstract

      Despite currently available therapies, cardiovascular diseases (CVD) are one of the leading causes of death globally. Biological sex is a critical determinant of the occurrence, progression and overall outcome of CVD. However, the underlying mechanisms are incompletely understood. A hallmark of CVD is cell death. Based on the inability of the human heart to regenerate, loss of functional cardiac tissue can lead to irreversible detrimental effects. Here, we summarize current knowledge on how biological sex affects cell death-related mechanisms in CVD. We discuss initially apoptosis and necrosis, but we specifically focus on the relatively newly recognized programmed necrosis-like processes, i.e. pyroptosis and necroptosis. We also discuss the role of 17β-estradiol (E2) in these processes, particularly in terms of inhibiting pyroptotic and necroptotic signaling. We put forward that a better understanding of the effects of biological sex and E2 might lead to the identification of novel targets with therapeutic potential.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • GCoD Collaborators.
        Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017.
        Lancet. 2018; 392: 1736-1788
        • Gaignebet L.
        • Kararigas G.
        En route to precision medicine through the integration of biological sex into pharmacogenomics.
        Clin Sci (Lond). 2017; 131: 329-342
        • Kararigas G.
        • Seeland U.
        • Barcena de Arellano M.L.
        • Dworatzek E.
        • Regitz-Zagrosek V.
        Why the study of the effects of biological sex is important. Commentary.
        Ann Ist Super Sanita. 2016; 52: 149-150
        • Cui C.
        • Huang C.
        • Liu K.
        • et al.
        Large-scale in silico identification of drugs exerting sex-specific effects in the heart.
        J Transl Med. 2018; 16: 236
        • Ruiz-Meana M.
        • Boengler K.
        • Garcia-Dorado D.
        • et al.
        Ageing, sex, and cardioprotection.
        Br J Pharmacol. 2020; 177: 5270-5286
        • Li S.
        • Kararigas G.
        Role of Biological Sex in the Cardiovascular-Gut Microbiome Axis.
        Frontiers in Cardiovascular Medicine. 2022; 8759735
        • Franconi F.
        • Campesi I.
        Pharmacogenomics, pharmacokinetics and pharmacodynamics: interaction with biological differences between men and women.
        Br J Pharmacol. 2014; 171: 580-594
        • Siokatas G.
        • Papatheodorou I.
        • Daiou A.
        • Lazou A.
        • Hatzistergos K.E.
        • Kararigas G.
        Sex-Related Effects on Cardiac Development and Disease.
        J Cardiovasc Dev Dis. 2022; 9
        • Vaccarino V.
        • Parsons L.
        • Every N.R.
        • Barron H.V.
        • Krumholz H.M.
        Sex-based differences in early mortality after myocardial infarction. National Registry of Myocardial Infarction 2 Participants.
        N Engl J Med. 1999; 341: 217-225
        • El Khoudary S.R.
        • Aggarwal B.
        • Beckie T.M.
        • et al.
        Menopause Transition and Cardiovascular Disease Risk: Implications for Timing of Early Prevention: A Scientific Statement From the American Heart Association.
        Circulation. 2020; 142: e506-e532
        • Arora S.
        • Stouffer G.A.
        • Kucharska-Newton A.M.
        • et al.
        Twenty Year Trends and Sex Differences in Young Adults Hospitalized With Acute Myocardial Infarction.
        Circulation. 2019; 139: 1047-1056
        • Berger J.S.
        • Elliott L.
        • Gallup D.
        • et al.
        Sex differences in mortality following acute coronary syndromes.
        JAMA. 2009; 302: 874-882
        • Marijon E.
        • Uy-Evanado A.
        • Reinier K.
        • et al.
        Sudden cardiac arrest during sports activity in middle age.
        Circulation. 2015; 131: 1384-1391
        • Aurigemma G.P.
        • Silver K.H.
        • McLaughlin M.
        • Mauser J.
        • Gaasch W.H.
        Impact of chamber geometry and gender on left ventricular systolic function in patients > 60 years of age with aortic stenosis.
        Am J Cardiol. 1994; 74: 794-798
        • Carroll J.D.
        • Carroll E.P.
        • Feldman T.
        • et al.
        Sex-associated differences in left ventricular function in aortic stenosis of the elderly.
        Circulation. 1992; 86: 1099-1107
        • Douglas P.S.
        • Otto C.M.
        • Mickel M.C.
        • Labovitz A.
        • Reid C.L.
        • Davis K.B.
        Gender differences in left ventricle geometry and function in patients undergoing balloon dilatation of the aortic valve for isolated aortic stenosis. NHLBI Balloon Valvuloplasty Registry.
        Br Heart J. 1995; 73: 548-554
        • Villar A.V.
        • Llano M.
        • Cobo M.
        • et al.
        Gender differences of echocardiographic and gene expression patterns in human pressure overload left ventricular hypertrophy.
        J Mol Cell Cardiol. 2009; 46: 526-535
        • Villari B.
        • Campbell S.E.
        • Schneider J.
        • Vassalli G.
        • Chiariello M.
        • Hess O.M.
        Sex-dependent differences in left ventricular function and structure in chronic pressure overload.
        Eur Heart J. 1995; 16: 1410-1419
        • Cleland J.G.
        • Swedberg K.
        • Follath F.
        • et al.
        The EuroHeart Failure survey programme-- a survey on the quality of care among patients with heart failure in Europe. Part 1: patient characteristics and diagnosis.
        Eur Heart J. 2003; 24: 442-463
        • Kararigas G.
        • Dworatzek E.
        • Petrov G.
        • et al.
        Sex-dependent regulation of fibrosis and inflammation in human left ventricular remodelling under pressure overload.
        Eur J Heart Fail. 2014; 16: 1160-1167
        • Gaignebet L.
        • Kandula M.M.
        • Lehmann D.
        • Knosalla C.
        • Kreil D.P.
        • Kararigas G.
        Sex-Specific Human Cardiomyocyte Gene Regulation in Left Ventricular Pressure Overload.
        Mayo Clin Proc. 2020; 95: 688-697
        • Kararigas G.
        Sex-biased mechanisms of cardiovascular complications in COVID-19.
        Physiol Rev. 2022; 102: 333-337
        • Ritter O.
        • Kararigas G.
        Sex-Biased Vulnerability of the Heart to COVID-19.
        Mayo Clin Proc. 2020; 95: 2332-2335
        • Lam C.S.
        • Carson P.E.
        • Anand I.S.
        • et al.
        Sex differences in clinical characteristics and outcomes in elderly patients with heart failure and preserved ejection fraction: the Irbesartan in Heart Failure with Preserved Ejection Fraction (I-PRESERVE) trial.
        Circ Heart Fail. 2012; 5: 571-578
        • Beale A.L.
        • Meyer P.
        • Marwick T.H.
        • Lam C.S.P.
        • Kaye D.M.
        Sex Differences in Cardiovascular Pathophysiology: Why Women Are Overrepresented in Heart Failure With Preserved Ejection Fraction.
        Circulation. 2018; 138: 198-205
        • Dworatzek E.
        • Baczko I.
        • Kararigas G.
        Effects of aging on cardiac extracellular matrix in men and women.
        Proteomics Clin Appl. 2016; 10: 84-91
        • Sabbatini A.R.
        • Kararigas G.
        Menopause-Related Estrogen Decrease and the Pathogenesis of HFpEF: JACC Review Topic of the Week.
        J Am Coll Cardiol. 2020; 75: 1074-1082
        • Sabbatini A.R.
        • Kararigas G.
        Estrogen-related mechanisms in sex differences of hypertension and target organ damage.
        Biol Sex Differ. 2020; 11: 31
        • Cramariuc D.
        • Rogge B.P.
        • Lonnebakken M.T.
        • et al.
        Sex differences in cardiovascular outcome during progression of aortic valve stenosis.
        Heart. 2015; 101: 209-214
        • Martinez-Selles M.
        • Doughty R.N.
        • Poppe K.
        • et al.
        Gender and survival in patients with heart failure: interactions with diabetes and aetiology. Results from the MAGGIC individual patient meta-analysis.
        Eur J Heart Fail. 2012; 14: 473-479
        • Petrov G.
        • Dworatzek E.
        • Schulze T.M.
        • et al.
        Maladaptive remodeling is associated with impaired survival in women but not in men after aortic valve replacement.
        JACC Cardiovasc Imaging. 2014; 7: 1073-1080
        • Yusuf S.
        • Joseph P.
        • Rangarajan S.
        • et al.
        Modifiable risk factors, cardiovascular disease, and mortality in 155 722 individuals from 21 high-income, middle-income, and low-income countries (PURE): a prospective cohort study.
        Lancet. 2019;
        • Anand S.S.
        • Islam S.
        • Rosengren A.
        • et al.
        Risk factors for myocardial infarction in women and men: insights from the INTERHEART study.
        Eur Heart J. 2008; 29: 932-940
        • Culic V.
        • Eterovic D.
        • Miric D.
        Meta-analysis of possible external triggers of acute myocardial infarction.
        Int J Cardiol. 2005; 99: 1-8
        • Carlsson A.C.
        • Jansson J.H.
        • Söderberg S.
        • Ruge T.
        • Larsson A.
        • Ärnlöv J.
        Levels of soluble tumor necrosis factor receptor 1 and 2, gender, and risk of myocardial infarction in Northern Sweden.
        Atherosclerosis. 2018; 272: 41-46
        • Pei J.
        • Harakalova M.
        • Treibel T.A.
        • et al.
        H3K27ac acetylome signatures reveal the epigenomic reorganization in remodeled non-failing human hearts.
        Clin Epigenetics. 2020; 12: 106
        • Regitz-Zagrosek V.
        • Kararigas G.
        Mechanistic Pathways of Sex Differences in Cardiovascular Disease.
        Physiol Rev. 2017; 97: 1-37
        • Ober C.
        • Loisel D.A.
        • Gilad Y.
        Sex-specific genetic architecture of human disease.
        Nat Rev Genet. 2008; 9: 911-922
        • Iorga A.
        • Cunningham C.M.
        • Moazeni S.
        • Ruffenach G.
        • Umar S.
        • Eghbali M.
        The protective role of estrogen and estrogen receptors in cardiovascular disease and the controversial use of estrogen therapy.
        Biol Sex Differ. 2017; 8: 33
        • Murphy E.
        Estrogen signaling and cardiovascular disease.
        Circ Res. 2011; 109: 687-696
        • Murphy E.
        • Steenbergen C.
        Estrogen regulation of protein expression and signaling pathways in the heart.
        Biol Sex Differ. 2014; 5: 6
        • Menazza S.
        • Murphy E.
        The Expanding Complexity of Estrogen Receptor Signaling in the Cardiovascular System.
        Circ Res. 2016; 118: 994-1007
        • Puglisi R.
        • Mattia G.
        • Care A.
        • Marano G.
        • Malorni W.
        • Matarrese P.
        Non-genomic Effects of Estrogen on Cell Homeostasis and Remodeling With Special Focus on Cardiac Ischemia/Reperfusion Injury.
        Front Endocrinol (Lausanne). 2019; 10: 733
        • Lowe D.A.
        • Kararigas G.
        Editorial: New Insights into Estrogen/Estrogen Receptor Effects in the Cardiac and Skeletal Muscle.
        Front Endocrinol (Lausanne). 2020; 11: 141
        • Beikoghli Kalkhoran S.
        • Kararigas G.
        Oestrogenic Regulation of Mitochondrial Dynamics.
        Int J Mol Sci. 2022; 23
        • den Ruijter H.M.
        • Kararigas G.
        Estrogen and Cardiovascular Health.
        Front Cardiovasc Med. 2022; 9886592
        • Kararigas G.
        Oestrogenic contribution to sex-biased left ventricular remodelling: The male implication.
        Int J Cardiol. 2021; 343: 83-84
        • Schubert C.
        • Raparelli V.
        • Westphal C.
        • et al.
        Reduction of apoptosis and preservation of mitochondrial integrity under ischemia/reperfusion injury is mediated by estrogen receptor beta.
        Biol Sex Differ. 2016; 7: 53
        • Mahmoodzadeh S.
        • Dworatzek E.
        The Role of 17beta-Estradiol and Estrogen Receptors in Regulation of Ca(2+) Channels and Mitochondrial Function in Cardiomyocytes.
        Front Endocrinol (Lausanne). 2019; 10: 310
        • Sickinghe A.A.
        • Korporaal S.J.A.
        • den Ruijter H.M.
        • Kessler E.L.
        Estrogen Contributions to Microvascular Dysfunction Evolving to Heart Failure With Preserved Ejection Fraction.
        Front Endocrinol (Lausanne). 2019; 10: 442
        • Ventura-Clapier R.
        • Piquereau J.
        • Veksler V.
        • Garnier A.
        Estrogens, Estrogen Receptors Effects on Cardiac and Skeletal Muscle Mitochondria.
        Front Endocrinol (Lausanne). 2019; 10: 557
        • Zhang B.
        • Miller V.M.
        • Miller J.D.
        Influences of Sex and Estrogen in Arterial and Valvular Calcification.
        Front Endocrinol (Lausanne). 2019; 10: 622
        • Kararigas G.
        • Fliegner D.
        • Forler S.
        • et al.
        Comparative Proteomic Analysis Reveals Sex and Estrogen Receptor beta Effects in the Pressure Overloaded Heart.
        J Proteome Res. 2014; 13: 5829-5836
        • Kararigas G.
        • Nguyen B.T.
        • Jarry H.
        Estrogen modulates cardiac growth through an estrogen receptor alpha-dependent mechanism in healthy ovariectomized mice.
        Mol Cell Endocrinol. 2014; 382: 909-914
        • Kararigas G.
        • Nguyen B.T.
        • Zelarayan L.C.
        • et al.
        Genetic background defines the regulation of postnatal cardiac growth by 17beta-estradiol through a beta-catenin mechanism.
        Endocrinology. 2014; 155: 2667-2676
        • Kararigas G.
        • Fliegner D.
        • Gustafsson J.A.
        • Regitz-Zagrosek V.
        Role of the estrogen/estrogen-receptor-beta axis in the genomic response to pressure overload-induced hypertrophy.
        Physiol Genomics. 2011; 43: 438-446
        • Sanchez-Ruderisch H.
        • Queiros A.M.
        • Fliegner D.
        • Eschen C.
        • Kararigas G.
        • Regitz-Zagrosek V.
        Sex-specific regulation of cardiac microRNAs targeting mitochondrial proteins in pressure overload.
        Biol Sex Differ. 2019; 10: 8
        • Duft K.
        • Schanz M.
        • Pham H.
        • et al.
        17beta-Estradiol-induced interaction of estrogen receptor alpha and human atrial essential myosin light chain modulates cardiac contractile function.
        Basic Res Cardiol. 2017; 112: 1
        • Lai S.
        • Collins B.C.
        • Colson B.A.
        • Kararigas G.
        • Lowe D.A.
        Estradiol modulates myosin regulatory light chain phosphorylation and contractility in skeletal muscle of female mice.
        Am J Physiol Endocrinol Metab. 2016; 310: E724-733
        • Mahmoodzadeh S.
        • Pham T.H.
        • Kuehne A.
        • et al.
        17beta-Estradiol-induced interaction of ERalpha with NPPA regulates gene expression in cardiomyocytes.
        Cardiovasc Res. 2012; 96: 411-421
        • Nguyen B.T.
        • Kararigas G.
        • Jarry H.
        Dose-dependent effects of a genistein-enriched diet in the heart of ovariectomized mice.
        Genes Nutr. 2012; 8: 383-390
        • Nguyen B.T.
        • Kararigas G.
        • Wuttke W.
        • Jarry H.
        Long-term treatment of ovariectomized mice with estradiol or phytoestrogens as a new model to study the role of estrogenic substances in the heart.
        Planta Med. 2012; 78: 6-11
        • Kararigas G.
        • Bito V.
        • Tinel H.
        • et al.
        Transcriptome characterization of estrogen-treated human myocardium identifies Myosin regulatory light chain interacting protein as a sex-specific element influencing contractile function.
        J Am Coll Cardiol. 2012; 59: 410-417
        • Kararigas G.
        • Becher E.
        • Mahmoodzadeh S.
        • Knosalla C.
        • Hetzer R.
        • Regitz-Zagrosek V.
        Sex-specific modification of progesterone receptor expression by 17beta-oestradiol in human cardiac tissues.
        Biol Sex Differ. 2010; 1: 2
        • Hein S.
        • Hassel D.
        • Kararigas G.
        The Zebrafish (Danio rerio) Is a Relevant Model for Studying Sex-Specific Effects of 17beta-Estradiol in the Adult Heart.
        Int J Mol Sci. 2019; 20
        • Fliegner D.
        • Schubert C.
        • Penkalla A.
        • et al.
        Female sex and estrogen receptor-beta attenuate cardiac remodeling and apoptosis in pressure overload.
        American journal of physiology. Regulatory, integrative and comparative physiology. 2010; 298: R1597-1606
        • Queiros A.M.
        • Eschen C.
        • Fliegner D.
        • et al.
        Sex- and estrogen-dependent regulation of a miRNA network in the healthy and hypertrophied heart.
        Int J Cardiol. 2013; 169: 331-338
        • Del Re D.P.
        • Amgalan D.
        • Linkermann A.
        • Liu Q.
        • Kitsis R.N.
        Fundamental Mechanisms of Regulated Cell Death and Implications for Heart Disease.
        Physiological reviews. 2019; 99: 1765-1817
        • Wencker D.
        • Chandra M.
        • Nguyen K.
        • et al.
        A mechanistic role for cardiac myocyte apoptosis in heart failure.
        The Journal of clinical investigation. 2003; 111: 1497-1504
        • Bergsbaken T.
        • Fink S.L.
        • Cookson B.T.
        Pyroptosis: host cell death and inflammation.
        Nature Reviews Microbiology. 2009; 7: 99-109
        • Degterev A.
        • Hitomi J.
        • Germscheid M.
        • et al.
        Identification of RIP1 kinase as a specific cellular target of necrostatins.
        Nature chemical biology. 2008; 4: 313-321
        • Patel P.
        • Karch J.
        Regulation of cell death in the cardiovascular system.
        International review of cell and molecular biology. 2020; 353: 153-209
        • Freude B.
        • Masters T.N.
        • Robicsek F.
        • et al.
        Apoptosis is initiated by myocardial ischemia and executed during reperfusion.
        Journal of molecular and cellular cardiology. 2000; 32: 197-208
        • Sabbah H.N.
        • Sharov V.G.
        Apoptosis in heart failure.
        Progress in cardiovascular diseases. 1998; 40: 549-562
        • Adameova A.
        • Hrdlicka J.
        • Szobi A.
        • et al.
        Evidence of necroptosis in hearts subjected to various forms of ischemic insults.
        Canadian journal of physiology and pharmacology. 2017; 95: 1163-1169
        • Szobi A.
        • Farkašová-Ledvényiová V.
        • Lichý M.
        • et al.
        Cardioprotection of ischaemic preconditioning is associated with inhibition of translocation of MLKL within the plasma membrane.
        Journal of cellular and molecular medicine. 2018; 22: 4183-4196
        • Zhang T.
        • Zhang Y.
        • Cui M.
        • et al.
        CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis.
        Nature medicine. 2016; 22: 175-182
        • Stegh A.H.
        • Peter M.E.
        Apoptosis and caspases.
        Cardiology clinics. 2001; 19: 13-29
        • Guerra S.
        • Leri A.
        • Wang X.
        • et al.
        Myocyte death in the failing human heart is gender dependent.
        Circulation research. 1999; 85: 856-866
        • Mallat Z.
        • Fornes P.
        • Costagliola R.
        • et al.
        Age and gender effects on cardiomyocyte apoptosis in the normal human heart.
        The journals of gerontology. Series A, Biological sciences and medical sciences. 2001; 56: M719-723
        • Piro M.
        • Della Bona R.
        • Abbate A.
        • Biasucci L.M.
        • Crea F.
        Sex-Related Differences in Myocardial Remodeling.
        Journal of the American College of Cardiology. 2010; 55: 1057-1065
        • Whelan R.S.
        • Kaplinskiy V.
        • Kitsis R.N.
        Cell death in the pathogenesis of heart disease: mechanisms and significance.
        Annual review of physiology. 2010; 72: 19-44
        • Bouma W.
        • Noma M.
        • Kanemoto S.
        • et al.
        Sex-related resistance to myocardial ischemia-reperfusion injury is associated with high constitutive ARC expression.
        American journal of physiology. Heart and circulatory physiology. 2010; 298: H1510-1517
        • Chen C.
        • Hu L.X.
        • Dong T.
        • et al.
        Apoptosis and autophagy contribute to gender difference in cardiac ischemia-reperfusion induced injury in rats.
        Life sciences. 2013; 93: 265-270
        • Dent M.R.
        • Tappia P.S.
        • Dhalla N.S.
        Gender differences in apoptotic signaling in heart failure due to volume overload.
        Apoptosis : an international journal on programmed cell death. 2010; 15: 499-510
        • Amin P.
        • Singh M.
        • Singh K.
        β-Adrenergic Receptor-Stimulated Cardiac Myocyte Apoptosis: Role of β1 Integrins.
        Journal of signal transduction. 2011; 2011179057
        • Shin S.-Y.
        • Kim T.
        • Lee H.-S.
        • et al.
        The switching role of β-adrenergic receptor signalling in cell survival or death decision of cardiomyocytes.
        Nature Communications. 2014; 5: 5777
        • Wang W.
        • Zhang H.
        • Gao H.
        • et al.
        {beta}1-Adrenergic receptor activation induces mouse cardiac myocyte death through both L-type calcium channel-dependent and -independent pathways.
        American journal of physiology. Heart and circulatory physiology. 2010; 299: H322-331
        • Dent M.R.
        • Tappia P.S.
        • Dhalla N.S.
        Gender related alterations of β-adrenoceptor mechanisms in heart failure due to arteriovenous fistula.
        Journal of cellular physiology. 2012; 227: 3080-3087
        • Jover-Mengual T.
        • Miyawaki T.
        • Latuszek A.
        • Alborch E.
        • Zukin R.S.
        • Etgen A.M.
        Acute estradiol protects CA1 neurons from ischemia-induced apoptotic cell death via the PI3K/Akt pathway.
        Brain Res. 2010; 1321: 1-12
        • Patten R.D.
        • Pourati I.
        • Aronovitz M.J.
        • et al.
        17beta-estradiol reduces cardiomyocyte apoptosis in vivo and in vitro via activation of phospho-inositide-3 kinase/Akt signaling.
        Circ Res. 2004; 95: 692-699
        • Hsieh D.J.
        • Kuo W.W.
        • Lai Y.P.
        • et al.
        17beta-Estradiol and/or Estrogen Receptor beta Attenuate the Autophagic and Apoptotic Effects Induced by Prolonged Hypoxia Through HIF-1alpha-Mediated BNIP3 and IGFBP-3 Signaling Blockage.
        Cell Physiol Biochem. 2015; 36: 274-284
        • Xu Y.
        • Arenas I.A.
        • Armstrong S.J.
        • Plahta W.C.
        • Xu H.
        • Davidge S.T.
        Estrogen improves cardiac recovery after ischemia/reperfusion by decreasing tumor necrosis factor-alpha.
        Cardiovasc Res. 2006; 69: 836-844
        • Pelzer T.
        • Neumann M.
        • de Jager T.
        • Jazbutyte V.
        • Neyses L.
        Estrogen effects in the myocardium: inhibition of NF-kappaB DNA binding by estrogen receptor-alpha and -beta.
        Biochem Biophys Res Commun. 2001; 286: 1153-1157
        • Pelzer T.
        • Schumann M.
        • Neumann M.
        • et al.
        17beta-estradiol prevents programmed cell death in cardiac myocytes.
        Biochem Biophys Res Commun. 2000; 268: 192-200
        • Zhai P.
        • Eurell T.E.
        • Cooke P.S.
        • Lubahn D.B.
        • Gross D.R.
        Myocardial ischemia-reperfusion injury in estrogen receptor-α knockout and wild-type mice.
        American Journal of Physiology-Heart and Circulatory Physiology. 2000; 278: H1640-H1647
        • Kung G.
        • Konstantinidis K.
        • Kitsis R.N.
        Programmed Necrosis, Not Apoptosis, in the Heart.
        Circulation research. 2011; 108: 1017-1036
        • Morgan M.J.
        • Liu Z-g
        Programmed cell death with a necrotic-like phenotype.
        BioMolecular Concepts. 2013; 4: 259-275
        • Konstantinidis K.
        • Whelan R.S.
        • Kitsis R.N.
        Mechanisms of cell death in heart disease.
        Arteriosclerosis, thrombosis, and vascular biology. 2012; 32: 1552-1562
        • Milerova M.
        • Drahota Z.
        • Chytilova A.
        • Tauchmannova K.
        • Houstek J.
        • Ostadal B.
        Sex difference in the sensitivity of cardiac mitochondrial permeability transition pore to calcium load.
        Mol Cell Biochem. 2016; 412: 147-154
        • Mendelowitsch A.
        • Ritz M.F.
        • Ros J.
        • Langemann H.
        • Gratzl O.
        17beta-Estradiol reduces cortical lesion size in the glutamate excitotoxicity model by enhancing extracellular lactate: a new neuroprotective pathway.
        Brain Res. 2001; 901: 230-236
        • Novotny J.L.
        • Simpson A.M.
        • Tomicek N.J.
        • Lancaster T.S.
        • Korzick D.H.
        Rapid Estrogen Receptor-α Activation Improves Ischemic Tolerance in Aged Female Rats through a Novel Protein Kinase Cε-Dependent Mechanism.
        Endocrinology. 2009; 150: 889-896
        • Wang Q.
        • Wu J.
        • Zeng Y.
        • et al.
        Pyroptosis: A pro-inflammatory type of cell death in cardiovascular disease.
        Clinica Chimica Acta. 2020; 510: 62-72
        • Franchi L.
        • Eigenbrod T.
        • Muñoz-Planillo R.
        • Nuñez G.
        The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis.
        Nature immunology. 2009; 10: 241-247
        • Aukrust P.
        • Ueland T.
        • Müller F.
        • et al.
        Elevated circulating levels of C-C chemokines in patients with congestive heart failure.
        Circulation. 1998; 97: 1136-1143
        • Kolattukudy P.E.
        • Quach T.
        • Bergese S.
        • et al.
        Myocarditis induced by targeted expression of the MCP-1 gene in murine cardiac muscle.
        The American journal of pathology. 1998; 152: 101-111
        • Levine B.
        • Kalman J.
        • Mayer L.
        • Fillit H.M.
        • Packer M.
        Elevated circulating levels of tumor necrosis factor in severe chronic heart failure.
        The New England journal of medicine. 1990; 323: 236-241
        • Vasan R.S.
        • Sullivan L.M.
        • Roubenoff R.
        • et al.
        Inflammatory markers and risk of heart failure in elderly subjects without prior myocardial infarction: the Framingham Heart Study.
        Circulation. 2003; 107: 1486-1491
        • Chen S.
        • Markman J.L.
        • Shimada K.
        • et al.
        Sex-Specific Effects of the Nlrp3 Inflammasome on Atherogenesis in LDL Receptor-Deficient Mice.
        JACC. Basic to translational science. 2020; 5: 582-598
        • Wu D.
        • Ren P.
        • Zheng Y.
        • et al.
        NLRP3 (Nucleotide Oligomerization Domain-Like Receptor Family, Pyrin Domain Containing 3)-Caspase-1 Inflammasome Degrades Contractile Proteins: Implications for Aortic Biomechanical Dysfunction and Aneurysm and Dissection Formation.
        Arteriosclerosis, thrombosis, and vascular biology. 2017; 37: 694-706
        • Chung M.K.
        • Gulick T.S.
        • Rotondo R.E.
        • Schreiner G.F.
        • Lange L.G.
        Mechanism of cytokine inhibition of beta-adrenergic agonist stimulation of cyclic AMP in rat cardiac myocytes. Impairment of signal transduction.
        Circulation research. 1990; 67: 753-763
        • Finkel M.S.
        • Oddis C.V.
        • Jacob T.D.
        • Watkins S.C.
        • Hattler B.G.
        • Simmons R.L.
        Negative inotropic effects of cytokines on the heart mediated by nitric oxide.
        Science (New York, N.Y.). 1992; 257: 387-389
        • Lin J.
        • Shou X.
        • Mao X.
        • et al.
        Oxidized low density lipoprotein induced caspase-1 mediated pyroptotic cell death in macrophages: implication in lesion instability?.
        PloS one. 2013; 8e62148
        • Rafikov R.
        • Nair V.
        • Sinari S.
        • et al.
        Gender Difference in Damage-Mediated Signaling Contributes to Pulmonary Arterial Hypertension.
        Antioxidants & redox signaling. 2019; 31: 917-932
        • Jarabicová I.
        • Horváth C.
        • Veľasová E.
        • et al.
        Analysis of necroptosis and its association with pyroptosis in organ damage in experimental pulmonary arterial hypertension.
        Journal of cellular and molecular medicine. 2022; 26: 2633-2645
        • Volchuk A.
        • Ye A.
        • Chi L.
        • Steinberg B.E.
        • Goldenberg N.M.
        Indirect regulation of HMGB1 release by gasdermin D.
        Nature Communications. 2020; 11: 4561
        • Wei A.
        • Liu j
        • Li D.
        • et al.
        Syringaresinol attenuates sepsis-induced cardiac dysfunction by inhibiting inflammation and pyroptosis in mice.
        European Journal of Pharmacology. 2021; 913174644
        • Chai R.
        • Xue W.
        • Shi S.
        • et al.
        Cardiac Remodeling in Heart Failure: Role of Pyroptosis and Its Therapeutic Implications.
        Frontiers in Cardiovascular Medicine. 2022; 9
        • Zeng C.
        • Wang R.
        • Tan H.
        Role of Pyroptosis in Cardiovascular Diseases and its Therapeutic Implications.
        International journal of biological sciences. 2019; 15: 1345-1357
        • Feoktistova M.
        • Leverkus M.
        Programmed necrosis and necroptosis signalling.
        The FEBS journal. 2015; 282: 19-31
        • Dondelinger Y.
        • Darding M.
        • Bertrand M.J.
        • Walczak H.
        Poly-ubiquitination in TNFR1-mediated necroptosis.
        Cellular and molecular life sciences : CMLS. 2016; 73: 2165-2176
        • Sun L.
        • Wang H.
        • Wang Z.
        • et al.
        Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase.
        Cell. 2012; 148: 213-227
        • Huang D.
        • Zheng X.
        • Wang Z.A.
        • et al.
        The MLKL Channel in Necroptosis Is an Octamer Formed by Tetramers in a Dyadic Process.
        Molecular and cellular biology. 2017; 37
        • Wang H.
        • Sun L.
        • Su L.
        • et al.
        Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3.
        Molecular cell. 2014; 54: 133-146
        • Weber K.
        • Roelandt R.
        • Bruggeman I.
        • Estornes Y.
        • Vandenabeele P.
        Nuclear RIPK3 and MLKL contribute to cytosolic necrosome formation and necroptosis.
        Communications Biology. 2018; 1: 6
        • Cai Z.
        • Zhang A.
        • Choksi S.
        • et al.
        Activation of cell-surface proteases promotes necroptosis, inflammation and cell migration.
        Cell research. 2016; 26: 886-900
        • Dondelinger Y.
        • Declercq W.
        • Montessuit S.
        • et al.
        MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates.
        Cell reports. 2014; 7: 971-981
        • Kim S.
        • Dayani L.
        • Rosenberg P.A.
        • Li J.
        RIP1 kinase mediates arachidonic acid-induced oxidative death of oligodendrocyte precursors.
        International journal of physiology, pathophysiology and pharmacology. 2010; 2: 137-147
        • Kim Y.S.
        • Morgan M.J.
        • Choksi S.
        • Liu Z.G.
        TNF-induced activation of the Nox1 NADPH oxidase and its role in the induction of necrotic cell death.
        Molecular cell. 2007; 26: 675-687
        • Conos S.A.
        • Chen K.W.
        • De Nardo D.
        • et al.
        Active MLKL triggers the NLRP3 inflammasome in a cell-intrinsic manner.
        Proceedings of the National Academy of Sciences of the United States of America. 2017; 114: E961-e969
        • Hou H.
        • Wang Y.
        • Li Q.
        • et al.
        The role of RIP3 in cardiomyocyte necrosis induced by mitochondrial damage of myocardial ischemia-reperfusion.
        Acta biochimica et biophysica Sinica. 2018; 50: 1131-1140
        • Song X.
        • Li T.
        Ripk3 mediates cardiomyocyte necrosis through targeting mitochondria and the JNK-Bnip3 pathway under hypoxia-reoxygenation injury.
        Journal of Receptors and Signal Transduction. 2019; 39: 331-340
        • Lichý M.
        • Szobi A.
        • Hrdlička J.
        • et al.
        Different signalling in infarcted and non-infarcted areas of rat failing hearts: A role of necroptosis and inflammation.
        Journal of cellular and molecular medicine. 2019; 23: 6429-6441
        • Liehn E.A.
        • Postea O.
        • Curaj A.
        • Marx N.
        Repair after myocardial infarction, between fantasy and reality: the role of chemokines.
        J Am Coll Cardiol. 2011; 58: 2357-2362
        • Bopassa J.C.
        • Eghbali M.
        • Toro L.
        • Stefani E.
        A novel estrogen receptor GPER inhibits mitochondria permeability transition pore opening and protects the heart against ischemia-reperfusion injury.
        American journal of physiology. Heart and circulatory physiology. 2010; 298: H16-23
        • Feng Y.
        • Madungwe N.B.
        • da Cruz Junho C.V.
        • Bopassa J.C.
        Activation of G protein-coupled oestrogen receptor 1 at the onset of reperfusion protects the myocardium against ischemia/reperfusion injury by reducing mitochondrial dysfunction and mitophagy.
        British journal of pharmacology. 2017; 174: 4329-4344
        • Deschamps A.M.
        • Murphy E.
        Activation of a novel estrogen receptor, GPER, is cardioprotective in male and female rats.
        American journal of physiology. Heart and circulatory physiology. 2009; 297: H1806-1813
        • Horvath C.
        • Young M.
        • Jarabicova I.
        • et al.
        Inhibition of Cardiac RIP3 Mitigates Early Reperfusion Injury and Calcium-Induced Mitochondrial Swelling without Altering Necroptotic Signalling.
        International journal of molecular sciences. 2021; : 22
        • Kavurma M.M.
        • Rayner K.J.
        • Karunakaran D.
        The walking dead: macrophage inflammation and death in atherosclerosis.
        Current opinion in lipidology. 2017; 28: 91-98
        • Karunakaran D.
        • Geoffrion M.
        • Wei L.
        • et al.
        Targeting macrophage necroptosis for therapeutic and diagnostic interventions in atherosclerosis.
        Science advances. 2016; 2e1600224
        • Lin J.
        • Li H.
        • Yang M.
        • et al.
        A role of RIP3-mediated macrophage necrosis in atherosclerosis development.
        Cell reports. 2013; 3: 200-210
        • Zhe-Wei S.
        • Li-Sha G.
        • Yue-Chun L.
        The Role of Necroptosis in Cardiovascular Disease.
        Frontiers in pharmacology. 2018; 9: 721
        • Gu H.
        • Gao Y.
        • Wang H.
        • et al.
        Sex differences in coronary atherosclerosis progression and major adverse cardiac events in patients with suspected coronary artery disease.
        Journal of cardiovascular computed tomography. 2017; 11: 367-372
        • Eggers K.M.
        • Lindhagen L.
        • Baron T.
        • et al.
        Sex-differences in circulating biomarkers during acute myocardial infarction: An analysis from the SWEDEHEART registry.
        PloS one. 2021; 16e0249830
        • Eggers K.M.
        • Johnston N.
        • James S.
        • Lindahl B.
        • Venge P.
        Cardiac troponin I levels in patients with non-ST-elevation acute coronary syndrome-the importance of gender.
        American heart journal. 2014; 168 (e311): 317-324
        • Taqueti V.R.
        Sex Differences in the Coronary System.
        Advances in experimental medicine and biology. 2018; 1065: 257-278
        • Hartman R.J.G.
        • Owsiany K.
        • Ma L.
        • et al.
        Sex-Stratified Gene Regulatory Networks Reveal Female Key Driver Genes of Atherosclerosis Involved in Smooth Muscle Cell Phenotype Switching.
        Circulation. 2021; 143: 713-726