Canadian Journal of Cardiology

Emerging applications of extra-cardiac ultrasound in critically ill cardiac patients

Published:December 09, 2022DOI:


      Point-Of-Care ultrasound has evolved as an invaluable diagnostic modality and procedural guidance tool in the care of critically ill cardiac patients. Beyond focused cardiac ultrasound, additional extra-cardiac ultrasound modalities may provide important information at the bedside. In addition to new use of existing modalities such as pulsed-wave Doppler ultrasound, the development of new applications is fostered by the implementation of additional features in mid-range ultrasound machines commonly acquired for intensive care units, such as tissue elastography, speckle tracking, and contrast-enhanced ultrasound quantification software. This review aims to explore several areas in which ultrasound imaging technology may transform care in the future. First, we review how lung ultrasound in mechanically ventilated patients can enable the personalization of ventilator parameters and help liberate them from mechanical ventilation. Secondly, we review the role of venous Doppler in the assessment of organ congestion and how tissue elastography may complement this application. Finally, we explore how contrast-enhanced ultrasound could be used to assess changes in organ perfusion.

      Graphical abstract

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


      1. International expert statement on training standards for critical care ultrasonography.
        Intensive Care Med. 2011; 37: 1077-1083
        • Wong A.
        • Galarza L.
        • Forni L.
        • et al.
        Recommendations for core critical care ultrasound competencies as a part of specialist training in multidisciplinary intensive care: a framework proposed by the European Society of Intensive Care Medicine (ESICM).
        Crit Care. 2020; 24: 393
        • Arntfield R.
        • Millington S.
        • Ainsworth C.
        • et al.
        Canadian recommendations for critical care ultrasound training and competency.
        Can Respir J. 2014; 21: 341-345
      2. Echocardiography" TNBo. Application for Certification in Critical Care Echocardiography (CCEeXAM) 2022.

      3. Medicine" ESoIC. European Diploma of Echocardiography. . Vol 2022.

        • Alrajab S.
        • Youssef A.M.
        • Akkus N.I.
        • Caldito G.
        Pleural ultrasonography versus chest radiography for the diagnosis of pneumothorax: review of the literature and meta-analysis.
        Crit Care. 2013; 17: R208
        • Hansell L.
        • Milross M.
        • Delaney A.
        • Tian D.H.
        • Ntoumenopoulos G.
        Lung ultrasound has greater accuracy than conventional respiratory assessment tools for the diagnosis of pleural effusion, lung consolidation and collapse: a systematic review.
        J Physiother. 2021; 67: 41-48
        • Ye X.
        • Xiao H.
        • Chen B.
        • Zhang S.
        Accuracy of Lung Ultrasonography versus Chest Radiography for the Diagnosis of Adult Community-Acquired Pneumonia: Review of the Literature and Meta-Analysis.
        PLoS One. 2015; 10e0130066
        • Maw A.M.
        • Hassanin A.
        • Ho P.M.
        • et al.
        Diagnostic Accuracy of Point-of-Care Lung Ultrasonography and Chest Radiography in Adults With Symptoms Suggestive of Acute Decompensated Heart Failure: A Systematic Review and Meta-analysis.
        JAMA Netw Open. 2019; 2e190703
        • Zieleskiewicz L.
        • Cornesse A.
        • Hammad E.
        • et al.
        Implementation of lung ultrasound in polyvalent intensive care unit: Impact on irradiation and medical cost.
        Anaesth Crit Care Pain Med. 2015; 34: 41-44
        • Peris A.
        • Tutino L.
        • Zagli G.
        • et al.
        The use of point-of-care bedside lung ultrasound significantly reduces the number of radiographs and computed tomography scans in critically ill patients.
        Anesth Analg. 2010; 111: 687-692
        • See K.C.
        • Ong V.
        • Wong S.H.
        • et al.
        Lung ultrasound training: curriculum implementation and learning trajectory among respiratory therapists.
        Intensive Care Med. 2016; 42: 63-71
        • Mongodi S.
        • De Luca D.
        • Colombo A.
        • et al.
        Quantitative Lung Ultrasound: Technical Aspects and Clinical Applications.
        Anesthesiology. 2021; 134: 949-965
        • Kruisselbrink R.
        • Chan V.
        • Cibinel G.A.
        • Abrahamson S.
        • Goffi A.
        I-AIM (Indication, Acquisition, Interpretation, Medical Decision-making) Framework for Point of Care Lung Ultrasound.
        Anesthesiology. 2017; 127: 568-582
        • Bouhemad B.
        • Brisson H.
        • Le-Guen M.
        • Arbelot C.
        • Lu Q.
        • Rouby J.J.
        Bedside ultrasound assessment of positive end-expiratory pressure-induced lung recruitment.
        Am J Respir Crit Care Med. 2011; 183: 341-347
        • Soummer A.
        • Perbet S.
        • Brisson H.
        • et al.
        Ultrasound assessment of lung aeration loss during a successful weaning trial predicts postextubation distress.
        Crit Care Med. 2012; 40: 2064-2072
        • Monastesse A.
        • Girard F.
        • Massicotte N.
        • Chartrand-Lefebvre C.
        • Girard M.
        Lung Ultrasonography for the Assessment of Perioperative Atelectasis: A Pilot Feasibility Study.
        Anesth Analg. 2017; 124: 494-504
        • Chiumello D.
        • Mongodi S.
        • Algieri I.
        • et al.
        Assessment of Lung Aeration and Recruitment by CT Scan and Ultrasound in Acute Respiratory Distress Syndrome Patients.
        Crit Care Med. 2018; 46: 1761-1768
        • Rouby J.J.
        • Arbelot C.
        • Gao Y.
        • et al.
        Training for Lung Ultrasound Score Measurement in Critically Ill Patients.
        Am J Respir Crit Care Med. 2018; 198: 398-401
        • Cylwik J.
        • Buda N.
        Lung Ultrasonography in the Monitoring of Intraoperative Recruitment Maneuvers.
        Diagnostics (Basel). 2021; 11
        • Rode B.
        • Vučić M.
        • Siranović M.
        • et al.
        Positive end-expiratory pressure lung recruitment: comparison between lower inflection point and ultrasound assessment.
        Wien Klin Wochenschr. 2012; 124: 842-847
        • Tang K.Q.
        • Yang S.L.
        • Zhang B.
        • et al.
        Ultrasonic monitoring in the assessment of pulmonary recruitment and the best positive end-expiratory pressure.
        Medicine (Baltimore). 2017; 96e8168
        • Denault A.Y.
        • Delisle S.
        • Canty D.
        • et al.
        A proposed lung ultrasound and phenotypic algorithm for the care of COVID-19 patients with acute respiratory failure.
        Can J Anaesth. 2020; 67: 1393-1404
        • Prat G.
        • Guinard S.
        • Bizien N.
        • et al.
        Can lung ultrasonography predict prone positioning response in acute respiratory distress syndrome patients?.
        J Crit Care. 2016; 32: 36-41
        • Ghosh D.
        • Jain G.
        • Agarwal A.
        • Govil N.
        Effect of ultrasound-guided-pressure-controlled ventilation on intraoperative blood gas and ventilatory parameters during thoracic surgery.
        Indian J Anaesth. 2020; 64: 1047-1053
        • Gamberini L.
        • Tonetti T.
        • Spadaro S.
        • et al.
        ICU-RER COVID-19 Collaboration Factors influencing liberation from mechanical ventilation in coronavirus disease 2019: multicenter observational study in fifteen Italian ICUs.
        J Intensive Care. 2020; 8: 80
        • Esteban A.
        • Ferguson N.D.
        • Meade M.O.
        • et al.
        Evolution of mechanical ventilation in response to clinical research.
        Am J Respir Crit Care Med. 2008; 177: 170-177
        • Ouellette D.R.
        • Patel S.
        • Girard T.D.
        • et al.
        Liberation From Mechanical Ventilation in Critically Ill Adults: An Official American College of Chest Physicians/American Thoracic Society Clinical Practice Guideline: Inspiratory Pressure Augmentation During Spontaneous Breathing Trials, Protocols Minimizing Sedation, and Noninvasive Ventilation Immediately After Extubation.
        Chest. 2017; 151: 166-180
        • Baptistella A.R.
        • Sarmento F.J.
        • da Silva K.R.
        • et al.
        Predictive factors of weaning from mechanical ventilation and extubation outcome: A systematic review.
        J Crit Care. 2018; 48: 56-62
        • Karthika M.
        • Al Enezi F.A.
        • Pillai L.V.
        • Arabi Y.M.
        Rapid shallow breathing index.
        Ann Thorac Med. 2016; 11: 167-176
        • Boutou A.K.
        • Abatzidou F.
        • Tryfon S.
        • et al.
        Diagnostic accuracy of the rapid shallow breathing index to predict a successful spontaneous breathing trial outcome in mechanically ventilated patients with chronic obstructive pulmonary disease.
        Heart Lung. 2011; 40: 105-110
        • Tanios M.A.
        • Nevins M.L.
        • Hendra K.P.
        • et al.
        A randomized, controlled trial of the role of weaning predictors in clinical decision making.
        Crit Care Med. 2006; 34: 2530-2535
        • Esteban A.
        • Frutos F.
        • Tobin M.J.
        • et al.
        A comparison of four methods of weaning patients from mechanical ventilation. Spanish Lung Failure Collaborative Group.
        N Engl J Med. 1995; 332: 345-350
        • Ferrari G.
        • De Filippi G.
        • Elia F.
        • Panero F.
        • Volpicelli G.
        • Aprà F.
        Diaphragm ultrasound as a new index of discontinuation from mechanical ventilation.
        Crit Ultrasound J. 2014; 6: 8
        • Llamas-Álvarez A.M.
        • Tenza-Lozano E.M.
        • Latour-Pérez J.
        Diaphragm and Lung Ultrasound to Predict Weaning Outcome: Systematic Review and Meta-Analysis.
        Chest. 2017; 152: 1140-1150
        • McConville J.F.
        • Kress J.P.
        Weaning patients from the ventilator.
        N Engl J Med. 2012; 367: 2233-2239
        • Goligher E.C.
        • Laghi F.
        • Detsky M.E.
        • et al.
        Measuring diaphragm thickness with ultrasound in mechanically ventilated patients: feasibility, reproducibility and validity.
        Intensive Care Med. 2015; 41: 642-649
        • Haaksma M.E.
        • Smit J.M.
        • Boussuges A.
        • et al.
        EXpert consensus On Diaphragm UltraSonography in the critically ill (EXODUS): a Delphi consensus statement on the measurement of diaphragm ultrasound-derived parameters in a critical care setting.
        Crit Care. 2022; 26: 99
        • Li C.
        • Li X.
        • Han H.
        • Cui H.
        • Wang G.
        • Wang Z.
        Diaphragmatic ultrasonography for predicting ventilator weaning: A meta-analysis.
        Medicine (Baltimore). 2018; 97e10968
        • Dres M.
        • Dubé B.P.
        • Goligher E.
        • et al.
        Usefulness of Parasternal Intercostal Muscle Ultrasound during Weaning from Mechanical Ventilation.
        Anesthesiology. 2020; 132: 1114-1125
        • Hillman D.R.
        • Finucane K.E.
        Respiratory pressure partitioning during quiet inspiration in unilateral and bilateral diaphragmatic weakness.
        Am Rev Respir Dis. 1988; 137: 1401-1405
        • Pham T.
        • Brochard L.J.
        • Slutsky A.S.
        Mechanical Ventilation: State of the Art.
        Mayo Clin Proc. 2017; 92: 1382-1400
        • Goligher E.C.
        • Ferguson N.D.
        • Brochard L.J.
        Clinical challenges in mechanical ventilation.
        Lancet. 2016; 387: 1856-1866
        • Protti A.
        • Cressoni M.
        • Santini A.
        • et al.
        Lung stress and strain during mechanical ventilation: any safe threshold?.
        Am J Respir Crit Care Med. 2011; 183: 1354-1362
        • Faffe D.S.
        • Zin W.A.
        Lung parenchymal mechanics in health and disease.
        Physiol Rev. 2009; 89: 759-775
        • Retamal J.
        • Hurtado D.
        • Villarroel N.
        • et al.
        Does Regional Lung Strain Correlate With Regional Inflammation in Acute Respiratory Distress Syndrome During Nonprotective Ventilation? An Experimental Porcine Study.
        Crit Care Med. 2018; 46: e591-e599
        • Geyer H.
        • Caracciolo G.
        • Abe H.
        • et al.
        Assessment of myocardial mechanics using speckle tracking echocardiography: fundamentals and clinical applications.
        J Am Soc Echocardiogr. 2010; 23 (quiz 453-355): 351-369
        • Maurice R.L.
        • Bertrand M.
        Lagrangian speckle model and tissue-motion estimation--theory.
        IEEE Trans Med Imaging. 1999; 18: 593-603
      4. Girard M, Cardinal M-HR, Chassé M, et al. Regional pleural strain measurements during mechanical ventilation using ultrasound elastography: A randomised, crossover, proof of concept physiologic study. Front Med 2022 (Accepted for publication). 2022.

        • Prowle J.R.
        • Echeverri J.E.
        • Ligabo E.V.
        • Ronco C.
        • Bellomo R.
        Fluid balance and acute kidney injury.
        Nat Rev Nephrol. 2010; 6: 107-115
        • Deschamps J.
        • Denault A.
        • Galarza L.
        • et al.
        Venous Doppler to assess congestion: a comprehensive review of current evidence and nomenclature.
        Ultrasound Med Biol. 2022; (Accepted for publication)
        • Spiegel R.
        • Teeter W.
        • Sullivan S.
        • et al.
        The use of venous Doppler to predict adverse kidney events in a general ICU cohort.
        Crit Care. 2020; 24: 615
        • Wiersema R.
        • Kaufmann T.
        • van der Veen H.N.
        • et al.
        Diagnostic accuracy of arterial and venous renal Doppler assessment for acute kidney injury in critically ill patients: A prospective study.
        J Crit Care. 2020; 59: 57-62
        • Husain-Syed F.
        • Birk H.W.
        • Ronco C.
        • et al.
        Doppler-Derived Renal Venous Stasis Index in the Prognosis of Right Heart Failure.
        J Am Heart Assoc. 2019; 8e013584
        • Iida N.
        • Seo Y.
        • Sai S.
        • et al.
        Clinical Implications of Intrarenal Hemodynamic Evaluation by Doppler Ultrasonography in Heart Failure.
        JACC Heart Fail. 2016; 4: 674-682
        • Puzzovivo A.
        • Monitillo F.
        • Guida P.
        • et al.
        Renal Venous Pattern: A New Parameter for Predicting Prognosis in Heart Failure Outpatients.
        J Cardiovasc Dev Dis. 2018; 5
        • Ter Maaten J.M.
        • Dauw J.
        • Martens P.
        • et al.
        The Effect of Decongestion on Intrarenal Venous Flow Patterns in Patients With Acute Heart Failure.
        J Card Fail. 2021; 27: 29-34
        • Hermansen J.L.
        • Pettey G.
        • Sørensen H.T.
        • et al.
        Perioperative Doppler measurements of renal perfusion are associated with acute kidney injury in patients undergoing cardiac surgery.
        Sci Rep. 2021; 1119738
        • Beaubien-Souligny W.
        • Benkreira A.
        • Robillard P.
        • et al.
        Alterations in Portal Vein Flow and Intrarenal Venous Flow Are Associated With Acute Kidney Injury After Cardiac Surgery: A Prospective Observational Cohort Study.
        J Am Heart Assoc. 2018; 7e009961
        • Eljaiek R.
        • Cavayas Y.A.
        • Rodrigue E.
        • et al.
        High postoperative portal venous flow pulsatility indicates right ventricular dysfunction and predicts complications in cardiac surgery patients.
        Br J Anaesth. 2019; 122: 206-214
        • Beaubien-Souligny W.
        • Rola P.
        • Haycock K.
        • et al.
        Quantifying systemic congestion with Point-Of-Care ultrasound: development of the venous excess ultrasound grading system.
        Ultrasound J. 2020; 12: 16
        • Bhardwaj V.
        • Vikneswaran G.
        • Rola P.
        • et al.
        Combination of Inferior Vena Cava Diameter, Hepatic Venous Flow, and Portal Vein Pulsatility Index: Venous Excess Ultrasound Score (VEXUS Score) in Predicting Acute Kidney Injury in Patients with Cardiorenal Syndrome: A Prospective Cohort Study.
        Indian J Crit Care Med. 2020; 24: 783-789
        • Couture E.J.
        • Tremblay J.A.
        • Elmi-Sarabi M.
        • Lamarche Y.
        • Denault A.Y.
        Noninvasive Administration of Inhaled Epoprostenol and Inhaled Milrinone in Extubated, Spontaneously Breathing Patients With Right Ventricular Failure and Portal Hypertension: A Report of 2 Cases.
        A A Pract. 2019; 12: 208-211
        • Rola P.
        • Miralles-Aguiar F.
        • Argaiz E.
        • et al.
        Clinical applications of the venous excess ultrasound (VExUS) score: conceptual review and case series.
        Ultrasound J. 2021; 13: 32
        • Fang C.
        • Sidhu P.S.
        Ultrasound-based liver elastography: current results and future perspectives.
        Abdom Radiol (NY). 2020; 45: 3463-3472
        • Millonig G.
        • Friedrich S.
        • Adolf S.
        • et al.
        Liver stiffness is directly influenced by central venous pressure.
        J Hepatol. 2010; 52: 206-210
        • Jalal Z.
        • Iriart X.
        • De Lédinghen V.
        • et al.
        Liver stiffness measurements for evaluation of central venous pressure in congenital heart diseases.
        Heart. 2015; 101: 1499-1504
        • Taniguchi T.
        • Sakata Y.
        • Ohtani T.
        • et al.
        Usefulness of transient elastography for noninvasive and reliable estimation of right-sided filling pressure in heart failure.
        Am J Cardiol. 2014; 113: 552-558
        • Demirtas A.O.
        • Koc A.S.
        • Sumbul H.E.
        • et al.
        Liver stiffness obtained by ElastPQ ultrasound shear wave elastography independently determines mean right atrial pressure.
        Abdom Radiol (NY). 2019; 44: 3030-3039
        • Terashi E.
        • Kodama Y.
        • Kuraoka A.
        • et al.
        Usefulness of Liver Stiffness on Ultrasound Shear-Wave Elastography for the Evaluation of Central Venous Pressure in Children With Heart Diseases.
        Circ J. 2019; 83: 1338-1341
        • Deorsola L.
        • Aidala E.
        • Cascarano M.T.
        • Valori A.
        • Agnoletti G.
        • Pace Napoleone C.
        Liver stiffness modifications shortly after total cavopulmonary connection.
        Interact Cardiovasc Thorac Surg. 2016; 23: 513-518
        • Omote K.
        • Nagai T.
        • Asakawa N.
        • et al.
        Impact of admission liver stiffness on long-term clinical outcomes in patients with acute decompensated heart failure.
        Heart Vessels. 2019; 34: 984-991
        • Colli A.
        • Pozzoni P.
        • Berzuini A.
        • et al.
        Decompensated chronic heart failure: increased liver stiffness measured by means of transient elastography.
        Radiology. 2010; 257: 872-878
        • Soloveva A.
        • Kobalava Z.
        • Fudim M.
        • et al.
        Relationship of Liver Stiffness With Congestion in Patients Presenting With Acute Decompensated Heart Failure.
        J Card Fail. 2019; 25: 176-187
        • Saito Y.
        • Kato M.
        • Nagashima K.
        • et al.
        Prognostic Relevance of Liver Stiffness Assessed by Transient Elastography in Patients With Acute Decompensated Heart Failure.
        Circ J. 2018; 82: 1822-1829
        • Taniguchi T.
        • Ohtani T.
        • Kioka H.
        • et al.
        Liver Stiffness Reflecting Right-Sided Filling Pressure Can Predict Adverse Outcomes in Patients With Heart Failure.
        JACC Cardiovasc Imaging. 2019; 12: 955-964
        • Boorsma E.M.
        • Ter Maaten J.M.
        • Damman K.
        • et al.
        Congestion in heart failure: a contemporary look at physiology, diagnosis and treatment.
        Nature Reviews Cardiology. 2020; 17: 641-655
        • Suffredini G.
        • Slowey C.
        • Sun J.
        • et al.
        Preoperative Liver Stiffness is Associated With Hospital Length of Stay After Cardiac Surgery.
        J Cardiothorac Vasc Anesth. 2022;
        • Koch A.
        • Horn A.
        • Dückers H.
        • et al.
        Increased liver stiffness denotes hepatic dysfunction and mortality risk in critically ill non-cirrhotic patients at a medical ICU.
        Crit Care. 2011; 15: R266
        • Zhang J.
        • Li L.
        • Jani V.
        • et al.
        Increased Hepatic Stiffness in Young Adults After Biventricular Repair of Congenital Heart Disease.
        Ann Thorac Surg. 2021; 112: 1335-1341
        • Kashani K.B.
        • Mao S.A.
        • Safadi S.
        • et al.
        Association between kidney intracapsular pressure and ultrasound elastography.
        Crit Care. 2017; 21: 251
        • Gao J.
        • Thai A.
        • Lee J.
        • Fowlkes J.B.
        Ultrasound Shear Wave Elastography and Doppler Sonography to Assess the Effect of Hydration on Human Kidneys: A Preliminary Observation.
        Ultrasound Med Biol. 2020; 46: 1179-1188
        • Amador C.
        • Urban M.W.
        • Chen S.
        • Greenleaf J.F.
        Shearwave dispersion ultrasound vibrometry (SDUV) on swine kidney.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2011; 58: 2608-2619
        • O'Brien C.
        • Beaubien-Souligny W.
        • Amsallem M.
        • Denault A.
        • Haddad F.
        Cardiogenic Shock: Reflections at the Crossroad Between Perfusion, Tissue Hypoxia, and Mitochondrial Function.
        Can J Cardiol. 2020; 36: 184-196
        • Abuelo J.G.
        Normotensive ischemic acute renal failure.
        N Engl J Med. 2007; 357: 797-805
        • Wan L.
        • Yang N.
        • Hiew C.Y.
        • et al.
        An assessment of the accuracy of renal blood flow estimation by Doppler ultrasound.
        Intensive Care Med. 2008; 34: 1503-1510
        • Darmon M.
        • Bourmaud A.
        • Reynaud M.
        • et al.
        Performance of Doppler-based resistive index and semi-quantitative renal perfusion in predicting persistent AKI: results of a prospective multicenter study.
        Intensive Care Med. 2018; 44: 1904-1913
        • Schnell D.
        • Darmon M.
        Bedside Doppler ultrasound for the assessment of renal perfusion in the ICU: advantages and limitations of the available techniques.
        Crit Ultrasound J. 2015; 7: 24
        • Daghini E.
        • Primak A.N.
        • Chade A.R.
        • et al.
        Assessment of renal hemodynamics and function in pigs with 64-section multidetector CT: comparison with electron-beam CT.
        Radiology. 2007; 243: 405-412
        • Martin D.R.
        • Sharma P.
        • Salman K.
        • et al.
        Individual kidney blood flow measured with contrast-enhanced first-pass perfusion MR imaging.
        Radiology. 2008; 246: 241-248
      5. Fredriksson I, Fors C, Johansson J. Laser doppler flowmetry-a theoretical framework. Department of Biomedical Engineering, Linköping University. 2007:6-7.

        • Green M.A.
        • Mathias C.J.
        • Willis L.R.
        • et al.
        Assessment of Cu-ETS as a PET radiopharmaceutical for evaluation of regional renal perfusion.
        Nucl Med Biol. 2007; 34: 247-255
        • El Maghraby T.
        • van Eck-Smit B.
        • De Fijter J.
        • Pauwels E.
        Quantitative scintigraphic parameters for the assessment of renal transplant patients.
        European journal of radiology. 1998; 28: 256-269
        • Jung E.M.
        • Weber M.A.
        • Wiesinger I.
        Contrast-enhanced ultrasound perfusion imaging of organs.
        Radiologe. 2021; 61: 19-28
        • Ignee A.
        • Jedrejczyk M.
        • Schuessler G.
        • Jakubowski W.
        • Dietrich C.F.
        Quantitative contrast enhanced ultrasound of the liver for time intensity curves-Reliability and potential sources of errors.
        Eur J Radiol. 2010; 73: 153-158
        • Quaia E.
        Assessment of tissue perfusion by contrast-enhanced ultrasound.
        Eur Radiol. 2011; 21: 604-615
        • D'Onofrio M.
        • Crosara S.
        • De Robertis R.
        • Canestrini S.
        • Mucelli R.P.
        Contrast-enhanced ultrasound of focal liver lesions.
        American journal of roentgenology. 2015; 205: W56-W66
        • Yoon S.H.
        • Lee K.H.
        • Kim S.Y.
        • et al.
        Real-time contrast-enhanced ultrasound-guided biopsy of focal hepatic lesions not localised on B-mode ultrasound.
        European radiology. 2010; 20: 2047-2056
        • Senior R.
        • Becher H.
        • Monaghan M.
        • et al.
        Contrast echocardiography: evidence-based recommendations by European Association of Echocardiography.
        Eur J Echocardiogr. 2009; 10: 194-212
        • Fröhlich E.
        • Muller R.
        • Cui X.-W.
        • Schreiber-Dietrich D.
        • Dietrich C.F.
        Dynamic contrast‐enhanced ultrasound for quantification of tissue perfusion.
        Journal of Ultrasound in Medicine. 2015; 34: 179-196
        • Jung E.M.
        • Stroszczynski C.
        • Jung F.
        Contrast enhanced ultrasonography (CEUS) to detect abdominal microcirculatory disorders in severe cases of COVID-19 infection: First experience.
        Clinical hemorheology and microcirculation. 2020; 74: 353-361
        • Schneider A.G.
        • Goodwin M.D.
        • Schelleman A.
        • Bailey M.
        • Johnson L.
        • Bellomo R.
        Contrast-enhanced ultrasound to evaluate changes in renal cortical perfusion around cardiac surgery: a pilot study.
        Crit Care. 2013; 17: R138
        • Mulvagh S.L.
        • Rakowski H.
        • Vannan M.A.
        • et al.
        American Society of Echocardiography Consensus Statement on the Clinical Applications of Ultrasonic Contrast Agents in Echocardiography.
        J Am Soc Echocardiogr. 2008; 21 (; quiz 1281): 1179-1201
        • Harrois A.
        • Grillot N.
        • Figueiredo S.
        • Duranteau J.
        Acute kidney injury is associated with a decrease in cortical renal perfusion during septic shock.
        Critical Care. 2018; 22: 1-9
        • Kotecha A.
        • Vallabhajosyula S.
        • Coville H.H.
        • Kashani K.
        Cardiorenal syndrome in sepsis: A narrative review.
        Journal of critical care. 2018; 43: 122-127
        • Schneider A.G.
        • Hofmann L.
        • Wuerzner G.
        • et al.
        Renal perfusion evaluation with contrast-enhanced ultrasonography.
        Nephrol Dial Transplant. 2012; 27: 674-681
        • Schneider A.G.
        • Goodwin M.D.
        • Schelleman A.
        • Bailey M.
        • Johnson L.
        • Bellomo R.
        Contrast-enhanced ultrasonography to evaluate changes in renal cortical microcirculation induced by noradrenaline: a pilot study.
        Crit Care. 2014; 18: 653
        • Langenberg C.
        • Bellomo R.
        • May C.
        • Wan L.
        • Egi M.
        • Morgera S.
        Renal blood flow in sepsis.
        Crit Care. 2005; 9: R363-374
        • Watchorn J.
        • Huang D.
        • Bramham K.
        • Hutchings S.
        Decreased renal cortical perfusion, independent of changes in renal blood flow and sublingual microcirculatory impairment, is associated with the severity of acute kidney injury in patients with septic shock.
        Critical Care. 2022; 26: 261
        • Lin L.
        • Wang Y.
        • Yan L.
        • et al.
        Interobserver reproducibility of contrast-enhanced ultrasound in diabetic nephropathy.
        The British Journal of Radiology. 2022; 9520210189
        • Mulabecirovic A.
        • Mjelle A.B.
        • Gilja O.H.
        • Vesterhus M.
        • Havre R.F.
        Liver elasticity in healthy individuals by two novel shear-wave elastography systems-Comparison by age, gender, BMI and number of measurements.
        PLoS One. 2018; 13e0203486
        • Gasser B.
        • Uscategui R.A.R.
        • Maronezi M.C.
        • et al.
        Clinical and ultrasound variables for early diagnosis of septic acute kidney injury in bitches with pyometra.
        Sci Rep. 2020; 10: 8994