Advertisement
Canadian Journal of Cardiology

SPECIAL CONSIDERATIONS IN CRITICAL CARE OF THE CONGENITAL HEART DISEASE PATIENT

Published:January 19, 2023DOI:https://doi.org/10.1016/j.cjca.2023.01.016

      ABSTRACT

      Outcomes of congenital heart disease have improved markedly over the last 20 years, with survival to adulthood now close to 90%. The mean age of admission to an intensive care unit (ICU) is 40 years. The incidence of hospital and critical care admissions have increased significantly as a consequence of this improved survival. Intensivists are now confronted with the management of complex adult congenital heart disease (ACHD) lesions not only from a cardiac perspective but also extra-cardiac organ consequences of years of abnormal circulation following surgical or palliative correction. Kidney and liver dysfunction, respiratory and hematological abnormalities are very common in this population. ACHD patients can present to the ICU for a vast number of reasons, these are classified in this review as medical non-cardiac, medical cardiac and surgical. Community/hospital acquired infections, cerebrovascular accidents, respiratory failure, alongside arrhythmias and heart failure are responsible for medical admissions. Surgical admissions include post-operative management after correction or palliation, but also medical optimization and work-up for advanced therapies. ICU management of this large heterogeneous group requires a thorough understanding of the pathophysiology in order to apply conventional adult critical care modalities; left ventricular or right ventricular dysfunction, pulmonary hypertension, intracardiac, extracardiac, palliative surgical shunts can be present and require additional consideration.
      This review focuses on the pathophysiology, long term sequelae, and different treatment modalities to supply a framework for the ICU physician caring for these patients. Successful outcome, especially in complex lesions is dependent on early involvement of specialized ACHD centers.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Canadian Journal of Cardiology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      REFERENCES

        • Fuller S.M.
        • He X.
        • Jacobs J.P.
        • et al.
        Estimating mortality risk for adult congenital heart surgery: An analysis of the society of thoracic surgeons congenital heart surgery database.
        Ann Thorac Surg. 2015; https://doi.org/10.1016/j.athoracsur.2015.07.002
        • Hörer J.
        • Vogt M.
        • Wottke M.
        • et al.
        Evaluation of the Aristotle complexity models in adult patients with congenital heart disease.
        Eur J Cardiothorac Surg. 2013; https://doi.org/10.1093/ejcts/ezs143
        • Hörer J.
        • Belli E.
        • Roussin R.
        • et al.
        Evaluation of the adult congenital heart surgery mortality score at two European centers.
        Ann Thorac Surg. 2018; https://doi.org/10.1016/j.athoracsur.2017.12.018
        • Baggen V.J.M.
        • Venema E.
        • Živná R.
        • et al.
        Development and validation of a risk prediction model in patients with adult congenital heart disease.
        Int J Cardiol. 2019; https://doi.org/10.1016/j.ijcard.2018.08.059
        • Lei Lei E.
        • Ladha K.
        • Mueller B.
        • et al.
        Noncardiac determinants of death and intensive care morbidity in adult congenital heart disease surgery.
        J Thorac Cardiovasc Surg. 2020; 159: 2407-24015.e2https://doi.org/10.1016/j.jtcvs.2019.07.106
        • Marelli A.J.
        • Mackie A.S.
        • Ionescu-Ittu R.
        • Rahme E.
        • Pilote L.
        Congenital heart disease in the general population: Changing prevalence and age distribution.
        Circulation. 2007; 115: 163-172
        • Yu C.
        • Moore B.M.
        • Kotchetkova I.
        • Cordina R.L.
        • Celermajer D.S.
        Causes of death in a contemporary adult congenital heart disease cohort.
        Heart. 2018; 104: 1678-1682https://doi.org/10.1136/heartjnl-2017-312777
        • Gaeta S.A.
        • Ward C.
        • Krasuski R.A.
        Extra-cardiac manifestations of adult congenital heart disease.
        Trends Cardiovasc Med. 2016; 26: 627-636https://doi.org/10.1016/j.tcm.2016.04.004
        • Alonso-Gonzalez R.
        • Borgia F.
        • Diller G.P.
        • et al.
        Abnormal lung function in adults with congenital heart disease: Prevalence, relation to cardiac anatomy, and association with survival.
        Circulation. 2013; 127: 882-890https://doi.org/10.1161/CIRCULATIONAHA.112.126755
        • Diller G.P.
        • Dimopoulos K.
        • Broberg C.S.
        • et al.
        Presentation, survival prospects, and predictors of death in Eisenmenger syndrome: A combined retrospective and case-control study.
        Eur Heart J. 2006; 27: 1737-1742https://doi.org/10.1093/eurheartj/ehl116
        • Simonneau G.
        • Gatzoulis M.A.
        • Adatia I.
        • et al.
        Updated clinical classification of pulmonary hypertension.
        J Am Coll Cardiol. 2013; 62https://doi.org/10.1016/j.jacc.2013.10.029
        • Kratzert W.B.
        • Boyd E.K.
        • Schwarzenberger J.C.
        Management of the critically ill adult with congenital heart disease.
        J Cardiothorac Vasc Anesth. 2018; 32: 1682-1700https://doi.org/10.1053/J.JVCA.2017.11.025
        • Allan C.K.
        Intensive care of the adult patient with congenital heart disease.
        Prog Cardiovasc Dis. 2011; 53: 274-280https://doi.org/10.1016/J.PCAD.2010.11.002
        • Penny D.J.
        • Redington A.N.
        Doppler echocardiographic evaluation of pulmonary blood flow after the Fontan operation: The role of the lungs.
        Br Heart J. 1991; 66: 372-374https://doi.org/10.1136/hrt.66.5.372
        • Williams D.B.
        • Kiernan P.D.
        • Metke M.P.
        • Michael Marsh H.
        • Danielson G.K.
        Hemodynamic response to positive end-expiratory pressure following right atrium-pulmonary artery bypass (Fontan Procedure).
        J Thorac Cardiovasc Surg. 1984; 87: 856-861
        • Shekerdemian L.S.
        • Bush A.
        • Shore D.F.
        • Lincoln C.
        • Redington A.N.
        Cardiopulmonary interactions after Fontan operations.
        Circulation. 1997; 96: 3934-3942https://doi.org/10.1161/01.CIR.96.11.3934
        • Kocis K.C.
        • Meliones J.N.
        • Dekeon M.K.
        • Callow L.B.
        • Lupinetti F.M.
        • Bove E.L.
        High-frequency jet ventilation for respiratory failure after congenital heart surgery.
        Circulation. 1992; 86: II127-I132
        • Asrani S.K.
        • Asrani N.S.
        • Freese D.K.
        • et al.
        Congenital heart disease and the liver.
        Hepatology. 2012; 56: 1160-1169https://doi.org/10.1002/hep.25692
        • Egbe A.C.
        • Miranda W.R.
        • Anderson J.H.
        • et al.
        Determinants and prognostic implications of hepatorenal dysfunction in adults with congenital heart disease.
        Can J Cardiol. 2022; 38: 1742-1750
        • Shah H.
        • Kuehl K.
        • Sherker A.H.
        Liver disease after the Fontan procedure: what the hepatologist needs to know.
        J Clin Gastroenterol. 2010; 44: 428-431https://doi.org/10.1097/MCG.0b013e3181d476fc
        • Kendsersky P.
        • Krasuski R.A.
        Intensive care unit management of the adult with congenital heart disease.
        Curr Cardiol Rep. 2020; 22https://doi.org/10.1007/s11886-020-01389-9
        • Dimopoulos K.
        • Diller G.P.
        • Koltsida E.
        • et al.
        Prevalence, predictors, and prognostic value of renal dysfunction in adults with congenital heart disease.
        Circulation. 2008; 117: 2320-2328https://doi.org/10.1161/CIRCULATIONAHA.107.734921
        • Dittrich S.
        • Haas N.
        • Bührer C.
        • Müller C.
        • Dähnert I.
        • Lange P.
        Renal impairment in patients with long-standing cyanotic congenital heart disease.
        Acta Paediatr. 1998; 87: 949-954https://doi.org/10.1080/080352598750031608
        • Inatomi J.
        • Matsuoka K.
        • Fujimaru R.
        • Nakagawa A.
        • Iijima K.
        Mechanisms of development and progression of cyanotic nephropathy.
        Pediatr Nephrol. 2006; 21: 1440-1445https://doi.org/10.1007/s00467-006-0220-5
        • Norozi K.
        • Oechslin E.
        Renal dysfunction in adults with congenital heart defects.
        Prog Pediatr Cardiol. 2016; 41: 51-57https://doi.org/10.1016/J.PPEDCARD.2015.12.005
        • Morgan C.
        • Al-Aklabi M.
        • Garcia Guerra G.
        Chronic kidney disease in congenital heart disease patients: A narrative review of evidence.
        Can J Kidney Health Dis. 2015; 2: 1-9https://doi.org/10.1186/s40697-015-0063-8
        • Jacquet L.
        • Vancaenegem O.
        • Rubay J.
        • et al.
        Intensive care outcome of adult patients operated on for congenital heart disease.
        Intensive Care Med. 2007; 33: 524-528https://doi.org/10.1007/s00134-006-0462-5
        • Bhatt A.B.
        • Rajabali A.
        • He W.
        • Benavidez O.J.
        High resource use among adult congenital heart surgery admissions in adult hospitals: Risk factors and association with death and comorbidities.
        Congenit Heart Dis. 2015; 10: 13-20https://doi.org/10.1111/chd.12169
        • Oechslin E.
        Hematological management of the cyanotic adult with congenital heart disease.
        Int J Cardiol. 2004; 97: 109-115https://doi.org/10.1016/j.ijcard.2004.08.015
        • Rupa-Matysek J.
        • Trojnarska O.
        • Gil L.
        • et al.
        Assessment of coagulation profile by thromboelastometry in adult patients with cyanotic congenital heart disease.
        Int J Cardiol. 2016; 202: 556-560https://doi.org/10.1016/j.ijcard.2015.09.082
        • Giglia T.M.
        • Massicotte M.P.
        • Tweddell J.S.
        • et al.
        Prevention and treatment of thrombosis in pediatric and congenital heart disease: A scientific statement from the American Heart Association.
        Circulation. 2013; 128: 2622-2703https://doi.org/10.1161/01.cir.0000436140.77832.7a
        • Ramlakhan K.P.
        • van der Bie M.
        • den Uil C.A.
        • Dubois E.A.
        • Roos-Hesselink J.W.
        Adult patients with congenital heart disease in the intensive care unit.
        Heart. 2022; 108: 1452-1460https://doi.org/10.1136/heartjnl-2021-320676
        • Maurer S.J.
        • Bauer U.M.M.
        • Baumgartner H.
        • Uebing A.
        • Walther C.
        • Tutarel O.
        Acquired comorbidities in adults with congenital heart disease: An analysis of the German National Register for congenital heart defects.
        J Clin Med. 2021; 10: 314https://doi.org/10.3390/jcm10020314
        • Ho K.
        • Bare I.
        • Sy E.
        • Singh J.
        • Opotowsky A.R.
        • Dehghani P.
        Trends in patient characteristic, cost, and mortality among mechanically Ventilated Adult Patients With Congenital Heart Disease in the United States.
        CJC Open. 2022; 4: 197-205https://doi.org/10.1016/j.cjco.2021.09.024
        • Moore J.P.
        • Khairy P.
        Adults with congenital heart disease and arrhythmia management.
        Cardiol Clin. 2020; 38: 417-434https://doi.org/10.1016/j.ccl.2020.04.006
        • Silka M.J.
        • Hardy B.G.
        • Menashe V.D.
        • Morris C.D.
        A population-based prospective evaluation of risk of sudden cardiac death after operation for common congenital heart defects.
        J Am Coll Cardiol. 1998; 32: 245-251
        • Kantor P.F.
        • Redington A.N.
        Pathophysiology and management of heart failure in repaired congenital heart disease.
        Heart Fail Clin. 2010; 6 (ix): 497-506https://doi.org/10.1016/j.hfc.2010.06.002
        • Oechslin E.N.
        • Harrison D.A.
        • Connelly M.S.
        • Webb G.D.
        • Siu S.C.
        Mode of death in adults with congenital heart disease.
        Am J Cardiol. 2000; 86: 1111-1116https://doi.org/10.1016/s0002-9149(00)01169-3
        • Zomer A.C.
        • Vaartjes I.
        • Grobbee D.E.
        • Mulder B.J.M.
        Adult congenital heart disease: New challenges.
        Int J Cardiol. 2013; 163: 105-107https://doi.org/10.1016/j.ijcard.2012.03.035
        • Budts W.
        • Roos-Hesselink J.
        • Rädle-Hurst T.
        • et al.
        Treatment of heart failure in adult congenital heart disease: A position paper of the Working Group of Grown-Up Congenital Heart Disease and the Heart Failure Association of the European Society of Cardiology.
        Eur Heart J. 2016; 37: 1419-1427https://doi.org/10.1093/eurheartj/ehv741
        • Neethling E.
        • Heggie J.E.
        Considerations in critical-care and anesthetic management of adult patients living with Fontan circulation.
        Can J Cardiol. 2022; 38: 1100-1110https://doi.org/10.1016/j.cjca.2022.04.017
        • van de Bruaene A.
        • Meier L.
        • Droogne W.
        • et al.
        Management of acute heart failure in adult patients with congenital heart disease.
        Heart Fail Rev. 2018; 23: 1-14https://doi.org/10.1007/s10741-017-9664-x
        • Bokma J.P.
        • Winter M.M.
        • van Dijk A.P.
        • et al.
        Effect of Losartan on right ventricular dysfunction: Results from the double-blind, randomized REDEFINE trial (right ventricular dysfunction in tetralogy of Fallot: Inhibition of the renin-angiotensin-aldosterone system) in adults with repaired tetralogy of Fallot.
        Circulation. 2018; 137: 1463-1471https://doi.org/10.1161/CIRCULATIONAHA.117.031438
      1. Heidenreich PA, Bozkurt B, Aguilar D, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: A report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022;145(18):e895-e1032. Doi:10.1161/CIR.0000000000001063

        • Lluri G.
        • Lin J.
        • Reardon L.
        • Miner P.
        • Whalen K.
        • Aboulhosn J.
        Early experience with Sacubitril/Valsartan in adult patients with congenital heart disease.
        World J Pediatr Congenit Heart Surg. 2019; 10: 292-295https://doi.org/10.1177/2150135119825599
        • Maurer S.J.
        • Pujol Salvador C.
        • Schiele S.
        • Hager A.
        • Ewert P.
        • Tutarel O.
        Sacubitril/valsartan for heart failure in adults with complex congenital heart disease.
        Int J Cardiol. 2020; 300: 137-140https://doi.org/10.1016/j.ijcard.2019.06.031
        • Crossland D.S.
        • van de Bruaene A.
        • Silversides C.K.
        • Hickey E.J.
        • Roche S.L.
        Heart failure in adult congenital heart disease: From advanced therapies to end-of-life care.
        Can J Cardiol. 2019; 35: 1723-1739https://doi.org/10.1016/j.cjca.2019.07.626
        • Kalogeropoulos A.P.
        • Savvoulidis P.
        • Saraf A.
        • et al.
        Prevalence and incidence of heart failure in adolescents and adults with repaired tetralogy of Fallot.
        J Am Coll Cardiol. 2017 Mar 21; 69: 563
        • Rodriguez F.H.
        • Moodie D.S.
        • Parekh D.R.
        • et al.
        Outcomes of heart failure-related hospitalization in adults with congenital heart disease in the United States.
        Congenit Heart Dis. 2013; 8: 513-519https://doi.org/10.1111/chd.12019
        • Weiss S.L.
        • Nicolson S.C.
        • Naim M.Y.
        Clinical update in pediatric sepsis: Focus on children with pre-existing heart disease.
        J Cardiothorac Vasc Anesth. 2020; 34: 1324-1332https://doi.org/10.1053/j.jvca.2019.10.029
        • Maser M.
        • Freisinger E.
        • Bronstein L.
        • et al.
        Frequency, mortality, and predictors of adverse outcomes for endocarditis in patients with congenital heart disease: Results of a nationwide analysis including 2512 endocarditis cases.
        J Clin Med. 2021; : 10https://doi.org/10.3390/jcm10215071
        • Broberg C.S.
        • Kovacs A.H.
        • Sadeghi S.
        • et al.
        COVID-19 in adults with congenital heart disease.
        J Am Coll Cardiol. 2021; 77: 1644-1655https://doi.org/10.1016/j.jacc.2021.02.023
      2. Yuan S, Oechslin E. Anatomical complexity does not predict outcomes after COVID-19 in adults with congenital heart disease. Heart April 16, 2021. Doi:10.1136/heartjnl-2021-319054

        • Schwerzmann M.
        • Ruperti-Repilado F.J.
        • Baumgartner H.
        • et al.
        Clinical outcome of COVID-19 in patients with adult congenital heart disease.
        Heart. 2021; 107: 1226-1232https://doi.org/10.1136/heartjnl-2020-318467
        • Diaz P.
        • Coughlin W.
        • Lam W.
        • et al.
        Describing characteristics of adults with and without congenital heart defects hospitalized with COVID-19.
        Birth Defects Res. 2022; 114: 652-661https://doi.org/10.1002/bdr2.2052
        • COVIDSurg Collaborative
        • GlobalSurg Collaborative
        Timing of surgery following SARS-CoV-2 infection: an international prospective cohort study.
        Anaesthesia. 2021; 76: 748-758https://doi.org/10.1111/anae.15458
        • Lastinger L.T.
        • Daniels C.J.
        • Lee M.
        • Sabanayagam A.
        • Bradley E.A.
        Triage and management of the ACHD patient with COVID-19: A single center approach.
        Int J Cardiol. 2020; 320: 178-182https://doi.org/10.1016/j.ijcard.2020.06.023
        • Diller G.P.
        • Gatzoulis M.A.
        • Broberg C.S.
        • et al.
        Coronavirus disease 2019 in adults with congenital heart disease: A position paper from the ESC working group of adult congenital heart disease, and the International Society for Adult Congenital Heart Disease.
        Eur Heart J. 2021; 42: 1858-1865https://doi.org/10.1093/eurheartj/ehaa960
        • Lanz J.
        • Brophy J.M.
        • Therrien J.
        • Kaouache M.
        • Guo L.
        • Marelli A.J.
        Stroke in adults with congenital heart disease: Incidence, cumulative risk, and predictors.
        Circulation. 2015; 132: 2385-2394https://doi.org/10.1161/CIRCULATIONAHA.115.011241
        • Giang K.W.
        • Mandalenakis Z.
        • Dellborg M.
        • et al.
        Long-term Risk of hemorrhagic stroke in young patients with congenital heart disease.
        Stroke. 2018; 49: 1155-1162https://doi.org/10.1161/STROKEAHA.117.020032
        • Yang S.Y.
        Brain abscess associated with congenital heart disease.
        Surg Neurol. 1989; 31: 129-132https://doi.org/10.1016/0090-3019(89)90325-x
        • Fuchs H.
        • Singh D.
        • Greene C.
        • Ross-Ascuitto N.
        • Ascuitto R.
        Pseudotumor cerebri associated with modified Fontan anatomy.
        Pediatr Cardiol. 2013; 34: 1932-1934https://doi.org/10.1007/s00246-012-0472-8
      3. Vida VL, Zanotto L, Triglia LT, et al. Clinical medicine surgery for adult patients with congenital heart disease: Results from the European Database. J Clin Med 2493;2020:2493. Doi:10.3390/jcm9082493

        • Lacour-Gayet F.
        • Clarke D.
        • Jacobs J.
        • et al.
        The Aristotle score: A complexity-adjusted method to evaluate surgical results.
        Eur J Cardio-Thorac Surg. 2004; https://doi.org/10.1016/j.ejcts.2004.03.027
        • Hörer J.
        • Kasnar-Samprec J.
        • Cleuziou J.
        • et al.
        Mortality following congenital heart surgery in adults can be predicted accurately by combining expert-based and evidence-based pediatric risk scores.
        World J Pediatr Congenit Heart Surg. 2016; 7: 425-435https://doi.org/10.1177/2150135116656001
        • d’Udekem Y.
        The PEACH score points to benefits of early intervention in adults with congenital heart disease.
        J Am Coll Cardiol. 2021; 78: 243-244https://doi.org/10.1016/j.jacc.2021.05.020
        • Fuchs S.R.
        • Smith A.H.
        • van Driest S.L.
        • Crum K.F.
        • Edwards T.L.
        • Kannankeril P.J.
        Incidence and effect of early postoperative ventricular arrhythmias after congenital heart surgery.
        Heart Rhythm. 2019; 16: 710-716https://doi.org/10.1016/j.hrthm.2018.11.032
        • Rękawek J.
        • Kansy A.
        • Miszczak-Knecht M.
        • et al.
        Risk factors for cardiac arrhythmias in children with congenital heart disease after surgical intervention in the early postoperative period.
        J Thorac Cardiovasc Surg. 2007; 133: 900-904https://doi.org/10.1016/j.jtcvs.2006.12.011
        • Zwijnenburg R.D.
        • Baggen V.J.M.
        • Witsenburg M.
        • Boersma E.
        • Roos-Hesselink J.W.
        • van den Bosch A.E.
        Risk factors for pulmonary hypertension in adults after atrial septal defect closure.
        Am J Cardiol. 2019; 123: 1336-1342https://doi.org/10.1016/j.amjcard.2019.01.011
        • Lammers A.E.
        • Bauer L.J.
        • Diller G.P.
        • et al.
        Pulmonary hypertension after shunt closure in patients with simple congenital heart defects.
        Int J Cardiol. 2020; 308: 28-32https://doi.org/10.1016/j.ijcard.2019.12.070
        • Alonso-Gonzalez R.
        • Lopez-Guarch C.J.
        • Subirana-Domenech M.T.
        • et al.
        Pulmonary hypertension and congenital heart disease: An insight from the REHAP National Registry.
        Int J Cardiol. 2015; 184: 717-723https://doi.org/10.1016/J.IJCARD.2015.02.031
        • Apitz C.
        • Webb G.D.
        • Redington A.N.
        Tetralogy of Fallot.
        Lancet. 2009; 374: 1462-1471https://doi.org/10.1016/S0140-6736(09)60657-7
        • Khairy P.
        • Aboulhosn J.
        • Gurvitz M.Z.
        • et al.
        Arrhythmia burden in adults with surgically repaired tetralogy of Fallot.
        Circulation. 2010; 122: 868-875https://doi.org/10.1161/CIRCULATIONAHA.109.928481
        • Egbe A.C.
        • Vallabhajosyula S.
        • Connolly H.M.
        Trends and outcomes of pulmonary valve replacement in tetralogy of Fallot.
        Int J Cardiol. 2020; 299: 136-139https://doi.org/10.1016/j.ijcard.2019.07.063
        • Paranon S.
        • Acar P.
        Ebstein’s anomaly of the tricuspid valve: from fetus to adult.
        Heart. 2008; 94: 237-243https://doi.org/10.1136/hrt.2006.105262
        • da Silva J.P.
        • Baumgratz J.F.
        • da Fonseca L.
        • et al.
        The cone reconstruction of the tricuspid valve in Ebstein’s anomaly. The operation: Early and midterm results.
        J Thorac Cardiovasc Surg. 2007; 133: 215-223https://doi.org/10.1016/j.jtcvs.2006.09.018
        • Dearani J.A.
        • Said S.M.
        • O’Leary P.W.
        • Burkhart H.M.
        • Barnes R.D.
        • Cetta F.
        Anatomic repair of Ebstein’s malformation: Lessons learned with cone reconstruction.
        Ann Thorac Surg. 2013; 95: 220-228https://doi.org/10.1016/j.athoracsur.2012.04.146
        • Daley M.
        • du Plessis K.
        • Zannino D.
        • et al.
        Reintervention and survival in 1428 patients in the Australian and New Zealand Fontan Registry.
        Heart. 2020; 106: 751-757https://doi.org/10.1136/heartjnl-2019-315430
        • Egbe A.
        • Khan A.R.
        • Al-Otaibi M.
        • Said S.M.
        • Connolly H.M.
        Outcomes of hospitalization in adults with Fontan palliation: The Mayo Clinic experience.
        Am Heart J. 2018; 198: 115-122https://doi.org/10.1016/j.ahj.2017.12.012
        • Cardoso B.
        • Kelecsenyi A.
        • Smith J.
        • et al.
        Improving outcomes for transplantation in failing Fontan—what is the next target?.
        JTCVS Open. 2021; 8: 565-573https://doi.org/10.1016/j.xjon.2021.08.006
        • Hirsch J.C.
        • Birkmeyer J.D.
        Growing pains: the challenges of managing congenital heart disease after childhood.
        Circulation. 2008; 118: 2321-2322https://doi.org/10.1161/CIRCULATIONAHA.108.819557
        • Haranal M.
        • Luo S.
        • Honjo O.
        Mechanical circulatory support for patients with adult congenital heart disease.
        Circ J. 2020; 84: 533-541https://doi.org/10.1253/circj.CJ-19-0821
        • Acheampong B.
        • Johnson J.N.
        • Stulak J.M.
        • et al.
        Postcardiotomy ECMO support after high-risk operations in adult congenital heart disease.
        Congenit Heart Dis. 2016; 11: 751-755https://doi.org/10.1111/chd.12396
        • Steiner J.M.
        • Krieger E.V.
        • Stout K.K.
        • et al.
        Durable mechanical circulatory support in teenagers and adults with congenital heart disease: A systematic review.
        Int J Cardiol. 2017; 245: 135-140https://doi.org/10.1016/j.ijcard.2017.07.107
        • Davies R.R.
        • Russo M.J.
        • Yang J.
        • Quaegebeur J.M.
        • Mosca R.S.
        • Chen J.M.
        Listing and transplanting adults with congenital heart disease.
        Circulation. 2011; 123: 759-767https://doi.org/10.1161/CIRCULATIONAHA.110.960260
        • Patel N.D.
        • Weiss E.S.
        • Allen J.G.
        • et al.
        Heart transplantation for adults with congenital heart disease: analysis of the United network for organ sharing database.
        Ann Thorac Surg. 2009; 88 (; discussion 821-2): 814-821https://doi.org/10.1016/j.athoracsur.2009.04.071
        • Miller J.R.
        • Simpson K.E.
        • Epstein D.J.
        • et al.
        Improved survival after heart transplant for failed Fontan patients with preserved ventricular function.
        J Heart Lung Transplant. 2016; 35: 877-883https://doi.org/10.1016/j.healun.2016.02.005
        • Neethling E.
        • Moreno Garijo J.
        • Mangalam T.K.
        • et al.
        Intraoperative and early postoperative management of heart transplantation: Anesthetic implications.
        J Cardiothorac Vasc Anesth. 2020; 34: 2189-2206https://doi.org/10.1053/j.jvca.2019.09.037