Canadian Journal of Cardiology

Structural Racism, Social Determinants of Health, and Provider Bias: Impact on Brain Development in Critical Congenital Heart Disease

Published:November 08, 2022DOI:


      Critical congenital heart disease (cCHD) has neurodevelopmental sequelae that can carry into adulthood, which may be due to aberrant brain development or brain injury in the prenatal and perinatal/neonatal periods and beyond. Health disparities based upon the intersection of sex, geography, race, and ethnicity have been identified for poorer pre- and postnatal outcomes in the general population, as well as those with cCHD. These disparities are likely driven by systemic racism, disparities in social determinants of health (SDOH), and provider bias, which further compound negative brain development outcomes. The current review discusses how aberrant brain development in cCHD early in life is impacted by reduced access to quality care (i.e., prenatal care and testing, postnatal care) due to divestment in non-White neighborhoods (e.g., redlining) and food insecurity, differences in insurance status, location of residence, and perceived interpersonal racism and bias which disproportionately affects pregnant people of color who have fewer economic resources. Suggestions are discussed for moving forward with implementing strategies in medical education, clinical care, research, and gaining insight into the communities served to combat disparities and bias while promoting cultural humility.

      Graphical abstract

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


      1. Center for Disease Control and Prevention. Congenital Heart Defects. Available at: Accessed on September 26, 2022.

      2. Center for Disease Control and Prevention. Critical Congenital Heart Defects. Available at: Accessed on September 26, 2022.

        • Peyvandi S.
        • Latal B.
        • Miller S.P.
        • McQuillen P.S.
        The neonatal brain in critical congenital heart disease: insights and future directions.
        Neuroimage. 2019; 185: 776-782
        • Peyvandi S.
        • Rollins C.
        Fetal brain development in congenital heart disease.
        Can J Cardiol. 2022; S0828-282X: 00893-00895
        • Bregman S.
        • Frishman W.H.
        Impact of improved survival in congenital heart disease on incidence of disease.
        Cardiol Rev. 2018; 26: 82-85
        • Kelly C.J.
        • Makropoulos A.
        • Cordero-Grande L.
        • et al.
        Impaired development of the cerebral cortex in infants with congenital heart disease is correlated to reduced cerebral oxygen delivery.
        Sci Rep. 2017; 715088
        • De Asis-Cruz J.
        • Donofrio M.T.
        • Vezina G.
        • Limperopoulos C.
        Aberrant brain functional connectivity in newborns with congenital heart disease before cardiac surgery.
        Neuroimage Clin. 2018; 17: 31-42
        • Licht D.J.
        • Shera D.M.
        • Clancy R.R.
        • et al.
        Brain maturation is delayed in infants with complex congenital heart defects.
        J Thorac Cardiovasc Surg. 2009; 137: 529-537
        • Bellinger D.C.
        • Wypij D.
        • Duplessis A.J.
        • et al.
        Neurodevelopmental status at eight years in children with dextro-transposition of the great arteries: The Boston Circulatory Arrest Trial.
        J Thorac Cardiovasc Surg. 2003; 126: 1385-1396
        • Hövels-Gürich H.H.
        • Konrad K.
        • Skorzenski D.
        • Herpertz-Dahlmann B.
        • Messmer B.J.
        • Seghaye M.-C.
        Attentional dysfunction in children after corrective cardiac surgery in infancy.
        Ann Thorac Surg. 2007; 83: 1425-1430
        • Kirshbom P.M.
        • Flynn T.B.
        • Clancy R.R.
        • et al.
        Late neurodevelopmental outcome after repair of total anomalous pulmonary venous connection.
        J Thorac Cardiovasc Surg. 2005; 129: 1091-1097
        • Tindall S.
        • Rothermel R.R.
        • Delamater A.
        • Pinsky W.
        • Klein M.D.
        Neuropsychological abilities of children with cardiac disease treated with extracorporeal membrane oxygenation.
        Dev Neuropsychol. 1999; 16: 101-115.13
        • Bellinger D.C.
        • Bernstein J.H.
        • Kirkwood M.W.
        • Rappaport L.A.
        • Newburger J.W.
        Visual-spatial skills in children after open-heart surgery.
        J Dev Behav Pediatr. 2003; 24: 169-179
        • Schaefer C.
        • von Rhein M.
        • Knirsch W.
        • et al.
        Neurodevelopmental outcome, psychological adjustment, and quality of life in adolescents with congenital heart disease.
        Dev Med Child Neurol. 2013; 55: 1143-1149
        • Bellinger D.C.
        • Rivkin M.J.
        • DeMaso D.
        • et al.
        Adolescents with tetralogy of Fallot: neuropsychological assessment and structural brain imaging.
        Cardiol Young. 2015; 25: 338-347
        • Bellinger D.C.
        • Watson C.G.
        • Rivkin M.J.
        • et al.
        Neuropsychological status and structural brain imaging in adolescents with single ventricle who underwent the Fontan procedure.
        J Am Heart Assoc. 2015; 4e002302
        • Bellinger D.C.
        • Wypij D.
        • Rivkin M.J.
        • et al.
        Adolescents with d-transposition of the great arteries corrected with the arterial switch procedure: neuropsychological assessment and structural brain imaging.
        Circulation. 2011; 124: 1361-1369
        • Cassidy A.R.
        • Ilardi D.
        • Bowen S.R.
        • et al.
        Congenital heart disease: a primer for the pediatric neuropsychologist.
        Child Neuropsychol. 2017; 24: 859-902
        • Calderon J.
        • Bonnet D.
        • Courtin C.
        • Concordet S.
        • Plumet M.-H.
        • Angeard N.
        Executive function and theory of mind in school-aged children after neonatal corrective cardiac surgery for transposition of the great arteries.
        Dev Med Child Neurol. 2010; 52: 1139-1144
        • Bellinger D.C.
        Are children with congenital cardiac malformations at increased risk of deficits in social cognition?.
        Cardiol Young. 2008; 18: 3-9
        • DeMaso D.R.
        • Calderon J.
        • Taylor G.A.
        • et al.
        Psychiatric disorders in adolescents with single ventricle congenital heart disease.
        Pediatrics. 2017; 139e20162241
        • Westhoff-Bleck M.
        • Briest J.
        • Fraccarollo D.
        • et al.
        Mental disorders in adults with congenital heart disease: Unmet needs and impact on quality of life.
        J Affect Disord. 2016; 204: 180-186
        • Tsao P.-C.
        • Lee Y.-S.
        • Jeng M.-J.
        • et al.
        Additive effect of congenital heart disease and early developmental disorders on attention-deficit/hyperactivity disorder and autism spectrum disorder: a nationwide population-based longitudinal study.
        Eur Child Adolesc Psychiatry. 2017; 26: 1351-1359
        • Selvanathan T.
        • Smith J.M.C.
        • Miller S.P.
        • Field T.S.
        Neurodevelopment and cognition across the lifespan in patients with single-ventricle physiology: abnormal brain maturation and accumulation of brain injuries.
        Can J Cardiol. 2022; 38: 977-987
        • Desai R.
        • Patel K.
        • Dave H.
        • et al.
        Nationwide frequency, sequential trends, and impact of co-morbid mental health disorders on hospitalizations, outcomes, and healthcare resource utilization in adult congenital heart disease.
        Am J Cardiol. 2020; 125: 1256-1262
        • Yeates K.O.
        • Gerhardt C.A.
        • Bigler E.D.
        • et al.
        Peer relationships of children with traumatic brain injury.
        J Int Neuropsychol Soc. 2013; 19: 518-527
        • Cacioppo J.T.
        • Hawkley L.C.
        • Crawford L.E.
        • et al.
        Loneliness and health: potential mechanisms.
        Psychosom Med. 2002; 64: 407-417
        • Fry K.M.
        • Gerhardt C.A.
        • Ash J.
        • et al.
        Lifetime prevalence of sexual intercourse and contraception use at last sex among adolescents and young adults with congenital heart disease.
        J Adolesc Health. 2015; 56: 396-401
        • Lyon M.E.
        • Kuehl K.
        • McCarter R.
        Transition to adulthood in congenital heart disease: missed adolescent milestones.
        J Adolesc Health. 2006 Jul; 39: 121-124
        • Ilardi D.
        • Ono K.E.
        • McCartney R.
        • Book W.
        • Stringer A.Y.
        Neurocognitive functioning in adults with congenital heart disease.
        Congenit Heart Dis. 2017; 12: 166-173
      3. U.S. Department of Health and Human Services OoDPaHP. Healthy People 2020: An Opportunity to Address Societal Determinants of Health in the U.S. 2020. Available at: Accessed on July 13, 2022.

        • Gadson A.
        • Akpovi E.
        • Mehta P.K.
        Exploring the social determinants of racial/ethnic disparities in prenatal care utilization and maternal outcome.
        Semin Perinatol. 2017; 41: 308-317
        • Churchwell K.
        • Elkind M.S.V.
        • Benjamin R.M.
        • et al.
        Call to action: structural racism as a fundamental driver of health disparities: a presidential advisory from the American Heart Association.
        Circulation. 2020; 142: e454-e468
        • Mannoh I.
        • Hussien M.
        • Commodore-Mensah Y.
        • Michos E.D.
        Impact of social determinants of health on cardiovascular disease prevention.
        Curr Opin Cardiol. 2021; 36: 572-579
        • Santana S.
        • Peyvandi S.
        • Costello J.M.
        • et al.
        Adverse maternal fetal environment partially mediates disparate outcomes in non-white neonates with major congenital heart disease.
        J Pediatr. 2022; S0022-3476 (00616): 3
        • Carrandi A.
        • Bull C.
        • Callander E.
        Health economics and equity in preconception health care: a systematic review.
        Semin Reprod Med. 2022; 40: 205-213
        • Venkatesh K.K.
        • Lynch C.D.
        • Powe C.E.
        • et al.
        Risk of adverse pregnancy outcomes among pregnant individuals with gestational diabetes by race and ethnicity in the United States, 2014-2020.
        JAMA. 2022; 327: 1356-1367
        • Steurer M.A.
        • Peyvandi S.
        • Baer R.J.
        • et al.
        Impaired fetal environment and gestational age: what is driving mortality in neonates with critical congenital heart disease?.
        J Am Heart Assoc. 2019; 8e013194
        • Matthiesen N.B.
        • Ostergaard J.R.
        • Hjortdal V.E.
        • Henriksen T.B.
        Congenital heart defects and the risk of spontaneous preterm birth.
        J Pediatr. 2021; 229: 168-174 e165
        • Laas E.
        • Lelong N.
        • Thieulin A.-C.
        • et al.
        Preterm birth and congenital heart defects: a population-based study.
        Pediatrics. 2012; 130: e829-837
        • Steurer M.A.
        • Baer R.J.
        • Keller R.L.
        • et al.
        Gestational age and outcomes in critical congenital heart disease.
        Pediatrics. 2017; 140e20170999
        • Lopez K.N.
        • Baker-Smith C.
        • Flores G.
        • et al.
        Addressing social determinants of health and mitigating health disparities across the lifespan in congenital heart disease: a scientific statement from the American Heart Association.
        J Am Heart Assoc. 2022; 11e025358
        • Davey B.
        • Sinha R.
        • Lee J.H.
        • Gauthier M.
        • Flores G.
        Social determinants of health and outcomes for children and adults with congenital heart disease: a systematic review.
        Pediatr Res. 2021; 89: 275-294
        • Rosenthal G.L.
        Patterns of prenatal growth among infants with cardiovascular malformations: possible fetal hemodynamic effects.
        Am J Epidemiol. 1996; 143: 505-513
        • Kelly C.J.
        • Christiaens D.
        • Batalle D.
        • et al.
        Abnormal microstructural development of the cerebral cortex in neonates with congenital heart disease is associated with impaired cerebral oxygen delivery.
        J Am Heart Assoc. 2019; 8e009893
        • Donofrio M.T.
        • Massaro A.N.
        Impact of congenital heart disease on brain development and neurodevelopmental outcome.
        Int J Pediatr. 2010; 2010: 359-390
        • Wernovsky G.
        Current insights regarding neurological and developmental abnormalities in children and young adults with complex congenital cardiac disease.
        Cardiol Young. 2006; 16: 92-104
        • Limperopoulos C.
        • Tworetzky W.
        • McElhinney D.B.
        • et al.
        Brain volume and metabolism in fetuses with congenital heart disease: evaluation with quantitative magnetic resonance imaging and spectroscopy.
        Circulation. 2010; 121: 26-33
        • Clouchoux C.
        • du Plessis A.J.
        • Bouyssi-Kobar M.
        • et al.
        Delayed cortical development in fetuses with complex congenital heart disease.
        Cereb Cortex. 2013; 23: 2932-2943
        • Matthiesen N.B.
        • Henriksen T.B.
        • Agergaard P.
        • et al.
        Congenital heart defects and indices of placental and fetal growth in a nationwide study of 924 422 liveborn infants.
        Circulation. 2016; 134: 1546-1556
        • Brossard-Racine M.
        • du Plessis A.J.
        • Vezina G.
        • et al.
        Prevalence and spectrum of in utero structural brain abnormalities in fetuses with complex congenital heart disease.
        AJNR Am J Neuroradiol. 2014; 35: 1593-1599
        • Griffiths P.D.
        • Mousa H.A.
        • Finney C.
        • et al.
        An integrated in utero MR method for assessing structural brain abnormalities and measuring intracranial volumes in fetuses with congenital heart disease: results of a prospective case-control feasibility study.
        Neuroradiology. 2019; 61: 603-611
        • Mlczoch E.
        • Brugger P.
        • Ulm B.
        • et al.
        Structural congenital brain disease in congenital heart disease: results from a fetal MRI program.
        Eur J Paediatr Neurol. 2013; 17: 153-160
        • Pierpont M.E.
        • Brueckner M.
        • Chung W.K.
        • et al.
        Genetic basis for congenital heart disease: revisited: a scientific statement from the american heart association.
        Circulation. 2018; 138: e653-e711
        • Zeltser I.
        • Jarvik G.P.
        • Bernbaum J.
        • et al.
        Genetic factors are important determinants of neurodevelopmental outcome after repair of tetralogy of Fallot.
        J Thorac Cardiovasc Surg. 2008; 135: 91-97
        • Fuller S.
        • Nord A.S.
        • Gerdes M.
        • et al.
        Predictors of impaired neurodevelopmental outcomes at one year of age after infant cardiac surgery.
        Eur J Cardiothorac Surg. 2009; 36: 40-47
        • Marelli A.
        • Miller S.P.
        • Marino B.S.
        • Jefferson A.L.
        • Newburger J.W.
        Brain in congenital heart disease across the lifespan: the cumulative burden of injury.
        Circulation. 2016; 133: 1951-1962
        • Beca J.
        • Gunn J.K.
        • Coleman L.
        • et al.
        New white matter brain injury after infant heart surgery is associated with diagnostic group and the use of circulatory arrest.
        Circulation. 2013; 127: 971-979
        • Ortinau C.M.
        • Mangin-Heimos K.
        • Moen J.
        • et al.
        Prenatal to postnatal trajectory of brain growth in complex congenital heart disease.
        Neuroimage Clin. 2018; 20: 913-922
        • Peyvandi S.
        • Kim H.
        • Lau J.
        • et al.
        The association between cardiac physiology, acquired brain injury, and postnatal brain growth in critical congenital heart disease.
        J Thorac Cardiovasc Surg. 2018; 155 (e3): 291-300
        • von Rhein M.
        • Buchmann A.
        • Hagmann C.
        • et al.
        Brain volumes predict neurodevelopment in adolescents after surgery for congenital heart disease.
        Brain. 2014; 137: 268-276
        • Watson C.G.
        • Stopp C.
        • Wypij D.
        • Newburger J.W.
        • Rivkin M.J.
        Reduced cortical volume and thickness and their relationship to medical and operative features in post-Fontan children and adolescents.
        Pediatr Res. 2017; 81: 881-890
        • Steurer M.A.
        • Baer R.J.
        • Chambers C.D.
        • et al.
        Mortality and major neonatal morbidity in preterm infants with serious congenital heart disease.
        J Pediatr. 2021; 239: 110-116.e3
        • Stoll B.J.
        • Hansen N.I.
        • Bell E.F.
        • et al.
        Neonatal outcomes of extremely preterm infants from the NICHD Neonatal Research Network.
        Pediatrics. 2010; 126: 443-456
        • Costello C.L.
        • Gellatly M.
        • Daniel J.
        • Justo R.N.
        • Weir K.
        Growth restriction in infants and young children with congenital heart disease.
        Congenit Heart Dis. 2015; 10: 447-456
        • Peyvandi S.
        • De Santiago V.
        • Chakkarapani E.
        • et al.
        Association of prenatal diagnosis of critical congenital heart disease with postnatal brain development and the risk of brain injury.
        JAMA Pediatr. 2016; 170e154450
        • Limperopoulos C.
        • Majnemer A.
        • Shevell M.I.
        • Rosenblatt B.
        • Rohlicek C.
        • Tchervenkov C.
        Neurologic status of newborns with congenital heart defects before open heart surgery.
        Pediatrics. 1999; 103: 402-408
        • Mahle W.T.
        • Tavani F.
        • Zimmerman R.A.
        • et al.
        An MRI study of neurological injury before and after congenital heart surgery.
        Circulation. 2002; 106: I109-114
        • Wernovsky G.
        • Stiles K.M.
        • Gauvreau K.
        • et al.
        Cognitive development after the Fontan operation.
        Circulation. 2000; 102: 883-889
        • Watson C.G.
        • Asaro L.A.
        • Wypij D.
        • Robertson Jr., R.L.
        • Newburger J.W.
        • Rivkin M.J.
        Altered gray matter in adolescents with d-transposition of the great arteries.
        J Pediatr. 2016; 169: 36-43.e1
        • Rivkin M.J.
        • Watson C.G.
        • Scoppettuolo L.A.
        • et al.
        Adolescents with d-transposition of the great arteries repaired in early infancy demonstrate reduced white matter microstructure associated with clinical risk factors.
        J Thorac Cardiovasc Surg. 2013; 146: 543-549.e1
        • Brewster R.C.
        • King T.Z.
        • Burns T.G.
        • Drossner D.M.
        • Mahle W.T.
        White matter integrity dissociates verbal memory and auditory attention span in emerging adults with congenital heart disease.
        J Int Neuropsychol Soc. 2015; 21: 22-33
        • Rollins C.K.
        • Watson C.G.
        • Asaro L.A.
        • et al.
        White matter microstructure and cognition in adolescents with congenital heart disease.
        J Pediatr. 2014; 165 (e1-2): 936-944
        • Ng I.H.X.
        • Bonthrone A.F.
        • Kelly C.J.
        • et al.
        Investigating altered brain development in infants with congenital heart disease using tensor-based morphometry.
        Sci Rep. 2020; 1014909
        • Meuwly E.
        • Feldmann M.
        • Knirsch W.
        • et al.
        Postoperative brain volumes are associated with one-year neurodevelopmental outcome in children with severe congenital heart disease.
        Sci Rep. 2019; 910885
        • McQuillen P.S.
        • Barkovich A.J.
        • Hamrick S.E.
        • et al.
        Temporal and anatomic risk profile of brain injury with neonatal repair of congenital heart defects.
        Stroke. 2007; 38: 736-741
        • Shum-Tim D.
        • Nagashima M.
        • Shinoka T.
        • et al.
        Postischemic hyperthermia exacerbates neurologic injury after deep hypothermic circulatory arrest.
        J Thorac Cardiovasc Surg. 1998; 116: 780-792
        • Gaynor J.W.
        • Jarvik G.P.
        • Gerdes M.
        • et al.
        Postoperative electroencephalographic seizures are associated with deficits in executive function and social behaviors at 4 years of age following cardiac surgery in infancy.
        J Thorac Cardiovasc Surg. 2013; 146: 132-137
        • Hamrick S.E.
        • Gremmels D.B.
        • Keet C.A.
        • et al.
        Neurodevelopmental outcome of infants supported with extracorporeal membrane oxygenation after cardiac surgery.
        Pediatrics. 2003; 111: e671-675
        • Stegeman R.
        • Sprong M.C.A.
        • Breur J.
        • et al.
        Early motor outcomes in infants with critical congenital heart disease are related to neonatal brain development and brain injury.
        Dev Med Child Neurol. 2022; 64: 192-199
        • von Rhein M.
        • Scheer I.
        • Loenneker T.
        • Huber R.
        • Knirsch W.
        • Latal B.
        Structural brain lesions in adolescents with congenital heart disease.
        J Pediatr. 2011; 158: 984-989
        • Richardson C.J.
        • Itua P.
        • Duong T.
        • Lewars J.
        • Tiesenga F.
        Racial and socioeconomic disparities in congenital heart surgery: a research article.
        J Card Surg. 2021; 36: 2454-2457
        • Peyvandi S.
        • Baer R.J.
        • Moon-Grady A.J.
        • et al.
        Socioeconomic mediators of racial and ethnic disparities in congenital heart disease outcomes: a population-based study in California.
        J Am Heart Assoc. 2018; 7e010342
        • Forbess J.M.
        • Visconti K.J.
        • Hancock-Friesen C.
        • Howe R.C.
        • Bellinger D.C.
        • Jonas R.A.
        Neurodevelopmental outcome after congenital heart surgery: results from an institutional registry.
        Circulation. 2002; 106: I95-102
      4. Mitchell BF, J. HOLC “Redlining” Maps: The Persistent Structure of Segregation and Economic Inequality. Washington, DC: National Community Reinvestment Coalition. Available at: Accessed on July 13, 2022.

        • Sistrunk C.
        • Tolbert N.
        • Sanchez-Pino M.D.
        • et al.
        Impact of federal, state, and local housing policies on disparities in cardiovascular disease in Black/African American men and women: from policy to pathways to biology.
        Front Cardiovasc Med. 2022; 9756734
        • Fanta M.
        • Ladzekpo D.
        • Unaka N.
        Racism and pediatric health outcomes.
        Curr Probl Pediatr Adolesc Health Care. 2021; 51101087
        • Masi C.M.
        • Hawkley L.C.
        • Piotrowski Z.H.
        • Pickett K.E.
        Neighborhood economic disadvantage, violent crime, group density, and pregnancy outcomes in a diverse, urban population.
        Soc Sci Med. 2007; 65: 2440-2457
        • Bishop-Royse J.
        • Lange-Maia B.
        • Murray L.
        • Shah R.C.
        • DeMaio F.
        Structural racism, socio-economic marginalization, and infant mortality.
        Public Health. 2021; 190: 55-61
        • Bowen S.
        • Elliott S.
        • Hardison‐Moody A.
        The structural roots of food insecurity: how racism is a fundamental cause of food insecurity.
        Sociology Compass. 2021; 15e12846
        • Bower K.M.
        • Thorpe Jr., R.J.
        • Rohde C.
        • Gaskin D.J.
        The intersection of neighborhood racial segregation, poverty, and urbanicity and its impact on food store availability in the United States.
        Prev Med. 2014; 58: 33-39
        • Cortes-Albornoz M.C.
        • Garcia-Guaqueta D.P.
        • Velez-van-Meerbeke A.
        • Talero-Gutierrez C.
        Maternal nutrition and neurodevelopment: a scoping review.
        Nutrients. 2021; 13: 3530
        • Lapp H.E.
        • Hunter R.G.
        Early life exposures, neurodevelopmental disorders, and transposable elements.
        Neurobiol Stress. 2019; 11100174
        • Peiris V.
        • Singh T.P.
        • Tworetzky W.
        • Chong E.C.
        • Gauvreau K.
        • Brown D.W.
        Association of socioeconomic position and medical insurance with fetal diagnosis of critical congenital heart disease.
        Circ Cardiovasc Qual Outcomes. 2009; 2: 354-360
        • Hill G.D.
        • Block J.R.
        • Tanem J.B.
        • Frommelt M.A.
        Disparities in the prenatal detection of critical congenital heart disease.
        Prenat Diagn. 2015; 35: 859-863
        • Campbell M.J.
        • Lorch S.
        • Rychik J.
        • Quartermain M.D.
        • Passarella M.
        • Groeneveld P.W.
        Socioeconomic barriers to prenatal diagnosis of critical congenital heart disease.
        Prenat Diagn. 2021; 41: 341-346
        • Krishnan A.
        • Jacobs M.B.
        • Morris S.A.
        • et al.
        Impact of socioeconomic status, race and ethnicity, and geography on prenatal detection of hypoplastic left heart syndrome and transposition of the great arteries.
        Circulation. 2021; 143: 2049-2060
        • Lee D.-C.
        • Liang H.
        • Shi L.
        The convergence of racial and income disparities in health insurance coverage in the United States.
        Int J Equity Health. 2021; 20: 96
        • Buchmueller T.C.
        • Levy H.G.
        The ACA’s impact on racial and ethnic disparities in health insurance coverage and access to care.
        Health Aff (Millwood). 2020; 39: 395-402
        • Yearby R.
        • Clark B.
        • Figueroa J.F.
        Structural racism in historical and modern US health care policy.
        Health Aff (Millwood). 2022; 41: 187-194
      5. Foundation HJKF. Employer-sponsored Coverage Rates for the Nonelderly by Race/Ethnicity. Available at:,%22sort%22:%22asc%22%7D. Accessed on July 13, 2022.

        • Morris S.A.
        • Ethen M.K.
        • Penny D.J.
        • et al.
        Prenatal diagnosis, birth location, surgical center, and neonatal mortality in infants with hypoplastic left heart syndrome.
        Circulation. 2014; 129: 285-292
        • Udine M.L.
        • Evans F.
        • Burns K.M.
        • Pearson G.D.
        • Kaltman J.R.
        Geographical variation in infant mortality due to congenital heart disease in the USA: a population-based cohort study.
        Lancet Child Adolesc Health. 2021; 5: 483-490
        • Kaltman J.R.
        • Burns K.M.
        • Pearson G.D.
        • Goff D.C.
        • Evans F.
        Disparities in congenital heart disease mortality based on proximity to a specialized pediatric cardiac center.
        Circulation. 2020; 141: 1034-1036
        • Welke K.F.
        • Pasquali S.K.
        • Lin P.
        • et al.
        Theoretical model for delivery of congenital heart surgery in the United States.
        Ann Thorac Surg. 2021; 111: 1628-1635
        • Gallegos F.N.
        • Woo J.L.
        • Anderson B.R.
        • Lopez K.N.
        Disparities in surgical outcomes of neonates with congenital heart disease across regions, centers, and populations.
        Semin Perinatol. 2022; 46151581
        • Salm Ward T.C.
        • Mazul M.
        • Ngui E.M.
        • Bridgewater F.D.
        • Harley A.E.
        You learn to go last": perceptions of prenatal care experiences among African-American women with limited incomes.
        Matern Child Health J. 2013; 17: 1753-1759
      6. Loggins Clay S, Griffin M, Averhart W. Black/White disparities in pregnant women in the United States: an examination of risk factors associated with Black/White racial identity. Health Soc Care Community 2018. (Online ahead of print).

        • Vedam S.
        • Stoll K.
        • Taiwo T.K.
        • et al.
        The Giving Voice to Mothers Study: inequity and mistreatment during pregnancy and childbirth in the United States.
        Reprod Health. 2019; 16: 77
        • Ayers B.
        • Purvis R.
        • Bing W.
        • et al.
        Structural and socio-cultural barriers to prenatal care in a US Marshallese community.
        Matern Child Health J. 2018; 22: 1067-1076
        • Bromley E.
        • Nunes A.
        • Phipps M.G.
        Disparities in pregnancy healthcare utilization between Hispanic and non-Hispanic White women in Rhode Island.
        Matern Child Health J. 2012; 16: 1576-1582
        • Collins Jr., J.W.
        • David R.J.
        • Handler A.
        • Wall S.
        • Andes S.
        Very low birthweight in African American infants: the role of maternal exposure to interpersonal racial discrimination.
        Am J Public Health. 2004; 94: 2132-2138
        • FitzGerald C.
        • Hurst S.
        Implicit bias in healthcare professionals: a systematic review.
        BMC Med Ethics. 2017; 18: 19
        • Shen M.J.
        • Peterson E.B.
        • Costas-Muniz R.
        • et al.
        The effects of race and racial concordance on patient-physician communication: a systematic review of the literature.
        J Racial Ethn Health Disparities. 2018; 5: 117-140
        • Greenwood B.N.
        • Hardeman R.R.
        • Huang L.
        • Sojourner A.
        Physician–patient racial concordance and disparities in birthing mortality for newborns.
        Proc Natl Acad Sciences USA. 2020; 117: 21194-21200
        • Banerjee S.
        • Aaysha Cader F.
        • Gulati M.
        • Capers I.V.Q.
        Racism and cardiology: a global call to action.
        CJC Open. 2021; 3: S165-S173
        • Keir M.
        • McFadden C.
        • Ruzycki S.
        • et al.
        Lack of equity in the cardiology physician workforce: a narrative review and analysis of the literature.
        CJC Open. 2021; 3: S180-S186
        • Bolin E.H.
        • Collins 2nd, R.T.
        • Best T.H.
        • et al.
        Implementation of a statewide, multisite fetal tele-echocardiography program: evaluation of more than 1100 fetuses over 9 years.
        J Perinatol. 2020; 40: 1524-1530
        • Chowdhury D.
        • Johnson J.N.
        • Baker‐Smith C.M.
        • et al.
        Health care policy and congenital heart disease: 2020 focus on our 2030 future.
        J Am Heart Assoc. 2021; 10e020605
        • Cassidy A.R.
        • Butler S.C.
        • Briend J.
        • et al.
        Neurodevelopmental and psychosocial interventions for individuals with CHD: a research agenda and recommendations from the Cardiac Neurodevelopmental Outcome Collaborative.
        Cardiol Young. 2021; 31: 888-899
        • Garbers S.
        • Falletta K.A.
        • Srinivasulu S.
        • et al.
        If you don't ask, i'm not going to tell you": using community-based participatory research to inform pregnancy intention screening processes for Black and Latina women in primary care.
        Womens Health Issues. 2020; 30: 25-34
        • Maiter S.
        • Simich L.
        • Jacobson N.
        • Wise J.
        Reciprocity: an ethic for community-based participatory action research.
        Action Research. 2008; 6: 305-325
        • Montalbano A.
        • Chadwick S.
        • Miller D.
        • et al.
        Demographic characteristics among members of patient family advisory councils at a pediatric health system.
        J Patient Exp. 2021; 823743735211049680
      7. Kubicek K, Robles M. Resource for Integrating Community Voices into a Research Study: Community Advisory Board Toolkit. Available at: Southern California Clinical and Translational Science Institute grant UL1TR001855 2016.