Advertisement
Canadian Journal of Cardiology

The genetics of neurodevelopment in congenital heart disease

Published:September 29, 2022DOI:https://doi.org/10.1016/j.cjca.2022.09.026

      Abstract

      Congenital heart disease (CHD) is the most common birth anomaly, affecting almost 1% of infants. Neurodevelopmental delay is the most common extracardiac feature in people with CHD. Many factors may contribute to neurodevelopmental risk, including genetic factors, CHD physiology, and the prenatal/postnatal environment. Damaging variant are most highly enriched among individuals with extracardiac anomalies or neurodevelopmental delay in addition to CHD, indicating that genetic factors have an impact beyond cardiac tissues in people with CHD. Potential sources of genetic risk include large deletions or duplications that impact multiple genes, such as 22q11 deletion syndrome, single genes that alter both heart and brain development, such as CHD7, and common variants that impact neurodevelopmental resiliency, such as APOE. Increased use of genome sequencing technologies in studies of neurodevelopmental outcomes in people with CHD will improve our ability to detect relevant genes and variants. Ultimately such knowledge can lead to improved and more timely intervention of learning support for affected children.

      Graphical abstract

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Reller M.D.
        • Strickland M.J.
        • Riehle-Colarusso T.
        • Mahle W.T.
        • Correa A.
        Prevalence of Congenital Heart Defects in Metropolitan Atlanta, 1998-2005.
        J Pediatr. 2008; 153: 807-813https://doi.org/10.1016/j.jpeds.2008.05.059
        • Hoffman J.I.E.
        • Kaplan S.
        The incidence of congenital heart disease.
        J Am Coll Cardiol. 2002; 39: 1890-1900https://doi.org/10.1016/S0735-1097(02)01886-7
        • Leirgul E.
        • Fomina T.
        • Brodwall K.
        • et al.
        Birth prevalence of congenital heart defects in Norway 1994-2009—A nationwide study.
        Am Heart J. 2014; 168: 956-964https://doi.org/10.1016/j.ahj.2014.07.030
      1. Lui GK, Saidi A, Bhatt AB, et al. Diagnosis and Management of Noncardiac Complications in Adults with Congenital Heart Disease: A Scientific Statement from the American Heart Association. Vol 136.; 2017. doi:10.1161/CIR.0000000000000535

        • van der Bom T.
        • Zomer a C.
        • Zwinderman A.H.
        • Meijboom F.J.
        • Bouma B.J.
        • Mulder B.J.M.
        The changing epidemiology of congenital heart disease.
        Nat Rev Cardiol. 2011; 8: 50-60https://doi.org/10.1038/nrcardio.2010.166
      2. Wernovsky G. Current insights regarding neurological and developmental abnormalities in children and young adults with complex congenital cardiac disease. Cardiol Young. 2006;16 Suppl 1(SUPPL. 1):92-104. doi:10.1017/S1047951105002398

        • Wernovsky G.
        • Licht D.J.
        Neurodevelopmental outcomes in children with congenital heart disease-what can we impact?.
        Pediatr Crit Care Med. 2016; 17: S232-S242https://doi.org/10.1097/PCC.0000000000000800
        • Marino B.S.
        • Lipkin P.H.
        • Newburger J.W.
        • et al.
        Neurodevelopmental outcomes in children with congenital heart disease: evaluation and management: a scientific statement from the American Heart Association.
        Circulation. 2012; 126: 1143-1172https://doi.org/10.1161/CIR.0B013E318265EE8A
        • Jin S.C.S.C.
        • Homsy J.
        • Zaidi S.
        • et al.
        Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands.
        Nat Genet. 2017; 49: 1593-1601https://doi.org/10.1038/ng.3970
      3. Homsy J, Zaidi S, Shen Y, et al. De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies. Science (80- ). 2015;350(6265):1262-1266. doi:10.1126/science.aac9396

        • Limperopoulos C.
        • Tworetzky W.
        • McElhinney D.B.
        • et al.
        Brain volume and metabolism in fetuses with congenital heart disease: Evaluation with quantitative magnetic resonance imaging and spectroscopy.
        Circulation. 2010; 121: 26-33https://doi.org/10.1161/CIRCULATIONAHA.109.865568
      4. Rivkin MJ, Watson CG, Scoppettuolo LA, et al. Adolescents with d-transposition of the great arteries repaired in early infancy demonstrate reduced white matter microstructure associated with clinical risk factors. J Thorac Cardiovasc Surg. 2013;146(3):543-549.e1. doi:10.1016/j.jtcvs.2012.12.006

        • Ising M.
        • Holsboer F.
        Genetics of stress response and stress-related disorders.
        Dialogues Clin Neurosci. 2006; 8: 433-444https://doi.org/10.1016/j.jcin.2015.10.034
        • Fitzgerald T.W.
        • Gerety S.S.
        • Jones W.D.
        • et al.
        Large-scale discovery of novel genetic causes of developmental disorders.
        Nature. 2015; 519: 223-228https://doi.org/10.1038/nature14135
        • Mebius M.J.
        • Kooi E.M.W.W.
        • Bilardo C.M.
        • Bos A.F.
        Brain injury and neurodevelopmental outcome in congenital heart disease: a systematic review.
        Pediatrics. 2017; 140e20164055https://doi.org/10.1542/peds.2016-4055
        • Øyen N.
        • Poulsen G.
        • Boyd H.A.
        • Wohlfahrt J.
        • Jensen PK a
        • Melbye M.
        Recurrence of congenital heart defects in families.
        Circulation. 2009; 120: 295-301https://doi.org/10.1161/CIRCULATIONAHA.109.857987
      5. McKusick-Nathans Institute of Genetic Medicine JHU. Online Mendelian Inheritance in Man, OMIM®. https://omim.org/

        • Pierpont M.E.
        • Brueckner M.
        • Chung W.K.
        • et al.
        Genetic Basis for Congenital Heart Disease: Revisited: A Scientific Statement From the American Heart Association.
        Circulation. 2018; 138: e653-e711https://doi.org/10.1161/CIR.0000000000000606
        • Andersen T.A.
        • Troelsen K.D.L.L.
        • Larsen L.A.
        Of mice and men: Molecular genetics of congenital heart disease.
        Cell Mol Life Sci. 2014; 71: 1327-1352https://doi.org/10.1007/s00018-013-1430-1
        • Sifrim A.
        • Hitz M.P.
        • Wilsdon A.
        • et al.
        Distinct genetic architectures for syndromic and nonsyndromic congenital heart defects identified by exome sequencing.
        Nat Genet. 2016; 48: 1060-1065https://doi.org/10.1038/ng.3627
        • Zaidi S.
        • Choi M.
        • Wakimoto H.
        • et al.
        De novo mutations in histone-modifying genes in congenital heart disease.
        Nature. 2013; 498: 220-223https://doi.org/10.1038/nature12141
        • Soemedi R.
        • Wilson I.J.
        • Bentham J.
        • et al.
        Contribution of global rare copy-number variants to the risk of sporadic congenital heart disease.
        Am J Hum Genet. 2012; 91: 489-501https://doi.org/10.1016/j.ajhg.2012.08.003
        • Fahed A.C.
        • Gelb B.D.
        • Seidman J.G.
        • Seidman C.E.
        Genetics of congenital heart disease: The glass half empty.
        Circ Res. 2013; 112: 707-720https://doi.org/10.1161/CIRCRESAHA.112.300853
        • Goldmuntz E.
        • Paluru P.
        • Glessner J.
        • et al.
        Microdeletions and microduplications in patients with congenital heart disease and multiple congenital anomalies.
        Congenit Heart Dis. 2011; 6: 592-602https://doi.org/10.1111/j.1747-0803.2011.00582.x
        • Glessner J.T.
        • Bick A.G.
        • Ito K.
        • et al.
        Increased frequency of de novo copy number variants in congenital heart disease by integrative analysis of single nucleotide polymorphism array and exome sequence data.
        Circ Res. 2014; 115: 884-896https://doi.org/10.1161/CIRCRESAHA.115.304458
        • Page D.J.
        • Miossec M.J.
        • Williams S.G.
        • et al.
        Whole Exome Sequencing Reveals the Major Genetic Contributors to Nonsyndromic Tetralogy of Fallot.
        Circ Res. 2019; 124: 553-563https://doi.org/10.1161/CIRCRESAHA.118.313250
        • Jerves T.
        • Beaton A.
        • Kruszka P.
        The genetic workup for structural congenital heart disease.
        Am J Med Genet C Semin Med Genet. 2020; 184: 178-186https://doi.org/10.1002/AJMG.C.31759
        • Blue G.M.
        • Kirk E.P.
        • Giannoulatou E.
        • et al.
        Advances in the Genetics of Congenital Heart Disease: A Clinician’s Guide.
        J Am Coll Cardiol. 2017; 69: 859-870https://doi.org/10.1016/J.JACC.2016.11.060
        • Kim D.S.
        • Kim J.H.
        • Burt A.A.
        • et al.
        Burden of potentially pathologic copy number variants is higher in children with isolated congenital heart disease and significantly impairs covariate-adjusted transplant-free survival.
        Journal of Thoracic and Cardiovascular Surgery. 2016; 151 (e4): 1147-1151https://doi.org/10.1016/j.jtcvs.2015.09.136
        • Lahaye S.
        • Corsmeier D.
        • Basu M.
        • et al.
        Utilization of Whole Exome Sequencing to Identify Causative Mutations in Familial Congenital Heart Disease.
        Circ Cardiovasc Genet. 2016; 9: 320-329https://doi.org/10.1161/CIRCGENETICS.115.001324
        • Selvanathan T.
        • Smith J.M.C.
        • Miller S.P.
        • Field T.S.
        Neurodevelopment and Cognition Across the Lifespan in Patients With Single-Ventricle Physiology: Abnormal Brain Maturation and Accumulation of Brain Injuries.
        Can J Cardiol. 2022; 38: 977-987https://doi.org/10.1016/J.CJCA.2022.02.009
        • Verrall C.E.
        • Blue G.M.
        • Loughran-Fowlds A.
        • et al.
        ‘Big issues’ in neurodevelopment for children and adults with congenital heart disease.
        Open Hear. 2019; 6e000998https://doi.org/10.1136/OPENHRT-2018-000998
        • Feldmann M.
        • Bataillard C.
        • Ehrler M.
        • et al.
        Cognitive and executive function in congenital heart disease: A meta-analysis.
        Pediatrics. 2021; 148https://doi.org/10.1542/peds.2021-050875
        • Derridj N.
        • Guedj R.
        • Calderon J.
        • et al.
        Long-Term Neurodevelopmental Outcomes of Children with Congenital Heart Defects.
        J Pediatr. 2021; 237 (e5): 109-114https://doi.org/10.1016/j.jpeds.2021.06.032
        • Bellinger D.C.
        • Rivkin M.J.
        • DeMaso D.
        • et al.
        Adolescents with tetralogy of Fallot: neuropsychological assessment and structural brain imaging.
        Cardiol Young. 2015; 25: 338-347https://doi.org/10.1017/S1047951114000031
        • Hövels-Gürich H.H.
        • Konrad K.
        • Skorzenski D.
        • Herpertz-Dahlmann B.
        • Messmer B.J.
        • Seghaye M.C.
        Attentional Dysfunction in Children After Corrective Cardiac Surgery in Infancy.
        Ann Thorac Surg. 2007; 83: 1425-1430https://doi.org/10.1016/j.athoracsur.2006.10.069
        • Kordopati-Zilou K.
        • Sergentanis T.
        • Pervanidou P.
        • et al.
        Dextro-Transposition of Great Arteries and Neurodevelopmental Outcomes: A Review of the Literature.
        Children. 2022; 9https://doi.org/10.3390/children9040502
        • Mussatto K.A.
        • Hoffmann R.
        • Hoffman G.
        • et al.
        Risk factors for abnormal developmental trajectories in young children with congenital heart disease.
        Circulation. 2015; 132: 755-761https://doi.org/10.1161/CIRCULATIONAHA.114.014521
        • Sarrechia I.
        • Miatton M.
        • De Wolf D.
        • et al.
        Neurocognitive development and behaviour in school-aged children after surgery for univentricular or biventricular congenital heart disease.
        Eur J Cardio-thoracic Surg. 2016; 49: 167-174https://doi.org/10.1093/ejcts/ezv029
        • Sarrechia I.
        • Miatton M.
        • François K.
        • et al.
        Neurodevelopmental outcome after surgery for acyanotic congenital heart disease.
        Res Dev Disabil. 2015; 45-46: 58-68https://doi.org/10.1016/j.ridd.2015.07.004
        • Gaudet I.
        • Paquette N.
        • Bernard C.
        • et al.
        Neurodevelopmental Outcome of Children with Congenital Heart Disease: A Cohort Study from Infancy to Preschool Age.
        J Pediatr. 2021; 239 (e5): 126-135https://doi.org/10.1016/j.jpeds.2021.08.042
        • Von Rhein M.
        • Buchmann A.
        • Hagmann C.
        • et al.
        Brain volumes predict neurodevelopment in adolescents after surgery for congenital heart disease.
        Brain. 2014; 137: 268-276https://doi.org/10.1093/brain/awt322
        • Jakab A.
        • Meuwly E.
        • Feldmann M.
        • et al.
        Left temporal plane growth predicts language development in newborns with congenital heart disease.
        Brain. 2019; 142: 1270-1281https://doi.org/10.1093/brain/awz067
        • Rollins C.K.
        • Asaro L.A.
        • Akhondi-Asl A.
        • et al.
        White matter volume predicts language development in congenital heart disease.
        J Pediatr. 2017; 181: 42-48https://doi.org/10.1016/j.jpeds.2016.09.070
      6. Liamlahi R, Latal B. Neurodevelopmental Outcome of Children with Congenital Heart Disease. Vol 162. 1st ed. Elsevier B.V.; 2019. doi:10.1016/B978-0-444-64029-1.00016-3

        • Calderon J.
        • Newburger J.W.
        • Rollins C.K.
        Neurodevelopmental and Mental Health Outcomes in Patients With Fontan Circulation: A State-of-the-Art Review.
        Front Pediatr. 2022; 10: 275https://doi.org/10.3389/fped.2022.826349
        • Sanz J.H.
        • Wang J.
        • Berl M.M.
        • Armour A.C.
        • Cheng Y.I.
        • Donofrio M.T.
        Executive Function and Psychosocial Quality of Life in School Age Children with Congenital Heart Disease.
        J Pediatr. 2018; 202: 63-69https://doi.org/10.1016/j.jpeds.2018.07.018
        • Gaynor J.W.
        • Ittenbach R.F.
        • Gerdes M.
        • et al.
        Neurodevelopmental outcomes in preschool survivors of the Fontan procedure.
        J Thorac Cardiovasc Surg. 2014; 147 (e5): 1276-1283https://doi.org/10.1016/j.jtcvs.2013.12.019
        • Mills R.
        • McCusker C.G.
        • Tennyson C.
        • Hanna D.
        Neuropsychological outcomes in CHD beyond childhood: A meta-analysis.
        Cardiol Young. 2018; 28: 421-431https://doi.org/10.1017/S104795111700230X
        • Cassidy A.R.
        • White M.T.
        • DeMaso D.R.
        • Newburger J.W.
        • Bellinger D.C.
        Executive Function in Children and Adolescents with Critical Cyanotic Congenital Heart Disease.
        J Int Neuropsychol Soc. 2015; 21: 34-49https://doi.org/10.1017/S1355617714001027
        • Naef N.
        • Schlosser L.
        • Brugger P.
        • et al.
        Brain volumes in adults with congenital heart disease correlate with executive function abilities.
        Brain Imaging Behav. 2021; 15: 2308-2316https://doi.org/10.1007/s11682-020-00424-1
        • King T.Z.
        • Smith K.M.
        • Burns T.G.
        • et al.
        fMRI investigation of working memory in adolescents with surgically treated congenital heart disease.
        Appl Neuropsychol Child. 2017; 6: 7-21https://doi.org/10.1080/21622965.2015.1065185
        • Ehrler M.
        • Latal B.
        • Kretschmar O.
        • von Rhein M.
        • O’Gorman Tuura R.
        Altered frontal white matter microstructure is associated with working memory impairments in adolescents with congenital heart disease: A diffusion tensor imaging study.
        NeuroImage Clin. 2020; 25102123https://doi.org/10.1016/j.nicl.2019.102123
        • Asschenfeldt B.
        • Evald L.
        • Heiberg J.
        • et al.
        Neuropsychological status and structural brain imaging in adults with simple congenital heart defects closed in childhood.
        J Am Heart Assoc. 2020; 915843https://doi.org/10.1161/JAHA.120.015843
        • Bellinger D.C.
        • Watson C.G.
        • Rivkin M.J.
        • et al.
        Neuropsychological status and structural brain imaging in adolescents with single ventricle who underwent the fontan procedure.
        J Am Heart Assoc. 2015; 4: 1-17https://doi.org/10.1161/JAHA.115.002302
        • Bellinger D.C.
        • Wypij D.
        • Rivkin M.J.
        • et al.
        Adolescents with d-transposition of the great arteries corrected with the arterial switch procedure: Neuropsychological assessment and structural brain imaging.
        Circulation. 2011; 124: 1361-1369https://doi.org/10.1161/CIRCULATIONAHA.111.026963
        • Werninger I.
        • Ehrler M.
        • Wehrle F.M.
        • et al.
        Social and Behavioral Difficulties in 10-Year-Old Children With Congenital Heart Disease: Prevalence and Risk Factors.
        Front Pediatr. 2020; 8: 857https://doi.org/10.3389/fped.2020.604918
        • Abda A.
        • Bolduc M.-E.
        • Tsimicalis A.
        • Rennick J.
        • Vatcher D.
        • Brossard-Racine M.
        Psychosocial Outcomes of Children and Adolescents With Severe Congenital Heart Defect: A Systematic Review and Meta-Analysis.
        J Pediatr Psychol. 2019; 44: 463-477https://doi.org/10.1093/jpepsy/jsy085
      7. Razzaghi H, Oster M, Reefhuis J. Long-term outcomes in children with congenital heart disease: National Health Interview Survey. J Pediatr. 2015;166(1):119-124.e1. doi:10.1016/j.jpeds.2014.09.006

        • Sigmon E.R.
        • Kelleman M.
        • Susi A.
        • Nylund C.M.
        • Oster M.E.
        Congenital heart disease and autism: A case-control study.
        Pediatrics. 2019; 144https://doi.org/10.1542/peds.2018-4114
        • DeMaso D.R.
        • Calderon J.
        • Taylor G.A.
        • et al.
        Psychiatric Disorders in Adolescents With Single Ventricle Congenital Heart Disease.
        Pediatrics. 2017; 139e20162241https://doi.org/10.1542/peds.2016-2241
        • DeMaso D.R.
        • Labella M.
        • Taylor G.A.
        • et al.
        Psychiatric Disorders and Function in Adolescents with d-Transposition of the Great Arteries.
        J Pediatr. 2014; 165: 760-766https://doi.org/10.1016/j.jpeds.2014.06.029
        • Newburger J.W.
        • Sleeper L.A.
        • Bellinger D.C.
        • et al.
        Early developmental outcome in children with hypoplastic left heart syndrome and related anomalies: the single ventricle reconstruction trial.
        Circulation. 2012; 125: 2081-2091https://doi.org/10.1161/CIRCULATIONAHA.111.064113
        • Majnemer A.
        • Rohlicek C.
        • Dahan-Oliel N.
        • et al.
        Participation in leisure activities in adolescents with congenital heart defects.
        Dev Med Child Neurol. 2020; 62: 946-953https://doi.org/10.1111/dmcn.14422
        • Naef N.
        • Liamlahi R.
        • Beck I.
        • et al.
        Neurodevelopmental Profiles of Children with Congenital Heart Disease at School Age.
        J Pediatr. 2017; 188: 75-81https://doi.org/10.1016/j.jpeds.2017.05.073
        • Peyvandi S.
        • Latal B.
        • Miller S.P.
        • McQuillen P.S.
        The neonatal brain in critical congenital heart disease: Insights and future directions.
        Neuroimage. 2019; 185: 776-782https://doi.org/10.1016/j.neuroimage.2018.05.045
        • Nattel S.N.
        • Adrianzen L.
        • Kessler E.C.
        • et al.
        Congenital Heart Disease and Neurodevelopment: Clinical Manifestations, Genetics, Mechanisms, and Implications.
        Can J Cardiol. 2017; 33: 1543-1555https://doi.org/10.1016/j.cjca.2017.09.020
      8. Leon RL, Mir IN, Herrera CL, et al. Neuroplacentology in congenital heart disease: placental connections to neurodevelopmental outcomes. Pediatr Res 2021 914. 2021;91(4):787-794. doi:10.1038/s41390-021-01521-7

        • Rangel S.J.
        • Calkins C.M.
        • Cowles R.A.
        • et al.
        Parenteral nutrition-associated cholestasis: an American Pediatric Surgical Association Outcomes and Clinical Trials Committee systematic review.
        J Pediatr Surg. 2012; 47: 225-240https://doi.org/10.1016/j.jpedsurg.2011.10.007
        • Rollins C.K.
        • Ortinau C.M.
        • Stopp C.
        • et al.
        Regional Brain Growth Trajectories in Fetuses with Congenital Heart Disease.
        Ann Neurol. 2021; 89: 143-157https://doi.org/10.1002/ana.25940
        • Sun L.
        • Macgowan C.K.
        • Sled J.G.
        • et al.
        Reduced fetal cerebral oxygen consumption is associated with smaller brain size in fetuses with congenital heart disease.
        Circulation. 2015; 131: 1313-1323https://doi.org/10.1161/CIRCULATIONAHA.114.013051
        • Hövels-Gürich H.H.
        Factors influencing neurodevelopment after cardiac surgery during infancy.
        Front Pediatr. 2016; 4: 1-6https://doi.org/10.3389/fped.2016.00137
        • Gunn J.K.
        • Beca J.
        • Hunt R.W.
        • et al.
        Perioperative risk factors for impaired neurodevelopment after cardiac surgery in early infancy.
        Arch Dis Child. 2016; 101: 1010-1016https://doi.org/10.1136/archdischild-2015-309449
        • Diaz L.K.
        • Gaynor J.W.
        • Koh S.J.
        • et al.
        Increasing cumulative exposure to volatile anesthetic agents is associated with poorer neurodevelopmental outcomes in children with hypoplastic left heart syndrome.
        J Thorac Cardiovasc Surg. 2016; 152: 482-489https://doi.org/10.1016/j.jtcvs.2016.03.095
        • Andropoulos D.B.
        • Ahmad H.B.
        • Haq T.
        • et al.
        The association between brain injury, perioperative anesthetic exposure, and 12-month neurodevelopmental outcomes after neonatal cardiac surgery: A retrospective cohort study.
        Paediatr Anaesth. 2014; 24: 266-274https://doi.org/10.1111/pan.12350
        • Urschel S.
        • Bond G.Y.
        • Dinu I.A.
        • et al.
        Neurocognitive outcomes after heart transplantation in early childhood.
        J Heart Lung Transplant. 2018; 37: 740-748https://doi.org/10.1016/J.HEALUN.2017.12.013
        • Ohye R.G.
        • Sleeper L.A.
        • Mahony L.
        • et al.
        Comparison of Shunt Types in the Norwood Procedure for Single-Ventricle Lesions.
        N Engl J Med. 2010; 362: 1980-1992https://doi.org/10.1056/NEJMoa0912461
      9. Majeed A, Rofeberg V, Bellinger DC, Wypij D, Newburger JW. Machine Learning to Predict Executive Function in Adolescents with Repaired d-Transposition of the Great Arteries, Tetralogy of Fallot, and Fontan Palliation. J Pediatr. Published online March 18, 2022. doi:10.1016/J.JPEDS.2022.03.021

        • Bucholz E.M.
        • Sleeper L.A.
        • Sananes R.
        • et al.
        Trajectories in Neurodevelopmental, Health-Related Quality of Life, and Functional Status Outcomes by Socioeconomic Status and Maternal Education in Children with Single Ventricle Heart Disease.
        J Pediatr. 2021; 229 (e3): 289-293https://doi.org/10.1016/j.jpeds.2020.09.066
        • Hartman R.J.
        • Rasmussen S.A.
        • Botto L.D.
        • et al.
        The contribution of chromosomal abnormalities to congenital heart defects: A population-based study.
        Pediatr Cardiol. 2011; 32: 1147-1157https://doi.org/10.1007/s00246-011-0034-5
        • Stoll C.
        • Dott B.
        • Alembik Y.
        • Roth M.P.
        Associated congenital anomalies among cases with Down syndrome.
        Eur J Med Genet. 2015; 58: 674-680https://doi.org/10.1016/j.ejmg.2015.11.003
        • Capone G.T.
        • Chicoine B.
        • Bulova P.
        • et al.
        Co-occurring medical conditions in adults with Down syndrome: A systematic review toward the development of health care guidelines.
        Am J Med Genet A. 2018; 176: 116-133https://doi.org/10.1002/ajmg.a.38512
        • Pelleri M.C.
        • Gennari E.
        • Locatelli C.
        • et al.
        Genotype-phenotype correlation for congenital heart disease in Down syndrome through analysis of partial trisomy 21 cases.
        Genomics. 2017; 109: 391-400https://doi.org/10.1016/j.ygeno.2017.06.004
        • Patkee P.A.
        • Baburamani A.A.
        • Kyriakopoulou V.
        • et al.
        Early alterations in cortical and cerebellar regional brain growth in Down Syndrome: An in vivo fetal and neonatal MRI assessment.
        NeuroImage Clin. 2020; 25102139https://doi.org/10.1016/j.nicl.2019.102139
        • Visootsak J.
        • Mahle W.T.
        • Kirshbom P.M.
        • et al.
        Neurodevelopmental outcomes in children with Down syndrome and congenital heart defects.
        Am J Med Genet Part A. 2011; 155: 2688-2691https://doi.org/10.1002/ajmg.a.34252
        • Trevino C.E.
        • Holleman A.M.
        • Corbitt H.
        • et al.
        Identifying genetic factors that contribute to the increased risk of congenital heart defects in infants with Down syndrome.
        Sci Rep. 2020; 10https://doi.org/10.1038/s41598-020-74650-4
        • Laufer B.I.
        • Hwang H.
        • Jianu J.M.
        • et al.
        Low-pass whole genome bisulfite sequencing of neonatal dried blood spots identifies a role for RUNX1 in down syndrome DNA methylation profiles.
        Hum Mol Genet. 2020; 29: 3465-3476https://doi.org/10.1093/hmg/ddaa218
        • Ji W.
        • Ferdman D.
        • Copel J.
        • et al.
        De novo damaging variants associated with congenital heart diseases contribute to the connectome.
        Sci Rep. 2020; 10: 1-11https://doi.org/10.1038/s41598-020-63928-2
        • Duchon A.
        • Herault Y.
        DYRK1A, a dosage-sensitive gene involved in neurodevelopmental disorders, Is a target for drug development in down syndrome.
        Front Behav Neurosci. 2016; 10: 104https://doi.org/10.3389/fnbeh.2016.00104
        • Feki A.
        • Hibaoui Y.
        DYRK1A protein, a promising therapeutic target to improve cognitive deficits in down syndrome.
        Brain Sci. 2018; 8https://doi.org/10.3390/brainsci8100187
        • Lin A.E.
        • Santoro S.
        • High F.A.
        • Goldenberg P.
        • Gutmark-Little I.
        Congenital heart defects associated with aneuploidy syndromes: New insights into familiar associations.
        Am J Med Genet Part C Semin Med Genet. 2020; 184: 53-63https://doi.org/10.1002/ajmg.c.31760
        • Reid S.N.
        • Ziermann J.M.
        • Gondré-Lewis M.C.
        Genetically induced abnormal cranial development in human trisomy 18 with holoprosencephaly: Comparisons with the normal tempo of osteogenic-neural development.
        J Anat. 2015; 227: 21-33https://doi.org/10.1111/joa.12326
        • Davenport M.L.
        Approach to the patient with Turner syndrome.
        J Clin Endocrinol Metab. 2010; 95: 1487-1495https://doi.org/10.1210/jc.2009-0926
        • Raznahan A.
        • Cutter W.
        • Lalonde F.
        • et al.
        Cortical anatomy in human X monosomy.
        Neuroimage. 2010; 49: 2915-2923https://doi.org/10.1016/j.neuroimage.2009.11.057
        • Davenport M.L.
        • Cornea E.
        • Xia K.
        • et al.
        Altered Brain Structure in Infants with Turner Syndrome.
        Cereb Cortex. 2020; 30: 587-596https://doi.org/10.1093/cercor/bhz109
        • O’Donoghue S.
        • Green T.
        • Ross J.L.
        • et al.
        Brain Development in School-Age and Adolescent Girls: Effects of Turner Syndrome, Estrogen Therapy, and Genomic Imprinting.
        Biol Psychiatry. 2020; 87: 113-122https://doi.org/10.1016/j.biopsych.2019.07.032
        • Collins R.L.
        • Brand H.
        • Karczewski K.J.
        • et al.
        A structural variation reference for medical and population genetics.
        Nature. 2020; 581: 444-451https://doi.org/10.1038/s41586-020-2287-8
        • Wright C.F.
        • Fitzgerald T.W.
        • Jones W.D.
        • et al.
        Genetic diagnosis of developmental disorders in the DDD study: A scalable analysis of genome-wide research data.
        Lancet. 2015; 385: 1305-1314https://doi.org/10.1016/S0140-6736(14)61705-0
        • Savory K.
        • Manivannan S.
        • Zaben M.
        • Uzun O.
        • Syed Y.A.
        Impact of copy number variation on human neurocognitive deficits and congenital heart defects: A systematic review.
        Neurosci Biobehav Rev. 2020; 108: 83-93https://doi.org/10.1016/j.neubiorev.2019.10.020
      10. Boskovski MT, Homsy J, Nathan M, et al. De novo Damaging Variants, Clinical Phenotypes and Post-Operative Outcomes in Congenital Heart Disease. Circ Genomic Precis Med. Published online June 30, 2020:CIRCGEN.119.002836. doi:10.1161/CIRCGEN.119.002836

        • Michaelovsky E.
        • Frisch A.
        • Carmel M.
        • et al.
        Genotype-phenotype correlation in 22q11.2 deletion syndrome.
        BMC Med Genet. 2012; 13: 122https://doi.org/10.1186/1471-2350-13-122
        • Jonas R.K.
        • Montojo C.A.
        • Bearden C.E.
        The 22q11.2 deletion syndrome as a window into complex neuropsychiatric disorders over the lifespan.
        Biol Psychiatry. 2014; 75: 351-360https://doi.org/10.1016/j.biopsych.2013.07.019
        • Lin A.
        • Ching C.R.K.
        • Vajdi A.
        • et al.
        Mapping 22q11.2 gene dosage effects on brain morphometry.
        J Neurosci. 2017; 37: 6183-6199https://doi.org/10.1523/JNEUROSCI.3759-16.2017
        • Sun D.
        • Ching C.R.K.
        • Lin A.
        • et al.
        Large-scale mapping of cortical alterations in 22q11.2 deletion syndrome: Convergence with idiopathic psychosis and effects of deletion size.
        Mol Psychiatry. 2020; 25: 1822-1834https://doi.org/10.1038/s41380-018-0078-5
        • Ching C.R.K.
        • Gutman B.A.
        • Sun D.
        • et al.
        Mapping subcortical brain alterations in 22q11.2 deletion syndrome: Effects of deletion size and convergence with idiopathic neuropsychiatric illness.
        Am J Psychiatry. 2020; 177: 589-600https://doi.org/10.1176/appi.ajp.2019.19060583
      11. McDonald-McGinn DM, Hain HS, Emanuel BS, Zackai EH. 22q11 . 2 Deletion Syndrome Summary Genetic counseling GeneReview Scope Diagnosis Suggestive Findings. GeneReviews®. Published online 2020:1-24.

        • Clements C.C.
        • Wenger T.L.
        • Zoltowski A.R.
        • et al.
        Critical region within 22q11.2 linked to higher rate of autism spectrum disorder.
        Mol Autism. 2017; 8: 58https://doi.org/10.1186/s13229-017-0171-7
        • Zinkstok J.R.
        • Boot E.
        • Bassett A.S.
        • et al.
        Neurobiological perspective of 22q11.2 deletion syndrome.
        The Lancet Psychiatry. 2019; 6: 951-960https://doi.org/10.1016/S2215-0366(19)30076-8
        • Bagautdinova J.
        • Padula M.C.
        • Zöller D.
        • et al.
        Identifying neurodevelopmental anomalies of white matter microstructure associated with high risk for psychosis in 22q11.2DS.
        Transl Psychiatry. 2020; 10: 1-15https://doi.org/10.1038/s41398-020-01090-z
        • Villalón-Reina J.E.
        • Martínez K.
        • Qu X.
        • et al.
        Altered white matter microstructure in 22q11.2 deletion syndrome: a multisite diffusion tensor imaging study.
        Mol Psychiatry. 2020; 25: 2818-2831https://doi.org/10.1038/s41380-019-0450-0
        • Shashi V.
        • Kwapil T.R.
        • Kaczorowski J.
        • et al.
        Evidence of gray matter reduction and dysfunction in chromosome 22q11.2 deletion syndrome.
        Psychiatry Res - Neuroimaging. 2010; 181: 1-8https://doi.org/10.1016/j.pscychresns.2009.07.003
        • Momtazmanesh S.
        • Aarabi M.H.
        • Sanjari Moghaddam H.
        • et al.
        Brain microstructural abnormalities in 22q11.2 deletion syndrome: A systematic review of diffusion tensor imaging studies.
        Eur Neuropsychopharmacol. 2021; 52: 96-135https://doi.org/10.1016/j.euroneuro.2021.07.004
        • Jalbrzikowski M.
        Neuroimaging Phenotypes Associated With Risk and Resilience for Psychosis and Autism Spectrum Disorders in 22q11.2 Microdeletion Syndrome.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2021; 6: 211-224https://doi.org/10.1016/j.bpsc.2020.08.015
        • Gudbrandsen M.
        • Bletsch A.
        • Mann C.
        • et al.
        Neuroanatomical underpinnings of autism symptomatology in carriers and non-carriers of the 22q11.2 microdeletion.
        Mol Autism. 2020; 11https://doi.org/10.1186/s13229-020-00356-z
        • Eisenberg D.P.
        • Gregory M.D.
        • Berman K.F.
        Subcortical signatures of hemizygosity and psychosis in 22q11.2 deletion syndrome: Finding common ground in rare genetic variation.
        Am J Psychiatry. 2020; 177: 564-566https://doi.org/10.1176/appi.ajp.2020.20050598
        • Chen X.
        • Wang L.
        • Huang R.
        • et al.
        Dgcr8 deletion in the primitive heart uncovered novel microRNA regulating the balance of cardiac-vascular gene program.
        Protein Cell. 2019; 10: 327-346https://doi.org/10.1007/s13238-018-0572-1
        • Jeanne M.
        • Vuillaume M.L.
        • Ung D.C.
        • et al.
        Haploinsufficiency of the HIRA gene located in the 22q11 deletion syndrome region is associated with abnormal neurodevelopment and impaired dendritic outgrowth.
        Hum Genet. 2021; 140: 885-896https://doi.org/10.1007/s00439-020-02252-1
        • Zhao Y.
        • Diacou A.
        • Johnston H.R.
        • et al.
        Complete Sequence of the 22q11.2 Allele in 1,053 Subjects with 22q11.2 Deletion Syndrome Reveals Modifiers of Conotruncal Heart Defects.
        Am J Hum Genet. 2020; 106: 26-40https://doi.org/10.1016/j.ajhg.2019.11.010
        • Plageman T.F.
        • Yutzey K.E.
        T-box genes and heart development: putting the “T” in heart.
        Dev Dyn. 2005; 232: 11-20https://doi.org/10.1002/dvdy.20201
        • Xu H.
        • Morishima M.
        • Wylie J.N.
        • et al.
        Tbx1 has a dual role in the morphogenesis of the cardiac outflow tract.
        Development. 2004; 131: 3217-3227https://doi.org/10.1242/dev.01174
        • Guo T.
        • Mcdonald-Mcginn D.
        • Blonska A.
        • et al.
        Genotype and cardiovascular phenotype correlations with TBX1 in 1,022 velo-cardio-facial/digeorge/22q11.2 deletion syndrome patients.
        Hum Mutat. 2011; 32: 1278-1289https://doi.org/10.1002/humu.21568
        • Paylor R.
        • Glaser B.
        • Mupo A.
        • et al.
        Tbx1 haploinsufficiency is linked to behavioral disorders in mice and humans: Implications for 22q11 deletion syndrome.
        Proc Natl Acad Sci U S A. 2006; 103: 7729-7734https://doi.org/10.1073/pnas.0600206103
        • Carmel M.
        • Zarchi O.
        • Michaelovsky E.
        • et al.
        Association of COMT and PRODH gene variants with intelligence quotient (IQ) and executive functions in 22q11.2DS subjects.
        J Psychiatr Res. 2014; 56: 28-35https://doi.org/10.1016/j.jpsychires.2014.04.019
        • Kozel B.A.
        • Barak B.
        • Kim C.A.
        • et al.
        Williams syndrome.
        Nat Rev Dis Prim. 2021; 7https://doi.org/10.1038/s41572-021-00276-z
      12. A A, M DC, LF M, et al. Partial 7q11.23 deletions further implicate GTF2I and GTF2IRD1 as the main genes responsible for the Williams-Beuren syndrome neurocognitive profile. J Med Genet. 2010;47(5). doi:10.1136/JMG.2009.071712

        • Jin S.C.
        • Homsy J.
        • Zaidi S.
        • et al.
        Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands.
        Nat Genet. 2017; 49: 1593-1601https://doi.org/10.1038/ng.3970
        • Martin D.M.
        Epigenetic Developmental Disorders: CHARGE Syndrome, a Case Study.
        Curr Genet Med Rep. 2015; 3: 1-7https://doi.org/10.1007/s40142-014-0059-1
        • Yan S.
        • Thienthanasit R.
        • Chen D.
        • et al.
        CHD7 regulates cardiovascular development through ATP-dependent and -independent activities.
        Proc Natl Acad Sci U S A. 2020; 117: 28847-28858https://doi.org/10.1073/pnas.2005222117
        • Jamadagni P.
        • Breuer M.
        • Schmeisser K.
        • et al.
        Chromatin remodeller CHD7 is required for GABAergic neuron development by promoting PAQR3 expression.
        EMBO Rep. 2021; 22https://doi.org/10.15252/embr.202050958
        • Garavelli L.
        • Mainardi P.C.
        Mowat-Wilson syndrome.
        Orphanet J Rare Dis. 2007; 2: 42https://doi.org/10.1186/1750-1172-2-42
        • Garavelli L.
        • Ivanovski I.
        • Caraffi S.G.
        • et al.
        Neuroimaging findings in Mowat-Wilson syndrome: A study of 54 patients.
        Genet Med. 2017; 19: 691-700https://doi.org/10.1038/gim.2016.176
      13. Yang X, Feng S, Tang K. COUP-TF Genes, Human Diseases, and the Development of the Central Nervous System in Murine Models. In: Current Topics in Developmental Biology. Vol 125. Academic Press Inc.; 2017:275-301. doi:10.1016/bs.ctdb.2016.12.002

        • Burnham N.
        • Ittenbach R.F.
        • Stallings V.A.
        • et al.
        Genetic factors are important determinants of impaired growth after infant cardiac surgery.
        J Thorac Cardiovasc Surg. 2010; 140: 144-149https://doi.org/10.1016/j.jtcvs.2010.01.003
        • Pierpont E.I.
        Neuropsychological Functioning in Individuals with Noonan Syndrome: a Systematic Literature Review with Educational and Treatment Recommendations.
        J Pediatr Neuropsychol. 2016; 2: 14-33https://doi.org/10.1007/s40817-015-0005-5
        • Gripp K.W.
        • Morse L.A.
        • Axelrad M.
        • et al.
        Costello syndrome: Clinical phenotype, genotype, and management guidelines.
        Am J Med Genet Part A. 2019; 179: 1725-1744https://doi.org/10.1002/ajmg.a.61270
        • Pierpont E.I.
        • Kenney-Jung D.L.
        • Shanley R.
        • et al.
        Neurologic and neurodevelopmental complications in cardiofaciocutaneous syndrome are associated with genotype: A multinational cohort study.
        Genet Med. 2022; 24https://doi.org/10.1016/j.gim.2022.04.004
        • Kim Y.E.
        • Baek S.T.
        Neurodevelopmental aspects of rasopathies.
        Mol Cells. 2019; 42: 441-447https://doi.org/10.14348/MOLCELLS.2019.0037
        • Chinton J.
        • Huckstadt V.
        • Mucciolo M.
        • et al.
        Providing more evidence on LZTR1 variants in Noonan syndrome patients.
        Am J Med Genet Part A. 2020; 182: 409-414https://doi.org/10.1002/ajmg.a.61445
        • Umeki I.
        • Niihori T.
        • Abe T.
        • et al.
        Delineation of LZTR1 mutation-positive patients with Noonan syndrome and identification of LZTR1 binding to RAF1–PPP1CB complexes.
        Hum Genet. 2019; 138: 21-35https://doi.org/10.1007/s00439-018-1951-7
        • Güemes M.
        • Martín-Rivada Á
        • Ortiz-Cabrera N.V.
        • Martos-Moreno G.Á.
        • Pozo-Román J.
        • Argente J.
        LZTR1: Genotype Expansion in Noonan Syndrome.
        Horm Res Paediatr. 2020; 92: 269-275https://doi.org/10.1159/000502741
        • Adachi M.
        • Abe Y.
        • Aoki Y.
        • Matsubara Y.
        Epilepsy in RAS/MAPK syndrome: Two cases of cardio-facio-cutaneous syndrome with epileptic encephalopathy and a literature review.
        Seizure. 2012; 21: 55-60https://doi.org/10.1016/j.seizure.2011.07.013
        • Yeh E.
        • Dao D.Q.
        • Wu Z.Y.
        • et al.
        Patient-derived iPSCs show premature neural differentiation and neuron type-specific phenotypes relevant to neurodevelopment.
        Mol Psychiatry. 2018; 23: 1687-1698https://doi.org/10.1038/mp.2017.238
        • Crotti L.
        • Johnson C.N.
        • Graf E.
        • et al.
        Calmodulin mutations associated with recurrent cardiac arrest in infants.
        Circulation. 2013; 127: 1009-1017https://doi.org/10.1161/CIRCULATIONAHA.112.001216
      14. Crotti L, Ph D, Johnson CN, et al. Calmodulin Mutations Associated with Recurrent Cardiac Arrest in Infants. Circulation. 2014;127(9). doi:10.1161/CIRCULATIONAHA.112.001216.Calmodulin

        • Hennessey J.A.
        • Boczek N.J.
        • Jiang Y.H.
        • et al.
        A CACNA1C variant associated with reduced voltage-dependent inactivation, increased CaV1.2 channel window current, and arrhythmogenesis.
        PLoS One. 2014; 9https://doi.org/10.1371/JOURNAL.PONE.0106982
        • Hiippala A.
        • Tallila J.
        • Myllykangas S.
        • Koskenvuo J.W.
        • Alastalo T.P.
        Expanding the phenotype of Timothy syndrome type 2: an adolescent with ventricular fibrillation but normal development.
        Am J Med Genet A. 2015; 167A: 629-634https://doi.org/10.1002/AJMG.A.36924
        • Fryer M.D.
        • Kaye G.
        • Tomlinson S.
        Recurrent syncope in the Andersen Tawil syndrome - Cardiac or neurological?.
        Indian Pacing Electrophysiol J. 2015; 15: 158-161https://doi.org/10.1016/J.IPEJ.2015.10.006
        • Franklin W.H.
        • Laubham M.
        Neurologic complications of genetic channelopathies.
        Handb Clin Neurol. 2021; 177: 185-188https://doi.org/10.1016/B978-0-12-819814-8.00014-7
        • Blue G.M.
        • Ip E.
        • Walker K.
        • et al.
        Genetic burden and associations with adverse neurodevelopment in neonates with congenital heart disease.
        Am Heart J. 2018; 201: 33-39https://doi.org/10.1016/j.ahj.2018.03.021
        • Korja M.
        • Ylijoki M.
        • Lapinleimu H.
        • et al.
        Apolipoprotein E, brain injury and neurodevelopmental outcome of children.
        Genes, Brain Behav. 2013; 12: 348-352https://doi.org/10.1111/gbb.12024
        • Cotten C.M.
        • Goldstein R.F.
        • McDonald S.A.
        • et al.
        Apolipoprotein E genotype and outcome in infants with hypoxic-ischemic encephalopathy.
        Pediatr Res. 2014; 75: 424-430https://doi.org/10.1038/pr.2013.235
        • Yamazaki Y.
        • Zhao N.
        • Caulfield T.R.
        • Liu C.C.
        • Bu G.
        Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies.
        Nat Rev Neurol. 2019; 15: 501-518https://doi.org/10.1038/s41582-019-0228-7
        • Fuller S.
        • Nord A.S.
        • Gerdes M.
        • et al.
        Predictors of impaired neurodevelopmental outcomes at one year of age after infant cardiac surgery.
        Eur J Cardio-thoracic Surg. 2009; 36: 40-48https://doi.org/10.1016/j.ejcts.2009.02.047
        • Schmithorst V.J.
        • Panigrahy A.
        • Gaynor J.W.
        • et al.
        Organizational topology of brain and its relationship to ADHD in adolescents with d-transposition of the great arteries.
        Brain Behav. 2016; 6e00504https://doi.org/10.1002/brb3.504
        • Kim D.S.
        • Li Y.K.
        • Kim J.H.
        • et al.
        Autosomal dominant mannose-binding lectin deficiency is associated with worse neurodevelopmental outcomes after cardiac surgery in infants.
        J Thorac Cardiovasc Surg. 2018; 155 (e2): 1139-1147https://doi.org/10.1016/j.jtcvs.2017.08.035
        • Landstrom A.P.
        • Kim J.J.
        • Gelb B.D.
        • et al.
        Genetic Testing for Heritable Cardiovascular Diseases in Pediatric Patients: A Scientific Statement From the American Heart Association.
        Circ Genomic Precis Med. 2021; 14e000086https://doi.org/10.1161/HCG.0000000000000086
        • Gelb B.D.
        Prospects for precision genetic medicine in congenital heart disease.
        Curr Opin Genet Dev. 2022; 77101983https://doi.org/10.1016/J.GDE.2022.101983
        • Andelfinger G.
        • Marquis C.
        • Raboisson M.J.
        • et al.
        Hypertrophic Cardiomyopathy in Noonan Syndrome Treated by MEK-Inhibition.
        J Am Coll Cardiol. 2019; 73: 2237-2239https://doi.org/10.1016/j.jacc.2019.01.066
        • Dori Y.
        • Smith C.
        • Pinto E.
        • et al.
        Severe Lymphatic Disorder Resolved With MEK Inhibition in a Patient With Noonan Syndrome and SOS1 Mutation.
        Pediatrics. 2020; 146https://doi.org/10.1542/peds.2020-0167
        • Meisner J.K.
        • Bradley D.J.
        • Russell M.W.
        Molecular Management of Multifocal Atrial Tachycardia in Noonan’s Syndrome With MEK1/2 Inhibitor Trametinib.
        Circ Genomic Precis Med. 2021; 14e003327https://doi.org/10.1161/CIRCGEN.121.003327
        • Vedovelli L.
        • Cogo P.
        • Cainelli E.
        • et al.
        Pre-surgery urine metabolomics may predict late neurodevelopmental outcome in children with congenital heart disease.
        Heliyon. 2019; 5e02547https://doi.org/10.1016/j.heliyon.2019.e02547
        • Vergine M.
        • Vedovelli L.
        • Simonato M.
        • et al.
        Perioperative Glial Fibrillary Acidic Protein Is Associated with Long-Term Neurodevelopment Outcome of Infants with Congenital Heart Disease.
        Children. 2021; 8: 655https://doi.org/10.3390/children8080655
        • Calderon J.
        • Angeard N.
        • Moutier S.
        • Plumet M.H.
        • Jambaqué I.
        • Bonnet D.
        Impact of prenatal diagnosis on neurocognitive outcomes in children with transposition of the great arteries.
        J Pediatr. 2012; 161: 94-99https://doi.org/10.1016/j.jpeds.2011.12.036
        • Freud L.R.
        • Tworetzky W.
        Fetal interventions for congenital heart disease.
        Curr Opin Pediatr. 2016; 28: 156-162https://doi.org/10.1097/MOP.0000000000000331
        • Gardiner H.M.
        In-utero intervention for severe congenital heart disease.
        Best Pract Res Clin Obstet Gynaecol. 2008; 22: 49-61https://doi.org/10.1016/j.bpobgyn.2007.06.003
        • Kumar S.
        • Lodge J.
        Prenatal therapy for fetal cardiac disorders.
        J Matern Neonatal Med. 2019; 32: 3871-3881https://doi.org/10.1080/14767058.2018.1472224
        • Chang C.S.
        • Hong Y.
        • Kim S.Y.
        • et al.
        Prevalence of associated extracardiac anomalies in prenatally diagnosed congenital heart diseases.
        PLoS One. 2021; 16https://doi.org/10.1371/journal.pone.0248894
        • Dovjak G.O.
        • Zalewski T.
        • Seidl-Mlczoch E.
        • et al.
        Abnormal Extracardiac Development in Fetuses With Congenital Heart Disease.
        J Am Coll Cardiol. 2021; 78: 2312-2322https://doi.org/10.1016/J.JACC.2021.09.1358
        • Song M.S.
        • Hu A.
        • Dyhamenahali U.
        • et al.
        Extracardiac lesions and chromosomal abnormalities associated with major fetal heart defects: comparison of intrauterine, postnatal and postmortem diagnoses.
        Ultrasound Obstet Gynecol. 2009; 33: 552-559https://doi.org/10.1002/UOG.6309
        • Tennstedt C.
        • Chaoui R.
        • Körner H.
        • Dietel M.
        Spectrum of congenital heart defects and extracardiac malformations associated with chromosomal abnormalities: results of a seven year necropsy study.
        Heart. 1999; 82: 34-39https://doi.org/10.1136/HRT.82.1.34
        • Egbe A.
        • Lee S.
        • Ho D.
        • Uppu S.
        • Srivastava S.
        Prevalence of congenital anomalies in newborns with congenital heart disease diagnosis.
        Ann Pediatr Cardiol. 2014; 7: 86-91https://doi.org/10.4103/0974-2069.132474
      15. Bana SK, Mandal AK, Nagaraj N, et al. Prevalence of extracardiac malformations associated with congenital heart disease. 2018;5(2):411-415.

        • Neal A.E.
        • Stopp C.
        • Wypij D.
        • et al.
        Predictors of health-related quality of life in adolescents with tetralogy of fallot.
        J Pediatr. 2015; 166: 132-138https://doi.org/10.1016/j.jpeds.2014.09.034