Advertisement
Canadian Journal of Cardiology

“Neurologic Complications in Patients with Left Ventricular Assist Devices”

Published:November 14, 2022DOI:https://doi.org/10.1016/j.cjca.2022.11.004

      Abstract

      Left ventricular assist device (LVAD) use has revolutionized the care of patients with advanced heart failure, allowing for more patients to survive until heart transplant and providing improved quality for patients unable to undergo transplantation. Despite these benefits, LVADs are associated with neurological complications despite an improvement in device technology and better clinical care and experience.
      This review provides information on the incidence, risk factors, and management of neurological complications among LVAD patients. While scant guidelines exist for the evaluation and management of neurological complications in LVAD patients, a high index of suspicion can prompt early detection of neurological complications which may improve overall neurological outcomes. A better understanding of the implications of continuous circulatory flow on systemic and cerebral vasculature is necessary to reduce the common occurrence of neurological complications in this population.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • EJ M.
        • P S.
        • MS K.
        • et al.
        The Society of Thoracic Surgeons Intermacs 2020 Annual Report.
        Ann Thorac Surg. 2021; 111: 778-792https://doi.org/10.1016/J.ATHORACSUR.2020.12.038
        • Mehra M.R.
        • Uriel N.
        • Naka Y.
        • et al.
        A Fully Magnetically Levitated Left Ventricular Assist Device — Final Report.
        N Engl J Med. 2019; 380: 1618-1627https://doi.org/10.1056/NEJMoa1900486
        • Estep J.D.
        • Starling R.C.
        • Horstmanshof D.A.
        • et al.
        Risk Assessment and Comparative Effectiveness of Left Ventricular Assist Device and Medical Management in Ambulatory Heart Failure Patients: Results From the ROADMAP Study.
        J Am Coll Cardiol. 2015; 66: 1747-1761https://doi.org/10.1016/J.JACC.2015.07.075
        • Cho S.M.
        • Floden D.
        • Wallace K.
        • et al.
        Long-Term Neurocognitive Outcome in Patients With Continuous Flow Left Ventricular Assist Device.
        JACC Heart Fail. 2021; 9: 839-851https://doi.org/10.1016/J.JCHF.2021.05.016
        • Hahn C.
        • Schwartz M.A.
        Mechanotransduction in vascular physiology and atherogenesis.
        Nat Rev Mol Cell Biol. 2009; 10: 53-62https://doi.org/10.1038/NRM2596
        • Amir O.
        • Radovancevic B.
        • Delgado R.M.
        • et al.
        Peripheral vascular reactivity in patients with pulsatile vs axial flow left ventricular assist device support.
        J Heart Lung Transplant. 2006; 25: 391-394https://doi.org/10.1016/J.HEALUN.2005.11.439
        • Witman M.A.H.
        • Garten R.S.
        • Gifford J.R.
        • et al.
        Further Peripheral Vascular Dysfunction in Heart Failure Patients With a Continuous-Flow Left Ventricular Assist Device: The Role of Pulsatility.
        JACC Heart Fail. 2015; 3: 703-711https://doi.org/10.1016/J.JCHF.2015.04.012
        • Ben-Shlomo Y.
        • Spears M.
        • Boustred C.
        • et al.
        Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant meta-analysis of prospective observational data from 17,635 subjects.
        J Am Coll Cardiol. 2014; 63: 636-646https://doi.org/10.1016/J.JACC.2013.09.063
        • Patel A.C.
        • Dodson R.B.
        • Cornwell W.K.
        • et al.
        Dynamic Changes in Aortic Vascular Stiffness in Patients Bridged to Transplant With Continuous-Flow Left Ventricular Assist Devices.
        JACC Heart Fail. 2017; 5: 449-459https://doi.org/10.1016/J.JCHF.2016.12.009
        • Rosenblum H.
        • Pinsino A.
        • Zuver A.
        • et al.
        Increased Aortic Stiffness Is Associated With Higher Rates of Stroke, Gastrointestinal Bleeding and Pump Thrombosis in Patients With a Continuous Flow Left Ventricular Assist Device.
        J Card Fail. 2021; 27: 696-699https://doi.org/10.1016/J.CARDFAIL.2021.02.009
        • Joshi B.
        • Brady K.
        • Lee J.
        • et al.
        Impaired autoregulation of cerebral blood flow during rewarming from hypothermic cardiopulmonary bypass and its potential association with stroke.
        Anesth Analg. 2010; 110: 321-328https://doi.org/10.1213/ANE.0b013e3181c6fd12
        • Ono M.
        • Joshi B.
        • Brady K.
        • et al.
        Risks for impaired cerebral autoregulation during cardiopulmonary bypass and postoperative stroke.
        Br J Anaesth. 2012; 109: 391-398https://doi.org/10.1093/BJA/AES148
        • Ono M.
        • Joshi B.
        • Brady K.
        • et al.
        Cerebral Blood Flow Autoregulation Is Preserved After Continuous-Flow Left Ventricular Assist Device Implantation.
        J Cardiothorac Vasc Anesth. 2012; 26: 1022-1028https://doi.org/10.1053/J.JVCA.2012.07.014
        • Cornwell W.K.
        • Tarumi T.
        • Aengevaeren V.L.
        • et al.
        Effect of pulsatile and nonpulsatile flow on cerebral perfusion in patients with left ventricular assist devices.
        J Hear Lung Transplant. 2014; 33: 1295-1303https://doi.org/10.1016/j.healun.2014.08.013
        • Stöhr E.J.
        • Ji R.
        • Akiyama K.
        • et al.
        Cerebral vasoreactivity in HeartMate 3 patients.
        J Heart Lung Transplant. 2021; 40: 786-793https://doi.org/10.1016/J.HEALUN.2021.05.005
        • Smith K.J.
        • Suarez I.M.
        • Scheer A.
        • et al.
        Cerebral Blood Flow during Exercise in Heart Failure: Effect of Ventricular Assist Devices.
        Med Sci Sports Exerc. 2019; 51: 1372-1379https://doi.org/10.1249/MSS.0000000000001904
      1. Smith KJ, Moreno-Suarez I, Scheer A, et al. Cerebral blood flow responses to exercise are enhanced in left ventricular assist device patients after an exercise rehabilitation program. J Appl Physiol. 2020;128(1):108-116. doi:10.1152/JAPPLPHYSIOL.00604.2019/ASSET/IMAGES/LARGE/ZDG0012032500006.JPEG

        • Florea V.G.
        • Cohn J.N.
        The autonomic nervous system and heart failure.
        Circ Res. 2014; 114: 1815-1826https://doi.org/10.1161/CIRCRESAHA.114.302589
        • Castagna F.
        • McDonnell B.J.
        • Mondellini G.M.
        • et al.
        Twenty-four-hour blood pressure and heart rate variability are reduced in patients on left ventricular assist device support.
        J Hear Lung Transplant. 2022; 41: 802-809https://doi.org/10.1016/J.HEALUN.2022.02.016
        • Markham D.W.
        • Fu Q.
        • Palmer M.D.
        • et al.
        Sympathetic neural and hemodynamic responses to upright tilt in patients with pulsatile and nonpulsatile left ventricular assist devices.
        Circ Hear Fail. 2013; 6: 293-299https://doi.org/10.1161/CIRCHEARTFAILURE.112.969873
        • Sailer C.
        • Edelmann H.
        • Buchanan C.
        • et al.
        Impairments in Blood Pressure Regulation and Cardiac Baroreceptor Sensitivity Among Patients With Heart Failure Supported With Continuous-Flow Left Ventricular Assist Devices.
        Circ Hear Fail. 2021; 14: E007448https://doi.org/10.1161/CIRCHEARTFAILURE.120.007448
        • Miller L.W.
        • Pagani F.D.
        • Russell S.D.
        • et al.
        Use of a Continuous-Flow Device in Patients Awaiting Heart Transplantation.
        N Engl J Med. 2007; 357: 885-896https://doi.org/10.1056/nejmoa067758
        • Mehra M.R.
        • Naka Y.
        • Uriel N.
        • et al.
        A Fully Magnetically Levitated Circulatory Pump for Advanced Heart Failure.
        N Engl J Med. 2017; 376: 440-450https://doi.org/10.1056/nejmoa1610426
        • Mehra M.R.
        • Goldstein D.J.
        • Uriel N.
        • et al.
        Two-Year Outcomes with a Magnetically Levitated Cardiac Pump in Heart Failure.
        N Engl J Med. 2018; 378: 1386-1395https://doi.org/10.1056/nejmoa1800866
        • Kirklin J.K.
        • Naftel D.C.
        • Myers S.L.
        • Pagani F.D.
        • Colombo P.C.
        Quantifying the impact from stroke during support with continuous flow ventricular assist devices: An STS INTERMACS analysis.
        J Hear Lung Transplant. 2020; 39: 782-794https://doi.org/10.1016/j.healun.2020.04.006
        • Schmid C.
        • Wilhelm M.
        • Rothenburger M.
        • et al.
        Effect of high dose platelet inhibitor treatment on thromboembolism in Novacor patients.
        Eur J Cardio-thoracic Surg. 2000; 17: 331-335https://doi.org/10.1016/S1010-7940(00)00334-1
        • Rogers J.G.
        • Pagani F.D.
        • Tatooles A.J.
        • et al.
        Intrapericardial Left Ventricular Assist Device for Advanced Heart Failure.
        N Engl J Med. 2017; 376: 451-460https://doi.org/10.1056/NEJMoa1602954
        • Cho S.-M.
        • Mehaffey J.H.
        • Meyers S.L.
        • et al.
        Cerebrovascular Events in Patients With Centrifugal-Flow Left Ventricular Assist Devices: Propensity Score-Matched Analysis From the Intermacs Registry.
        Circulation. 2021; 144: 763-772https://doi.org/10.1161/CIRCULATIONAHA.121.055716
      2. FDA Alerts Health Care Providers to Stop New Implants of Certain Ventricular Assist Device System | FDA. Accessed September 23, 2022. https://www.fda.gov/news-events/press-announcements/fda-alerts-health-care-providers-stop-new-implants-certain-ventricular-assist-device-system

        • Frontera J.A.
        • Starling R.
        • Cho S.M.
        • et al.
        Risk factors, mortality, and timing of ischemic and hemorrhagic stroke with left ventricular assist devices.
        J Hear Lung Transplant. 2017; 36: 673-683https://doi.org/10.1016/j.healun.2016.12.010
        • Rice C.J.
        • Cho S.M.
        • Zhang L.Q.
        • Hassett C.
        • Starling R.C.
        • Uchino K.
        The management of acute ischemic strokes and the prevalence of large vessel occlusion in left ventricular assist device.
        Cerebrovasc Dis. 2019; 46: 213-217https://doi.org/10.1159/000495080
        • Tahsili-Fahadan P.
        • Curfman D.R.
        • Davis A.A.
        • et al.
        Cerebrovascular Events After Continuous-Flow Left Ventricular Assist Devices.
        Neurocrit Care. 2018; 29: 225-232https://doi.org/10.1007/s12028-018-0531-y
        • Coffin S.T.
        • Haglund N.A.
        • Davis M.E.
        • et al.
        Adverse neurologic events in patients bridged with long-term mechanical circulatory support: A device-specific comparative analysis.
        J Hear Lung Transplant. 2015; 34: 1578-1585https://doi.org/10.1016/j.healun.2015.08.017
        • Nassif M.E.
        • Tibrewala A.
        • Raymer D.S.
        • et al.
        Systolic blood pressure on discharge after left ventricular assist device insertion is associated with subsequent stroke.
        J Hear Lung Transplant. 2015; 34: 503-508https://doi.org/10.1016/j.healun.2014.09.042
        • Enriquez A.D.
        • Calenda B.
        • Gandhi P.U.
        • Nair A.P.
        • Anyanwu A.C.
        • Pinney S.P.
        Clinical impact of atrial fibrillation in patients with the HeartMate II left ventricular assist device.
        J Am Coll Cardiol. 2014; 64: 1883-1890https://doi.org/10.1016/j.jacc.2014.07.989
        • Stulak J.M.
        • Deo S.
        • Schirger J.
        • et al.
        Preoperative atrial fibrillation increases risk of thromboembolic events after left ventricular assist device implantation.
        Ann Thorac Surg. 2013; 96: 2161-2167https://doi.org/10.1016/j.athoracsur.2013.07.004
        • Teuteberg J.J.
        • Slaughter M.S.
        • Rogers J.G.
        • et al.
        The HVAD Left Ventricular Assist Device: Risk Factors for Neurological Events and Risk Mitigation Strategies.
        JACC Hear Fail. 2015; 3: 818-828https://doi.org/10.1016/j.jchf.2015.05.011
        • Morgan J.A.
        • Brewer R.J.
        • Nemeh H.W.
        • et al.
        Stroke while on long-term left ventricular assist device support: Incidence, outcome, and predictors.
        ASAIO J. 2014; 60: 284-289https://doi.org/10.1097/MAT.0000000000000074
        • Boyle A.J.
        • Jorde U.P.
        • Sun B.
        • et al.
        Pre-operative risk factors of bleeding and stroke during left ventricular assist device support: An analysis of more than 900 heartmate II outpatients.
        J Am Coll Cardiol. 2014; 63: 880-888https://doi.org/10.1016/j.jacc.2013.08.1656
        • Acharya D.
        • Loyaga-Rendon R.
        • Morgan C.J.
        • et al.
        INTERMACS Analysis of Stroke During Support With Continuous-Flow Left Ventricular Assist Devices: Risk Factors and Outcomes.
        JACC Hear Fail. 2017; 5: 703-711https://doi.org/10.1016/j.jchf.2017.06.014
        • Cho S.M.
        • Starling R.C.
        • Teuteberg J.
        • et al.
        Understanding risk factors and predictors for stroke subtypes in the ENDURANCE trials.
        J Hear Lung Transplant. 2020; 39: 639-647https://doi.org/10.1016/j.healun.2020.01.1330
      3. Guglin M, Cousin E, Scholfield M, Faber C, Caldeira C, Guglin M. Treatment options for patients with mobile left ventricular thrombus and ventricular dysfunction: a case series. Hear Lung Vessel. 2014;6(2):88. Accessed October 20, 2022. /pmc/articles/PMC4095835/

        • Lampert B.C.
        • Eckert C.
        • Weaver S.
        • et al.
        Blood pressure control in continuous flow left ventricular assist devices: Efficacy and impact on adverse events.
        Ann Thorac Surg. 2014; 97: 139-146https://doi.org/10.1016/j.athoracsur.2013.07.069
        • Milano C.A.
        • Rogers J.G.
        • Tatooles A.J.
        • et al.
        HVAD: The ENDURANCE Supplemental Trial.
        JACC Hear Fail. 2018; 6: 792-802https://doi.org/10.1016/j.jchf.2018.05.012
        • Cho S.M.
        • Moazami N.
        • Katz S.
        • Bhimraj A.
        • Shrestha N.K.
        • Frontera J.A.
        Stroke Risk Following Infection in Patients with Continuous-Flow Left Ventricular Assist Device.
        Neurocrit Care. 2019; 31: 72-80https://doi.org/10.1007/s12028-018-0662-1
        • Cho S.M.
        • Hassett C.
        • Rice C.J.
        • Starling R.
        • Katzan I.
        • Uchino K.
        What Causes LVAD-Associated Ischemic Stroke? Surgery, Pump Thrombosis, Antithrombotics, and Infection.
        ASAIO J. 2019; 65: 775-780https://doi.org/10.1097/MAT.0000000000000901
        • Aggarwal A.
        • Gupta A.
        • Kumar S.
        • et al.
        Are blood stream infections associated with an increased risk of hemorrhagic stroke in patients with a left ventricular assist device?.
        ASAIO J. 2012; 58: 509-513https://doi.org/10.1097/MAT.0b013e318260c6a6
        • Lee T.
        • Buletko A.B.
        • Matthew J.
        • Cho S.M.
        Bloodstream infection is associated with subarachnoid hemorrhage and infectious intracranial aneurysm in left ventricular assist device.
        Perfus (United Kingdom). 2020; 35: 117-120https://doi.org/10.1177/0267659119858853
        • Trachtenberg B.H.
        • Cordero-Reyes A.M.
        • Aldeiri M.
        • et al.
        Persistent blood stream infection in patients supported with a continuous-flow left ventricular assist device is associated with an increased risk of cerebrovascular accidents.
        J Card Fail. 2015; 21: 119-125https://doi.org/10.1016/j.cardfail.2014.10.019
        • Hasin T.
        • Matsuzawa Y.
        • Guddeti R.R.
        • et al.
        Attenuation in peripheral endothelial function after continuous flow left ventricular assist device therapy is associated with cardiovascular adverse events.
        Circ J. 2015; 79: 770-777https://doi.org/10.1253/circj.CJ-14-1079
        • Malone G.
        • Abdelsayed G.
        • Bligh F.
        • et al.
        Advancements in left ventricular assist devices to prevent pump thrombosis and blood coagulopathy.
        J Anat. Published online. 2022; https://doi.org/10.1111/joa.13675
        • Inamullah O.
        • Chiang Y.P.
        • Bishawi M.
        • et al.
        Characteristics of strokes associated with centrifugal flow left ventricular assist devices.
        Sci Rep. 2021; 11https://doi.org/10.1038/s41598-021-81445-8
        • Mehra M.R.
        • Goldstein D.J.
        • Cleveland J.C.
        • et al.
        Five-Year Outcomes in Patients With Fully Magnetically Levitated vs Axial-Flow Left Ventricular Assist Devices in the MOMENTUM 3 Randomized Trial.
        JAMA. 2022; 328: 1233-1242https://doi.org/10.1001/JAMA.2022.16197
        • Slaughter M.S.
        • Naka Y.
        • John R.
        • et al.
        Post-operative heparin may not be required for transitioning patients with a HeartMate II left ventricular assist system to long-term warfarin therapy.
        J Hear Lung Transplant. 2010; 29: 616-624https://doi.org/10.1016/j.healun.2010.02.003
        • Feldman D.
        • Pamboukian S.V.
        • Teuteberg J.J.
        • et al.
        The 2013 International Society for Heart and Lung Transplantation Guidelines for mechanical circulatory support: Executive summary.
        J Hear Lung Transplant. 2013; 32: 157-187https://doi.org/10.1016/j.healun.2012.09.013
        • Mehra M.R.
        • Crandall D.L.
        • Gustafsson F.
        • et al.
        Aspirin and left ventricular assist devices: rationale and design for the international randomized, placebo-controlled, non-inferiority ARIES HM3 trial.
        Eur J Heart Fail. 2021; 23: 1226-1237https://doi.org/10.1002/EJHF.2275
        • Zayat R.
        • Ahmad U.
        • Stoppe C.
        • et al.
        Sildenafil Reduces the Risk of Thromboembolic Events in HeartMate II Patients with Low-Level Hemolysis and Significantly Improves the Pulmonary Circulation.
        Int Heart J. 2018; 59: 18-1001https://doi.org/10.1536/IHJ.18-001
        • Saeed O.
        • Rangasamy S.
        • Selevany I.
        • et al.
        Sildenafil Is Associated With Reduced Device Thrombosis and Ischemic Stroke Despite Low-Level Hemolysis on Heart Mate II Support.
        Circ Heart Fail. 2017; 10https://doi.org/10.1161/CIRCHEARTFAILURE.117.004222
        • Xanthopoulos A.
        • Tryposkiadis K.
        • Triposkiadis F.
        • et al.
        Postimplant phosphodiesterase type 5 inhibitors use is associated with lower rates of thrombotic events after left ventricular assist device implantation.
        J Am Heart Assoc. 2020; 915897https://doi.org/10.1161/JAHA.119.015897
        • Roberts K.L.
        • Shuster J.E.
        • Britt N.S.
        • et al.
        Evaluation of clinical outcomes with phosphodiesterase-5 inhibitor therapy for right ventricular dysfunction after left ventricular assist device implantation.
        ASAIO J. 2019; 65: 264-269https://doi.org/10.1097/MAT.0000000000000809
        • Jakstaite A.M.
        • Luedike P.
        • Schmack B.
        • et al.
        Increased bleeding risk with phosphodiesterase-5 inhibitors after left ventricular assist device implantation.
        ESC Hear Fail. 2021; 8: 2419-2427https://doi.org/10.1002/ehf2.13322
      4. Powers WJ, Rabinstein AA, Ackerson T, et al. 2018 Guidelines for the Early Management of Patients With Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. 2018;49(3):e46-e110. doi:10.1161/STR.0000000000000158

        • Kitano T.
        • Sakaguchi M.
        • Yamagami H.
        • et al.
        Mechanical thrombectomy in acute ischemic stroke patients with left ventricular assist device.
        J Neurol Sci. 2020; : 418https://doi.org/10.1016/J.JNS.2020.117142
        • Ibeh C.
        • Mandigo G.K.
        • Sisti J.A.
        • Lavine S.D.
        • Willey J.Z.
        Mechanical thrombectomy after acute ischemic stroke in patients with left ventricular assist devices: A nationwide analysis.
        Int J Stroke. 2022; 00https://doi.org/10.1177/17474930221097271
        • Hofmeijer J.
        • Kappelle L.J.
        • Algra A.
        • Amelink G.J.
        • van Gijn J.
        • van der Worp H.B.
        Surgical decompression for space-occupying cerebral infarction (the Hemicraniectomy After Middle Cerebral Artery infarction with Life-threatening Edema Trial [HAMLET]): a multicentre, open, randomised trial.
        Lancet Neurol. 2009; 8: 326-333https://doi.org/10.1016/S1474-4422(09)70047-X
        • Wijdicks E.F.M.
        • Sheth K.N.
        • Carter B.S.
        • et al.
        Recommendations for the management of cerebral and cerebellar infarction with swelling: A statement for healthcare professionals from the American Heart Association/American Stroke Association.
        Stroke. 2014; 45: 1222-1238https://doi.org/10.1161/01.str.0000441965.15164.d6
        • Paciaroni M.
        • Agnelli G.
        • Falocci N.
        • et al.
        Early recurrence and major bleeding in patients with acute ischemic stroke and atrial fibrillation treated with Non-Vitamin-K oral anticoagulants (RAF-NOACs) Study.
        J Am Heart Assoc. 2017; 6https://doi.org/10.1161/JAHA.117.007034
        • Seiffge D.J.
        • Werring D.J.
        • Paciaroni M.
        • et al.
        Timing of anticoagulation after recent ischaemic stroke in patients with atrial fibrillation.
        Lancet Neurol. 2019; 18: 117-126https://doi.org/10.1016/S1474-4422(18)30356-9
        • Starling R.C.
        • Naka Y.
        • Boyle A.J.
        • et al.
        Results of the post-U.S. food and drug administration-approval study with a continuous flow left ventricular assist device as a bridge to heart transplantation: A prospective study using the INTERMACS (Interagency Registry for Mechanically Assisted Circul.
        J Am Coll Cardiol. 2011; 57: 1890-1898https://doi.org/10.1016/j.jacc.2010.10.062
        • John R.
        • Naka Y.
        • Smedira N.G.
        • et al.
        Continuous flow left ventricular assist device outcomes in commercial use compared with the prior clinical trial.
        Ann Thorac Surg. 2011; 92: 1406-1413https://doi.org/10.1016/j.athoracsur.2011.05.080
        • Aaronson K.D.
        • Slaughter M.S.
        • Miller L.W.
        • et al.
        Use of an intrapericardial, continuous-flow, centrifugal pump in patients awaiting heart transplantation.
        Circulation. 2012; 125: 3191-3200https://doi.org/10.1161/CIRCULATIONAHA.111.058412
        • Slaughter M.S.
        • Pagani F.D.
        • McGee E.C.
        • et al.
        HeartWare ventricular assist system for bridge to transplant: Combined results of the bridge to transplant and continued access protocol trial.
        J Hear Lung Transplant. 2013; 32: 675-683https://doi.org/10.1016/j.healun.2013.04.004
        • Rogers J.G.
        • Pagani F.D.
        • Tatooles A.J.
        • et al.
        Intrapericardial Left Ventricular Assist Device for Advanced Heart Failure.
        N Engl J Med. 2017; 376: 451-460https://doi.org/10.1056/nejmoa1602954
        • Shoskes A.
        • Hassett C.
        • Gedansky A.
        • et al.
        Implications of Causes of Intracranial Hemorrhage During Left Ventricular Assist Device Support.
        Neurocrit Care. 2022; (Published online April 12)https://doi.org/10.1007/S12028-022-01494-3
        • Yavar Z.
        • Cowger J.A.
        • Moainie S.L.
        • Salerno C.T.
        • Ravichandran A.K.
        Bleeding complication rates are higher in females after continuous-flow left ventricular assist device implantation.
        ASAIO J. 2018; 64: 748-753https://doi.org/10.1097/MAT.0000000000000734
        • Wilson T.J.
        • Stetler W.R.
        • Al-Holou W.N.
        • Sullivan S.E.
        • Fletcher J.J.
        Management of intracranial hemorrhage in patients with left ventricular assist devices: Clinical article.
        J Neurosurg. 2013; 118: 1063-1068https://doi.org/10.3171/2013.1.JNS121849
        • Chou J.
        • Bermudez C.
        • Kormos R.
        • Teuteberg J.
        Permanent Continuous Flow Left Ventricular Assist Devices Use After Acute Stabilization for Cardiogenic Shock in Acute Myocardial Infarction.
        ASAIO J. 2017; 63: e13-e17https://doi.org/10.1097/MAT.0000000000000398
        • Cho S.M.
        • Moazami N.
        • Frontera J.A.
        Stroke and Intracranial Hemorrhage in HeartMate II and HeartWare Left Ventricular Assist Devices: A Systematic Review.
        Neurocrit Care. 2017; 27: 17-25https://doi.org/10.1007/s12028-017-0386-7
        • Willey J.Z.
        • Gavalas M.V.
        • Trinh P.N.
        • et al.
        Outcomes after stroke complicating left ventricular assist device.
        J Hear Lung Transplant. 2016; 35: 1003-1009https://doi.org/10.1016/j.healun.2016.03.014
        • Ramey W.L.
        • Basken R.L.
        • Walter C.M.
        • Khalpey Z.
        • Lemole G.M.
        • Dumont T.M.
        Intracranial Hemorrhage in Patients with Durable Mechanical Circulatory Support Devices: Institutional Review and Proposed Treatment Algorithm.
        World Neurosurg. 2017; 108: 826-835https://doi.org/10.1016/j.wneu.2017.09.083
        • López-López J.A.
        • Sterne J.A.C.
        • Thom H.H.Z.
        • et al.
        Oral anticoagulants for prevention of stroke in atrial fibrillation: Systematic review, network meta-Analysis, and cost effectiveness analysis.
        BMJ. 2017; 359https://doi.org/10.1136/bmj.j5058
        • Rothberg M.B.
        • Celestin C.
        • Fiore L.D.
        • Lawler E.
        • Cook J.R.
        Warfarin plus aspirin after myocardial infarction or the acute coronary syndrome: Meta-analysis with estimates of risk and benefit.
        Ann Intern Med. 2005; 143https://doi.org/10.7326/0003-4819-143-4-200508160-00005
        • Van Es R.F.
        • Jonker J.J.C.
        • Verheugt F.W.A.
        • Deckers J.W.
        • Grobbee D.E.
        Aspirin and coumadin after acute coronary syndromes (the ASPECT-2 study): A randomised controlled trial.
        Lancet. 2002; 360: 109-113https://doi.org/10.1016/S0140-6736(02)09409-6
        • John R.
        • Boyle A.
        • Pagani F.
        • Miller L.
        Physiologic and pathologic changes in patients with continuous-flow ventricular assist devices.
        J Cardiovasc Transl Res. 2009; 2: 154-158https://doi.org/10.1007/s12265-009-9092-y
        • Zhou Z.
        • Nguyen T.C.
        • Guchhait P.
        • Dong J.F.
        Von willebrand factor, ADAMTS-13, and thrombotic thrombocytopenic purpura.
        Semin Thromb Hemost. 2010; 36: 71-81https://doi.org/10.1055/s-0030-1248726
        • Suarez J.
        • Patel C.B.
        • Felker G.M.
        • Becker R.
        • Hernandez A.F.
        • Rogers J.G.
        Mechanisms of bleeding and approach to patients with axial-flow left ventricular assist devices.
        Circ Hear Fail. 2011; 4: 779-784https://doi.org/10.1161/CIRCHEARTFAILURE.111.962613
        • Uriel N.
        • Pak S.W.
        • Jorde U.P.
        • et al.
        Acquired von Willebrand syndrome after continuous-flow mechanical device support contributes to a high prevalence of bleeding during long-term support and at the time of transplantation.
        J Am Coll Cardiol. 2010; 56: 1207-1213https://doi.org/10.1016/j.jacc.2010.05.016
        • Crow S.
        • Chen D.
        • Milano C.
        • et al.
        Acquired von Willebrand syndrome in continuous-flow ventricular assist device recipients.
        Ann Thorac Surg. 2010; 90: 1263-1269https://doi.org/10.1016/j.athoracsur.2010.04.099
        • Crow S.
        • Milano C.
        • Joyce L.
        • et al.
        Comparative analysis of von willebrand factor profiles in pulsatile and continuous left ventricular assist device recipients.
        ASAIO J. 2010; 56: 441-445https://doi.org/10.1097/MAT.0b013e3181e5de0a
        • Netuka I.
        • Kvasnička T.
        • Kvasnička J.
        • et al.
        Evaluation of von Willebrand factor with a fully magnetically levitated centrifugal continuous-flow left ventricular assist device in advanced heart failure.
        J Hear Lung Transplant. 2016; 35: 860-867https://doi.org/10.1016/J.HEALUN.2016.05.019
        • Klaeske K.
        • Dieterlen M.T.
        • Scholz U.
        • et al.
        Acquired von Willebrand factor deficiency is reduced in HeartMate 3 patients.
        Eur J Cardiothorac Surg. 2019; 56: 444-450https://doi.org/10.1093/EJCTS/EZZ045
        • Klovaite J.
        • Gustafsson F.
        • Mortensen S.A.
        • Sander K.
        • Nielsen L.B.
        Severely Impaired von Willebrand Factor-Dependent Platelet Aggregation in Patients With a Continuous-Flow Left Ventricular Assist Device (HeartMate II).
        J Am Coll Cardiol. 2009; 53: 2162-2167https://doi.org/10.1016/j.jacc.2009.02.048
        • Yoshioka D.
        • Okazaki S.
        • Toda K.
        • et al.
        Prevalence of cerebral microbleeds in patients with continuous-flow left ventricular assist devices.
        J Am Heart Assoc. 2017; 6https://doi.org/10.1161/JAHA.117.005955
        • Murase S.
        • Okazaki S.
        • Yoshioka D.
        • et al.
        Abnormalities of brain imaging in patients after left ventricular assist device support following explantation.
        J Hear Lung Transplant. 2020; 39: 220-227https://doi.org/10.1016/j.healun.2019.11.019
      5. Fan TH, Cho SM, Prayson RA, Hassett CE, Starling RC, Uchino K. Cerebral Microvascular Injury in Patients with Left Ventricular Assist Device: a Neuropathological Study. Transl Stroke Res 2021 132. 2021;13(2):257-264. doi:10.1007/S12975-021-00935-Z

        • Lovelock C.E.
        • Cordonnier C.
        • Naka H.
        • et al.
        Antithrombotic Drug Use, Cerebral Microbleeds, and Intracerebral Hemorrhage.
        Stroke. 2010; 41: 1222-1228https://doi.org/10.1161/STROKEAHA.109.572594
        • Tabit C.E.
        • Chen P.
        • Kim G.H.
        • et al.
        Elevated Angiopoietin-2 Level in Patients with Continuous-Flow Left Ventricular Assist Devices Leads to Altered Angiogenesis and Is Associated with Higher Nonsurgical Bleeding.
        Circulation. 2016; 134: 141-152https://doi.org/10.1161/CIRCULATIONAHA.115.019692
        • Wilson D.
        • Ambler G.
        • Shakeshaft C.
        • et al.
        Cerebral microbleeds and intracranial haemorrhage risk in patients anticoagulated for atrial fibrillation after acute ischaemic stroke or transient ischaemic attack (CROMIS-2): a multicentre observational cohort study.
        Lancet Neurol. 2018; 17: 539https://doi.org/10.1016/S1474-4422(18)30145-5
        • Elder T.
        • Raghavan A.
        • Smith A.
        • et al.
        Outcomes After Intracranial Hemorrhage in Patients with Left Ventricular Assist Devices: A Systematic Review of Literature.
        World Neurosurg. 2019; 132: 265-272https://doi.org/10.1016/j.wneu.2019.08.211
        • Boyle A.J.
        • Russell S.D.
        • Teuteberg J.J.
        • et al.
        Low Thromboembolism and Pump Thrombosis With the HeartMate II Left Ventricular Assist Device: Analysis of Outpatient Anti-coagulation.
        J Hear Lung Transplant. 2009; 28: 881-887https://doi.org/10.1016/j.healun.2009.05.018
        • Bower M.M.
        • Sweidan A.J.
        • Shafie M.
        • Atallah S.
        • Groysman L.I.
        • Yu W.
        Contemporary Reversal of Oral Anticoagulation in Intracerebral Hemorrhage.
        Stroke. 2019; 50: 529-536https://doi.org/10.1161/STROKEAHA.118.023840
        • Cho S.M.
        • Moazami N.
        • Katz S.
        • Starling R.
        • Frontera J.A.
        Reversal and Resumption of Antithrombotic Therapy in LVAD-Associated Intracranial Hemorrhage.
        Ann Thorac Surg. 2019; 108: 52-58https://doi.org/10.1016/j.athoracsur.2019.01.016
      6. Wong JK, Chen PC, Falvey J, et al. Anticoagulation Reversal Strategies for Left Ventricular Assist Device Patients Presenting with Acute Intracranial Hemorrhage. In: ASAIO Journal. Vol 62. Lippincott Williams and Wilkins; 2016:552-557. doi:10.1097/MAT.0000000000000404

        • Baharoglu M.I.
        • Cordonnier C.
        • Salman R.A.S.
        • et al.
        Platelet transfusion versus standard care after acute stroke due to spontaneous cerebral haemorrhage associated with antiplatelet therapy (PATCH): a randomised, open-label, phase 3 trial.
        Lancet. 2016; 387: 2605-2613https://doi.org/10.1016/S0140-6736(16)30392-0
        • Divani A.A.
        • Liu X.
        • Di Napoli M.
        • et al.
        Blood Pressure Variability Predicts Poor In-Hospital Outcome in Spontaneous Intracerebral Hemorrhage.
        Stroke. 2019; 50: 2023-2029https://doi.org/10.1161/STROKEAHA.119.025514
        • Manning L.
        • Hirakawa Y.
        • Arima H.
        • et al.
        Blood pressure variability and outcome after acute intracerebral haemorrhage: A post-hoc analysis of INTERACT2, a randomised controlled trial.
        Lancet Neurol. 2014; 13: 364-373https://doi.org/10.1016/S1474-4422(14)70018-3
        • Lobanova I.
        • Qureshi A.I.
        • Huang W.
        • et al.
        Outcomes of Intensive Systolic Blood Pressure Reduction in Patients With Intracerebral Hemorrhage and Excessively High Initial Systolic Blood Pressure: Post Hoc Analysis of a Randomized Clinical Trial.
        JAMA Neurol. 2020; 77: 1355-1365https://doi.org/10.1001/JAMANEUROL.2020.3075
      7. Greenberg SM, Ziai WC, Cordonnier C, et al. 2022 Guideline for the Management of Patients With Spontaneous Intracerebral Hemorrhage: A Guideline From the American Heart Association/American Stroke Association. Stroke. 2022;53:282-361. doi:10.1161/STR.0000000000000407

        • Mendelow A.D.
        • Gregson B.A.
        • Fernandes H.M.
        • et al.
        Early surgery versus initial conservative treatment in patients with spontaneous supratentorial intracerebral haematomas in the International Surgical Trial in Intracerebral Haemorrhage (STICH): A randomised trial.
        Lancet. 2005; 365: 387-397https://doi.org/10.1016/S0140-6736(05)70233-6
        • Mendelow A.D.
        • Gregson B.A.
        • Rowan E.N.
        • et al.
        Early surgery versus initial conservative treatment in patients with spontaneous supratentorial lobar intracerebral haematomas (STICH II): A randomised trial.
        Lancet. 2013; 382: 397-408https://doi.org/10.1016/S0140-6736(13)60986-1
        • Stevens R.D.
        • Shoykhet M.
        • Cadena R.
        Emergency Neurological Life Support: Intracranial Hypertension and Herniation.
        Neurocrit Care. 2015; 23: 76-82https://doi.org/10.1007/s12028-015-0168-z
        • Kuramatsu J.B.
        • Huttner H.B.
        Management of oral anticoagulation after intracerebral hemorrhage.
        Int J Stroke. 2019; 14: 238-246https://doi.org/10.1177/1747493019828555
        • Sembill J.A.
        • Kuramatsu J.B.
        • Schwab S.
        • Huttner H.B.
        Resumption of oral anticoagulation after spontaneous intracerebral hemorrhage.
        Neurol Res Pract. 2019; 1https://doi.org/10.1186/s42466-019-0018-0
        • Kuramatsu J.B.
        • Sembill J.A.
        • Gerner S.T.
        • et al.
        Management of therapeutic anticoagulation in patients with intracerebral haemorrhage and mechanical heart valves.
        Eur Heart J. 2018; 39: 1709-1723https://doi.org/10.1093/eurheartj/ehy056
        • Benjamin E.J.
        • Muntner P.
        • Alonso A.
        • et al.
        Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association.
        Circulation. 2019; 139: e56-e528https://doi.org/10.1161/CIR.0000000000000659
        • Parikh N.S.
        • Cool J.
        • Karas M.G.
        • Boehme A.K.
        • Kamel H.
        Stroke risk and mortality in patients with ventricular assist devices.
        Stroke. 2016; 47: 2702-2706https://doi.org/10.1161/STROKEAHA.116.014049
        • Ovsenik A.
        • Podbregar M.
        • Fabjan A.
        Cerebral blood flow impairment and cognitive decline in heart failure.
        Brain Behav. 2021; 11https://doi.org/10.1002/brb3.2176
        • Pavol M.A.
        • Boehme A.K.
        • Willey J.Z.
        • et al.
        Predicting post-LVAD outcome: Is there a role for cognition?.
        Int J Artif Organs. 2021; 44: 237-242https://doi.org/10.1177/0391398820956661
        • Bhat G.
        • Yost G.
        • Mahoney E.
        Cognitive function and left ventricular assist device implantation.
        J Hear Lung Transplant. 2015; 34: 1398-1405https://doi.org/10.1016/J.HEALUN.2015.05.015