Canadian Journal of Cardiology

Targeted Temperature Management Following Out-of-Hospital Cardiac Arrest: Integrating Evidence into Real World Practice

Published:January 04, 2023DOI:

      Unstructured Abstract

      Targeted temperature management (TTM) post-out of hospital cardiac arrest (OHCA) has been a focus of debate in an attempt to improve post-arrest outcomes. Contemporary trials examining the role of TTM post-cardiac arrest suggest that targeting normothermia should be the standard of care for initially comatose survivors of cardiac arrest. Differences in patient populations have been demonstrated across trials and important subgroups may be under-represented in clinical trials compared to real-world registries. In this review, we aimed to describe the populations represented in international OHCA registries and to propose a pathway to integrate clinical trial evidence into practice.
      The patient case-mix among registries including survivors to hospital admission was similar compared to the pivotal trials (shockable rhythm, witnessed arrest), suggesting reasonable external validity. Therefore, for the majority of OHCA, targeted normothermia should be the strategy of choice. There remains conflicting evidence for patients with a non-shockable rhythm with no clear evidence-based justification for mild hypothermia over targeted normothermia
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Berdowski J.
        • Berg R.A.
        • Tijssen J.G.
        • Koster R.W.
        Global incidences of out-of-hospital cardiac arrest and survival rates: systematic review of 67 prospective studies.
        Resuscitation. 2010; 81: 1479-1487
      1. Kiguchi T, Okubo M, Nishiyama C et al. Out-of-hospital cardiac arrest across the World: First report from the International Liaison Committee on Resuscitation (ILCOR). Resuscitation. 2020; 152: 39-49.

        • Chan H.K.
        • Okubo M.
        • Callaway C.W.
        • Clay Mann N.
        • Wang H.E.
        Characteristics of adult out-of-hospital cardiac arrest in the National Emergency Medical Services Information System.
        J Am Coll Emerg Physicians Open. 2020; 4: 445-452
        • Kotini-Shah P.
        • Del Rios M.
        • Khosla S.
        • et al.
        Sex differences in outcomes for out-of-hospital cardiac arrest in the United States.
        Resuscitation. 2021; 163: 6-13
        • Huebinger R.
        • Vithalani V.
        • Osborn L.
        • et al.
        Community disparities in out of hospital cardiac arrest care and outcomes in Texas.
        Resuscitation. 2021; 163: 101-107
        • Grubic N.
        • Peng Y.P.
        • Walker M.
        • et al.
        Bystander-initiated cardiopulmonary resuscitation and automated external defibrillator use after out-of-hospital cardiac arrest: Uncovering disparities in care and survival across the urban-rural spectrum.
        Resuscitation. 2022; 175: 150-158
        • Sandroni C.
        • D’Arrigo S.
        • Cacciola S.
        • et al.
        Prediction of Good Neurological Outcome in Comatose Survivors of Cardiac Arrest: A Systematic Review.
        Intensive Care Medicine. 2022; 48: 389-413
        • Hypothermia after Cardiac Arrest Study G.
        Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest.
        N Engl J Med. 2002; 346: 549-556
        • Bernard S.A.
        • Gray T.W.
        • Buist M.D.
        • Jones B.M.
        • Silvester W.
        • Gutteridge G.
        • Smith K.
        Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia.
        N Engl J Med. 2002; 346: 557-563
        • Nielsen N.
        • Wetterslev J.
        • Cronberg T.
        • et al.
        Targeted temperature management at 33°C versus 36°C after cardiac arrest.
        N Engl J Med. 2013; 369: 2197-2206
        • Le May M.
        • Osborne C.
        • Russo J.
        • So D.
        • Chong A.Y.
        • Dick A.
        • Froeschl M.
        • Glover C.
        • Hibbert B.
        • Marquis J.-F.
        • De Roock S.
        • Labinaz M.
        • Bernick J.
        • Marshall S.
        • Maze R.
        • Wells G.
        Effect of moderate vs mild therapeutic hypothermia on mortality and neurologic outcomes in comatose survivors of out-of-hospital cardiac arrest: the CAPITAL CHILL randomized clinical trial.
        JAMA. 2021; 326: 1494-1503
        • Hassager C.
        • Schmidt H.
        • Moller J.E.
        • et al.
        Duration of Device-Based Fever Prevention after Cardiac Arrest.
        N Engl J Med. 2022; (Online ahead of print)
        • Dankiewicz J.
        • Cronberg T.
        • Lilja G.
        • et al.
        Hypothermia versus normothermia after out-of-hospital cardiac arrest.
        N Engl J Med. 2021; 384: 2283-2294
        • Kirkegaard H.
        • Soreide E.
        • de Haas I.
        • et al.
        Targeted temperature management for 48 vs 24 hours and neurologic outcome after out-of-hospital cardiac arrest: a randomized clinical trial.
        JAMA. 2017; 318: 341-350
        • Nordberg P.
        • Taccone F.S.
        • Truhlar A.
        • et al.
        Effect of trans-nasal evaporative intra-arrest cooling on functional neurologic outcome in out-of-hospital cardiac arrest: the PRINCESS randomized clinical trial.
        JAMA. 2019; 321: 1677-1685
        • Wong G.C.
        • van Diepen S.
        • Ainsworth C.
        • et al.
        Canadian Cardiovascular Society/Canadian Cardiovascular Critical Care Society/Canadian Association of Interventional Cardiology Position Statement on the Optimal Care of the Postarrest Patient.
        Can J Cardiol. 2017; 33: 1-16
        • Panchal A.R.
        • et al.
        Part 3: Adult Basic and Advanced Life Support. 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care.
        Circulation. 2020; 142: S366-S468
        • Nolan J.P.
        • Sandroni C.
        • Bottiger B.W.
        • et al.
        European Resuscitation Council and European Society of Intensive Care Medicine Guidelines 2021: Post-Resuscitation Care.
        Intensive Care Medicine. 2021; 47: 369-421
        • Sandroni C.
        • Nolan J.P.
        • Andersen L.W.
        • et al.
        ERC-ESICM guidelines on temperature control after cardiac arrest in adults.
        Intensive Care Med. 2022; 48: 261-269
        • Krychtiuk K.A.
        • Fordyce C.B.
        • Hansen C.M.
        • et al.
        Targeted temperature management after out of hospital cardiac arrest: quo vadis?.
        Eur Heart J: Acute Cardiovasc Care. 2022; 00: 1-10
        • Wolfrum S.
        • Roedl K.
        • Hanebutte A.
        • et al.
        Temperature control after in-hospital cardiac arrest: A randomized clinical trial.
        Circulation. 2022; 146: 1357-1366
        • Sandroni C.
        • Cronberg T.
        • Sekhon M.
        Brain injury after cardiac arrest: pathophysiology, treatment and prognosis.
        Intensive Care Med. 2021; 47: 1393-1414
        • Sekhon M.
        • Ainslie P.N.
        • Griesdale D.E.
        Clinical pathophysiology of hypoxic ischemic brain injury after cardiac arrest: a “two-hit” model.
        Crit Care. 2017; 21: 90
        • Vaagenes P.
        • Ginsberg M.
        • Ebmeyer U.
        • Ernster L.
        • Fischer M.
        • Gisvold S.-E.
        • Gurvitch A.
        • Hossmann K.A.
        • Nemoto E.M.
        • Radovsky A.
        • Severinghaus J.W.
        • Safar P.
        • Schlichtig R.
        • Sterz F.
        • Tonnessen T.
        • White R.J.
        • Xiao F.
        • Zhou Y.
        Cerebral resuscitation from cardiac arrest: pathophysiologic mechanisms.
        Crit Care Med. 1996; 24: S57-S68
        • Perkins G.D.
        • Callaway C.W.
        • Haywood K.
        • Neumar R.W.
        • Lilja G.
        • Rowland M.J.
        • Sawyer K.N.
        • Skrifvars M.B.
        • Nolan J.P.
        Brain injury after cardiac arrest.
        Lancet. 2021; 398: 1269-1278
        • Nielsen N.
        • Hovdenes J.
        • Nilsson F.
        • Rubertsson S.
        • Stammet P.
        • Sunde K.
        • Valsson F.
        • Wanscher M.
        • Friberg H.
        Outcome, timing and adverse events in therapeutic hypo- thermia after out-of-hospital cardiac arrest.
        Acta Anaesthesiol Scand. 2009; 53: 926-934
        • Kirkegaard H.
        • Taccone F.S.
        • Skrifvars M.
        • Søreide E.
        Postresuscitation care after out-of-hospital cardiac arrest: clinical update and focus on targeted temperature management.
        Anesthesiology. 2019; 131: 186-208
        • Sunjic K.M.
        • Webb A.C.
        • Sunjic I.
        • Palà Creus M.
        • Folse S.L.
        Pharmacokinetic and other considerations for drug therapy during targeted temperature management.
        Crit Care Med. 2015; 43: 2228-2238
        • Donnino M.W.
        • Andersen L.W.
        • Berg K.M.
        • et al.
        Temperature management after cardiac arrest.
        Circulation. 2015; 132: 2448-2456
        • Badjatia N.
        • Strongilis E.
        • Gordon E.
        • et al.
        Metabolic impact of shivering during therapeutic temperature modulation: the bedside shivering assessment scale.
        Stroke. 2008; 39: 3242-3247
        • Lascarrou J.B.
        • Merdji H.
        • Le Gouge A.
        • et al.
        Targeted temperature management for cardiac arrest with nonshockable rhythm.
        N Engl J Med. 2019; 381: 2327-2337
        • Granfeldt A.
        • Holmberg M.J.
        • Nolan J.P.
        • Soar J.
        • Andersen L.W.
        Targeted temperature management in adult cardiac arrest: systematic review and meta-analysis.
        Resuscitation. 2021; 167: 160-172
        • Matsumoto S.
        • Kuno T.
        • Mikamic T.
        • et al.
        Effect of Cooling Methods and Target Temperature on Outcomes in Comatose Patients Resuscitated from Cardiac Arrest: Systematic Review and Network Meta-Analysis of Randomized Trials.
        Am Heart J. 2022; 256: 73-84
        • Buanes E.A.
        • Hufthammer K.O.
        • Langorgen J.
        • Guttormsen A.B.
        • Heltne J.K.
        Targeted temperature management in cardiac arrest: survival evaluated by propensity score matching.
        Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine. 2017; 25: 31
        • Okazaki T.
        • Hifumi T.
        • Kawakita K.
        • Kuroda Y.
        • et al.
        Targeted temperature management guided by the severity of hyperlactatemia for out-of-hospital cardiac arrest patients: a post hoc analysis of a nationwide, multicenter prospective registry.
        Ann Intensive Care. 2019; 9: 127
        • Fordyce C.B.
        • Chen A.Y.
        • Wang T.Y.
        • Lucas J.
        • Goyal A.
        • Wong G.C.
        • van Diepen S.
        • Kontos M.C.
        • Henry T.D.
        • Granger C.B.
        • Roe M.T.
        Patterns of use of targeted temperature management for acute myocardial infarction patients following out of hospital cardiac arrest: Insights from the National Cardiovascular Data Registry.
        A Heart J. 2018; 206: 131-133
      2. Dumas F. Grimaldi D. Zuber B. et al. Is hypothermia after cardiac arrest effective in both shockable and nonshockable patients?: Insights from a large registry. Circulation. 2011; 123: 877-886

      3. Mader T.J. Nathanson B.H. Soares 3rd, W.E. Coute R.A. McNally B.F. Comparative effectiveness of therapeutic hypothermia after out-of-hospital cardiac arrest: insight from a large data registry. Ther Hypothermia Temp Manag. 2014; 4: 21-31

      4. Vaahersalo J. Hiltunen P. Tiainen M. et al. Therapeutic hypothermia after out-of-hospital cardiac arrest in Finnish intensive care units: the FINNRESUSCI study. Intensive Care Med. 2013; 39: 826-837

      5. Doshi P. Patel K. Banuelos R. et al. Effect of therapeutic hypothermia on survival to hospital discharge in out-of-hospital cardiac arrest secondary to nonshockable rhythms. Acad Emerg Med. 2016; 23: 14-20

      6. Lundbye J.B. Rai M. Ramu B. et al. Therapeutic hypothermia is associated with improved neurologic outcome and survival in cardiac arrest survivors of non-shockable rhythms. Resuscitation. 2012; 83: 202-207

      7. Perman S.M. Grossestreuer A.V. Wiebe D.J. et al. The utility of therapeutic hypothermia for post-cardiac arrest syndrome patients with an initial nonshockable rhythm. Circulation. 2015; 132: 2146-2151

      8. Testori C. Sterz F. Behringer W. et al. Mild therapeutic hypothermia is associated with favourable outcome in patients after cardiac arrest with non-shockable rhythms. Resuscitation. 2011; 82: 1162-1167

        • Lai P.H.
        • Lancet E.A.
        • Weiden M.D.
        • et al.
        Characteristics associated with out-of-hospital cardiac arrests and resuscitations during the novel Coronavirus disease 2019 pandemic in New York City.
        JAMA Cardiol. 2020; 5: 1154-1163
        • Callaway C.W.
        • Coppler P.J.
        • Faro J.
        • et al.
        Association of initial illness severity and outcomes after cardiac arrest with targeted temperature management at 36C or 33C.
        JAMA network open. 2020; 3e208215
        • Bottiger B.W.
        • Hellmich M.
        • Wetsch W.A.
        The effectiveness of targeted temperature management following cardiac arrest may depend on bystander cardiopulmonary resuscitation rates.
        European Journal of Anesthesiology. 2022; 39: 401-402
        • Nutma S.
        • Tjepkema-Cloostermans M.C.
        • Ruijter B.J.
        • et al.
        Effects of targeted temperature management at 33C vs. 36C on comatose patients after cardiac arrest stratified by the severity of encephalopathy.
        Resuscitation. 2022; 173: 147-153
        • Fordyce C.B.
        • Grunau B.E.
        • Hawkins N.H.
        • et al.
        Long-term mortality, readmission and resource utilization among hospital survivors of out-of-hospital cardiac arrest.
        Can J Cardiol. 2022; (In Press)
        • Hoiland R.L.
        • Robba C.
        • Menon D.K.
        • Sekhon M.S.
        Differential pathophysiologic phenotypes of hypoxic ischemic brain injury: considerations for post-cardiac arrest trials.
        Intensive Care Med. 2020; 46: 1969-1971
        • Sekhon M.S.
        • Ainslie P.N.
        • Menon D.K.
        • et al.
        Brain hypoxia secondary to diffusion limitation in hypoxic ischemic brain injury postcardiac arrest.
        Crit Care Med. 2020; 48: 378-384
        • Hoilan R.L.
        • Ainslie P.N.
        • Wellington C.L.
        • et al.
        Brain hypoxia is associated with neuroglial injury in humans post-cardiac arrest.
        Circ Res. 2021; 20: 583-597
        • Balu R.
        • Rajagopalan S.
        • Baghshomali S.
        • et al.
        Cerebrovascular pressure reactivity and intracranial pressure are associated with neurologic outcome after hypoxic-ischemic brain injury.
        Resuscitation. 2021; 164: 114-121