Advertisement
Canadian Journal of Cardiology

Incidence and Clinical Predictors of Early and Late Complications of Implantable Cardioverter-Defibrillators in Adults With Congenital Heart Disease

Published:December 21, 2022DOI:https://doi.org/10.1016/j.cjca.2022.12.012

      Abstract

      Background

      The implantable cardioverter-defibrillator (ICD) has been proven to improve survival in adults with congenital heart disease (ACHD), but it is associated with a high rate of complications. We aimed to quantify the incidence of early (≤ 3 months; ECs) and late (> 3 months; LCs) complications in ACHD patients implanted with an ICD and to identify their clinical predictors.

      Methods

      We retrospectively reviewed 207 patients who had ICD follow-up at Toronto General Hospital from 1996 to 2019.

      Results

      The most common diagnoses were tetralogy of Fallot (32.4%), dextro-transposition of the great arteries (17.9%), and congenital corrected transposition of the great arteries (13%). No intraprocedural complications were observed. Median follow-up was 3.4 years (IQR 0.1-23). 24 patients (12%) developed EC (4 hematomas, 20 lead dislodgements). A total of 56 LCs occurred (46% lead failure, 21% infection, 11% prophylactic lead extraction, 9% neurologic pain, 9% erosion, 4% other) with an incidence rate of LCs of 18% per 5 person-years. Anatomic complexity (odds ratio 2.9; P = 0.02) and cardiac resynchronization therapy defibrillator implant (odds ratio 2.5; P = 0.04) were associated with ECs. Survival rates free from LCs were 92%, 86%, and 65%, respectively, after 1, 5, and 10 years. Presence of legacy leads (hazard ratio 2.9; P = 0.006) and subpulmonary ejection fraction (5% increase, hazard ratio 1.35; P = 0.031) were associated with LCs.

      Conclusions

      ACHD patients at risk of sudden cardiac death continue to benefit from newer device technology. However, these patients, particularly those with greater anatomic and device complexity, remain at increased risk of developing complications over their lifetime. Given the life expectancy of this population, careful consideration needs to be given when a device for primary prevention is being contemplated.

      Résumé

      Contexte

      La mise en place d’un défibrillateur cardioverteur implantable (DCI) s’est révélée efficace pour améliorer la survie des adultes atteints d’une cardiopathie congénitale (CC), mais ce dispositif est aussi associé à un taux élevé de complications. Nous avons tenté de quantifier l’incidence des complications précoces (≤ 3 mois; CP) et tardives (> 3 mois; CT) chez les adultes atteints d’une CC et porteurs d’un DCI, en plus de déterminer les facteurs cliniques prévisionnels.

      Méthodologie

      Nous avons examiné rétrospectivement les cas de 207 patients porteurs d’un DCI qui ont fait l’objet d’un suivi au Toronto General Hospital entre 1996 et 2019.

      Résultats

      Les diagnostics les plus fréquents étaient la tétralogie de Fallot (32,4 %), la dextrotransposition des gros vaisseaux (17,9 %) et la transposition congénitalement corrigée des gros vaisseaux (13 %). Aucune complication survenue durant l’intervention n’a été observée. La durée médiane du suivi était de 3,4 ans (intervalle interquartile : 0,1 à 23). Vingt-quatre patients (12 %) ont subi des CP (4 hématomes, 20 déplacements de la sonde). Au total, 56 CT sont survenues (défaillance de la sonde [46 %], infection [21 %], extraction prophylactique de la sonde [11 %], douleur neurologique [9 %], érosion [9 %], autre [4 %]). Leur taux d’incidence des CT s’établissait à 18 % pour 5 années-personnes. La complexité anatomique (rapport de cotes : 2,9; p = 0,02) et l’implantation d’un défibrillateur de resynchronisation cardiaque (rapport de cotes : 2,5; p = 0,04) ont été associées à des CP. Les taux de survie sans CT s’établissaient à 92 %, 86 % et 65 % après 1 an, 5 ans et 10 ans, respectivement. La présence d’une sonde d’une génération antérieure (rapport des risques instantanés : 2,9; p = 0,006) et d’une fraction d’éjection infrapulmonaire (augmentation de 5 %; rapport des risques instantanés : 1,35; p = 0,031) a été associée à des CT.

      Conclusions

      Les adultes atteints d’une CC qui sont exposés à un risque de mort subite d’origine cardiaque continuent de tirer un bienfait des dispositifs technologiques plus récents. Ces patients, surtout ceux dont les caractéristiques anatomiques et le dispositif sont plus complexes, courent toujours un risque accru de complications tout au long de la vie. Étant donné l’espérance de vie de ces patients, il importe d’évaluer soigneusement la situation lorsqu’on envisage l’implantation d’un dispositif en prévention primaire.

      Graphical abstract

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Khairy P.
        • Silka M.J.
        • Moore J.P.
        • et al.
        Sudden cardiac death in congenital heart disease.
        Eur Heart J. 2022; 43: 2103-2115
        • Diller G.P.
        • Kempny A.
        • Alonso-Gonzalez R.
        • et al.
        Survival prospects and circumstances of death in contemporary adult congenital heart disease patients under follow-up at a large tertiary centre.
        Circulation. 2015; 132: 2118-2125
        • Kammeraad J.A.
        • van Deurzen C.H.
        • Sreeram N.
        • et al.
        Predictors of sudden cardiac death after Mustard or Senning repair for transposition of the great arteries.
        J Am Coll Cardiol. 2004; 44: 1095-1102
        • Chaix M.A.
        • Chergui M.
        • Leduc C.
        • Khairy P.
        Sudden death in transposition of the great arteries with atrial switch surgery: autopsy evidence of acute myocardial ischemia despite normal coronary arteries.
        Int J Cardiol. 2019; 288: 65-67
        • Khairy P.
        Sudden cardiac death in transposition of the great arteries with a Mustard or Senning baffle: the myocardial ischemia hypothesis.
        Curr Opin Cardiol. 2017; 32: 101-107
        • Khairy P.
        • van Hare G.F.
        • Balaji S.
        • et al.
        PACES/HRS expert consensus statement on the recognition and management of arrhythmias in adult congenital heart disease: developed in partnership between the Pediatric and Congenital Electrophysiology Society (PACES) and the Heart Rhythm Society (HRS). Endorsed by the governing bodies of PACES, HRS, the American College of Cardiology (ACC), the American Heart Association (AHA), the European Heart Rhythm Association (EHRA), the Canadian Heart Rhythm Society (CHRS), and the International Society for Adult Congenital Heart Disease (ISACHD).
        Can J Cardiol. 2014; 30: e1-63
        • Baumgartner H.
        • de Backer J.
        • Babu-Narayan S.V.
        • et al.
        2020 ESC guidelines for the management of adult congenital heart disease.
        Eur Heart J. 2021; 42: 563-645
        • Khairy P.
        Primary prevention implantable cardioverter-defibrillators in adults with congenital heart disease: recommendations from professional societies.
        Can J Cardiol. 2022; 38: 536-539
        • Zipes D.P.
        • Roberts D.
        Pacemaker-Cardioverter-Defibrillator Investigators. Results of the international study of the implantable pacemaker cardioverter-defibrillator. A comparison of epicardial and endocardial lead systems.
        Circulation. 1995; 92: 59-65
        • Korte T.
        • Jung W.
        • Spehl S.
        • et al.
        Incidence of ICD lead related complications during long-term follow-up: comparison of epicardial and endocardial electrode systems.
        Pacing Clin Electrophysiol. 1995; 18: 2053-2061
        • Vehmeijer J.T.
        • Brouwer T.F.
        • Limpens J.
        • et al.
        Implantable cardioverter-defibrillators in adults with congenital heart disease: a systematic review and meta-analysis.
        Eur Heart J. 2016; 37: 1439-1448
        • Hayward R.M.
        • Dewland T.A.
        • Moyers B.
        • et al.
        Device complications in adult congenital heart disease.
        Heart Rhythm. 2015; 12: 338-344
        • Koyak Z
        • de Groot JR
        • Van Gelder IC
        • et al.
        Implantable cardioverter defibrillator therapy in adults with congenital heart disease: who is at risk of shocks?.
        Circ Arrhythm Electrophysiol. 2012; 5: 101-110
        • Gleva M.J.
        • Wang Y.
        • Curtis J.P.
        • et al.
        Complications associated with implantable cardioverter defibrillators in adults with congenital heart disease or left ventricular noncompaction cardiomyopathy (from the NCDR Implantable Cardioverter-Defibrillator Registry).
        Am J Cardiol. 2017; 120: 1891-1898
        • Egbe A.C.
        • Miranda W.R.
        • Madhavan M.
        • et al.
        Cardiac implantable electronic devices in adults with tetralogy of Fallot.
        Heart. 2019; 105: 538-544
        • Khairy P.
        • Harris L.
        • Landzberg M.J.
        • et al.
        Sudden death and defibrillators in transposition of the great arteries with intra-atrial baffles: a multicenter study.
        Circ Arrhythm Electrophysiol. 2008; 1: 250-257
        • Khairy P.
        • Harris L.
        • Landzberg M.J.
        • et al.
        Implantable cardioverter-defibrillators in tetralogy of Fallot.
        Circulation. 2008; 117: 363-370
        • Atallah J.
        • Erickson C.C.
        • Cecchin F.
        • et al.
        Multi-institutional study of implantable defibrillator lead performance in children and young adults: results of the Pediatric Lead Extractability and Survival Evaluation (PLEASE) study.
        Circulation. 2013; 127: 2393-2402
        • Yap S.C.
        • Roos-Hesselink J.W.
        • Hoendermis E.S.
        • et al.
        Outcome of implantable cardioverter defibrillators in adults with congenital heart disease: a multi-centre study.
        Eur Heart J. 2007; 28: 1854-1861
        • Stout K.K.
        • Daniels C.J.
        • Aboulhosn J.A.
        • et al.
        2018 AHA/ACC guideline for the management of adults with congenital heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines.
        J Am Coll Cardiol. 2019; 73: e81-192
        • Sullivan K.E.
        Chromosome 22q11.2 deletion syndrome and DiGeorge syndrome.
        Immunol Rev. 2019; 287: 186-201
        • Gourraud J.B.
        • Chaix M.A.
        • Shohoudi A.
        • et al.
        Transvenous lead extraction in adults with congenital heart disease: insights from a 20-year single-center experience.
        Circ Arrhythm Electrophysiol. 2018; 11e005409
        • Birnie DH
        • Healey JS
        • Wells GA
        • et al.
        Pacemaker or defibrillator surgery without interruption of anticoagulation.
        N Engl J Med. 2013; 368: 2084-2093
        • Atti V.
        • Turagam M.K.
        • Garg J.
        • et al.
        Subclavian and axillary vein access vs cephalic vein cutdown for cardiac implantable electronic device implantation: a meta-analysis.
        JACC Clin Electrophysiol. 2020; 6: 661-671
        • Hauser R.G.
        • Kallinen L.M.
        • Almquist A.K.
        • Gornick C.C.
        • Katsiyiannis W.T.
        Early failure of a small-diameter high-voltage implantable cardioverter-defibrillator lead.
        Heart Rhythm. 2007; 4: 892-896
        • Kleemann T.
        • Becker T.
        • Doenges K.
        • et al.
        Annual rate of transvenous defibrillation lead defects in implantable cardioverter-defibrillators over a period of >10 years.
        Circulation. 2007; 115: 2474-2480
        • Koneru J.N.
        • Jones P.W.
        • Hammill E.F.
        • Wold N.
        • Ellenbogen K.A.
        Risk factors and temporal trends of complications associated with transvenous implantable cardiac defibrillator leads.
        J Am Heart Assoc. 2018; 7e007691
        • Kuijpers J.M.
        • Koolbergen D.R.
        • Groenink M.
        • et al.
        Incidence, risk factors, and predictors of infective endocarditis in adult congenital heart disease: focus on the use of prosthetic material.
        Eur Heart J. 2017; 38: 2048-2056
        • Ahsan S.Y.
        • Saberwal B.
        • Lambiase P.D.
        • et al.
        A simple infection-control protocol to reduce serious cardiac device infections.
        Europace. 2014; 16: 1482-1489
        • Lieberman R.A.
        • Olshansky B.
        Antibacterial envelope to prevent cardiac implantable device infection.
        N Engl J Med. 2019; 381: 1782-1783
        • Zeitler E.P.
        • Friedman D.J.
        • Loring Z.
        • et al.
        Complications involving the subcutaneous implantable cardioverter-defibrillator: lessons learned from MAUDE.
        Heart Rhythm. 2020; 17: 447-454
        • Dai M.
        • Cai C.
        • Vaibhav V.
        • et al.
        Trends of cardiovascular implantable electronic device infection in 3 decades: a population-based study.
        JACC Clin Electrophysiol. 2019; 5: 1071-1080
        • Boersma L.
        • Barr C.
        • Knops R.
        • et al.
        Implant and midterm outcomes of the Subcutaneous Implantable Cardioverter-Defibrillator Registry: the EFFORTLESS study.
        J Am Coll Cardiol. 2017; 70: 830-841
        • Knops R.E.
        • Olde Nordkamp L.R.A.
        • Delnoy P.-P.H.M.
        • et al.
        Subcutaneous or transvenous defibrillator therapy.
        N Engl J Med. 2020; 383: 526-536

      Linked Article

      • Implantable Cardioverter-Defibrillators in Adults With Congenital Heart Disease: Toward the More Global Assessment of Healthspan
        Canadian Journal of Cardiology
        • Preview
          Sudden cardiac death is thought to be the second most common cause of mortality in the growing population of adults with congenital heart disease (CHD), surpassed only by heart failure–related deaths.1 Sudden cardiac deaths account for up to 25% of all causes of mortality in adults with CHD, with rates that vary widely across the broad spectrum of congenital heart malformations. Risk stratification for sudden cardiac death in view of selecting appropriate candidates for primary-prevention implantable cardioverter-defibrillators (ICDs) is an evolving and imperfect science.
        • Full-Text
        • PDF